Prosthetic heart valves and apparatus and methods for delivery of same

Information

  • Patent Grant
  • 11701226
  • Patent Number
    11,701,226
  • Date Filed
    Thursday, May 13, 2021
    2 years ago
  • Date Issued
    Tuesday, July 18, 2023
    9 months ago
Abstract
Apparatus and methods are described herein for various embodiments of a prosthetic heart valve, delivery apparatus and delivery methods for delivering a prosthetic heart valve to a heart of a patient via a transapical or transvascular delivery approach. In some embodiments, a prosthetic heart valve includes an outer frame coupled to an inner frame and the outer frame is movable between a first configuration relative to the inner frame and a second inverted configuration relative to the inner frame. The valve can be delivered to a heart using an apparatus that includes a delivery sheath that defines a lumen that can receive the prosthetic heart valve therein when the outer frame is in the inverted configuration. Actuation wires are releasably coupled to the outer frame and can be used to help revert the outer frame after the valve is deployed outside of the delivery sheath and within the heart.
Description
BACKGROUND

Embodiments are described herein that relate to devices and methods for use in the delivery and deployment of prosthetic valves, and particularly to devices and methods for prosthetic heart valves that provide for delivery of the prosthetic heart valves to within a heart of a patient in an inverted configuration.


Prosthetic heart valves can pose particular challenges for delivery and deployment within a heart. Valvular heart disease, and specifically, aortic and mitral valve disease is a significant health issue in the United States (US); annually approximately 90,000 valve replacements are conducted in the US. Traditional valve replacement surgery involving the orthotopic replacement of a heart valve is considered an “open heart” surgical procedure. Briefly, the procedure necessitates surgical opening of the thorax, the initiation of extra-corporeal circulation with a heart-lung machine, stopping and opening the heart, excision and replacement of the diseased valve, and re-starting of the heart. While valve replacement surgery typically carries a 1-4% mortality risk in otherwise healthy persons, a significantly higher morbidity is associated to the procedure largely due to the necessity for extra-corporeal circulation. Further, open heart surgery is often poorly tolerated in elderly patients. Thus elimination of the extra-corporeal component of the procedure could result in reduction in morbidities and cost of valve replacement therapies could be significantly reduced.


While replacement of the aortic valve in a transcatheter manner is the subject of intense investigation, lesser attention has been focused on the mitral valve. This is in part reflective of the greater level of complexity associated to the native mitral valve apparatus, and thus, a greater level of difficulty with regards to inserting and anchoring the replacement prosthesis. A need exists for delivery devices and methods for transcatheter mitral valve replacements.


Some known delivery methods include delivering a prosthetic mitral valve through an apical puncture site. In such a procedure, the valve is placed in a compressed configuration within a lumen of a delivery catheter of, for example, 34-36 Fr (i.e. an outer diameter of about 11-12 mm). Delivery of a prosthetic valve to the atrium of the heart can be accomplished, for example, via a transfemoral approach, transatrially directly into the left atrium of the heart, a jugular approach or transapically. In many cases, it is desirable for the prosthetic valve to have a small outer perimeter or profile to allow insertion through a smaller delivery catheter of, for example, 28 Fr (i.e. an outer diameter of about 9 mm).


Thus, a need exist for prosthetic heart valves that can have a small profile during delivery while still maintaining the size and characteristics needed to perform their desired function within the heart.


A need also exists for devices and methods for delivering and deploying a prosthetic heart valve within a heart, with the valve disposed within a small diameter delivery sheath and then moving the valve to an expanded configuration within the heart.


SUMMARY

Apparatus and methods are described herein for various embodiments of a prosthetic heart valve, delivery apparatus and delivery methods for delivering a prosthetic heart valve to a heart of a patient via a transvascular and a transapical delivery approach. In some embodiments, a prosthetic heart valve includes an outer frame coupled to an inner frame and the outer frame is movable between a first configuration relative to the inner frame and a second inverted configuration relative to the inner frame. The valve can be delivered to a heart using an apparatus that includes a delivery sheath that defines a lumen that can receive the prosthetic heart valve therein when the outer frame is in the inverted configuration. Actuation wires are releasably coupled to the outer frame and can be used to help revert the outer frame after the valve is deployed outside of the delivery sheath and within the heart.





BRIEF DESCRIPTION OF THE FIGURES


FIGS. 1A and 1B are schematic illustrations of a portion of a prosthetic heart valve, according to an embodiment, shown in a first configuration and a second configuration, respectively.



FIGS. 1C and 1D are schematic illustrations of the portion of the prosthetic heart valve of FIGS. 1A and 1B, respectively, shown disposed within a delivery sheath.



FIGS. 2A and 2B are schematic illustrations of the portion of a prosthetic heart valve of FIGS. 1A and 1B, shown in the first configuration and the second configuration, respectively.



FIGS. 3-5 are front, bottom, and top views of a prosthetic heart valve according to an embodiment.



FIG. 6 is an opened and flattened view of the inner frame of the prosthetic heart valve of FIGS. 3-5, in an unexpanded configuration.



FIGS. 7 and 8 are side and bottom views, respectively, of the inner frame of FIG. 6 in an expanded configuration.



FIG. 9 is an opened and flattened view of the outer frame of the valve of FIGS. 3-5, in an unexpanded configuration.



FIGS. 10 and 11 are side and top views, respectively, of the outer frame of FIG. 9 in an expanded configuration.



FIGS. 12-14 are side, front, and top views of an assembly of the inner frame of FIGS. 6-8 and the outer frame of FIGS. 9-11.



FIG. 15 is a side perspective view of an assembly of an inner frame and an outer frame shown in a biased expanded configuration, according to an embodiment.



FIG. 16 is a side perspective view of the assembly of FIG. 15 with the outer frame shown inverted.



FIG. 17 is side view of the assembly of FIG. 16 shown in a collapsed configuration within a lumen of a delivery sheath.



FIG. 18 is a side view of the assembly of FIG. 17 shown in a first partially deployed configuration.



FIG. 19 is a side view of the assembly of FIG. 17 shown in a second partially deployed configuration.



FIG. 20 is a side view of the assembly of FIG. 17 shown in a third partially deployed configuration in which the inverted outer frame is substantially deployed outside of the delivery sheath.



FIG. 21 is a side view of the assembly of FIG. 17 shown in a fourth partially deployed configuration in which the outer frame has reverted and assumed a biased expanded configuration.



FIGS. 22-24 illustrate steps of a portion of a method to deliver the prosthetic valve of FIGS. 15-21 to an atrium of a heart and within the native mitral annulus.



FIG. 25 is a schematic illustration of a delivery device and prosthetic heart valve, according to an embodiment.



FIG. 26A is a side view of a portion of the prosthetic heart valve of FIG. 25 shown within a delivery sheath and coupled to a valve holder.



FIG. 26B is a side view of an attachment member of the prosthetic valve of FIG. 26A.



FIG. 26C is an end view of the valve holder of FIG. 26A.



FIG. 27 is a cross-sectional side view of a prosthetic valve in an inverted configuration inside of a delivery sheath, according to an embodiment.



FIG. 28 is a portion of a cross-sectional side view of a prosthetic valve in an inverted configuration inside of a delivery sheath, including a dilator, according to an embodiment.



FIG. 29A is a cross-sectional side view of a prosthetic heart valve in an inverted configuration inside a lumen of a delivery sheath, according to an embodiment.



FIG. 29B is a side view of the prosthetic heart valve of FIG. 9A in a reverted configuration and outside the delivery sheath.



FIGS. 30A and 30B are schematic illustrations of a portion of a prosthetic heart valve, according to an embodiment, shown in a first configuration and a second configuration, respectively.



FIGS. 30C and 30D are schematic illustrations of the portion of the prosthetic heart valve of FIGS. 30A and 30B, respectively, shown disposed within a delivery sheath.



FIGS. 31A and 31B are schematic illustrations of the portion of a prosthetic heart valve of FIGS. 30A and 30B, shown in the first configuration and the second configuration, respectively.



FIG. 32A is schematic illustration in side view of a delivery device and prosthetic heart valve, according to an embodiment.



FIG. 32B is a schematic illustration of an end view of an elongate member of the delivery device of FIG. 32A.



FIG. 33A is a cross-sectional side-view of a delivery sheath, with a prosthetic valve in an inverted configuration and disposed therein, according to an embodiment.



FIG. 33B is an illustration in side view of the prosthetic heart valve of FIG. 33A in a reverted configuration and outside the delivery sheath.



FIG. 33C is an illustration of an end view of the elongate member of the delivery device of FIG. 33A.



FIG. 33D is an illustration of an end view of an elongate member of a delivery device, according to an embodiment.



FIG. 34 is a partial cross-sectional side view of a delivery system and prosthetic heart valve, according to an embodiment.



FIG. 35 is a cross-sectional view taken along line 35-35 in FIG. 34 showing the actuation wires coupled to a tube member of the delivery system.



FIG. 36 is a proximal end view of a tube member of the delivery system of FIG. 34.



FIG. 37A is a side view of a portion of the tube member of FIG. 36.



FIG. 37B is a side view of a portion of a multi-lumen tube member according to another embodiment and a distal retention element according to an embodiment.



FIG. 37C view of a portion of the multi-lumen tube member of FIG. 37B and a distal retention element, according to another embodiment.



FIGS. 38A-38D are each a side view of a different embodiment of an actuation wire.



FIG. 39 is a partial cross-sectional side view of the delivery system and prosthetic heart valve of FIG. 34, shown in a first partially deployed configuration.



FIG. 40 is a partial cross-sectional side view of the delivery system and prosthetic heart valve of FIG. 34, shown in a second partially deployed configuration.



FIG. 41 is a partial cross-sectional side view of the delivery system and prosthetic heart valve of FIG. 34, shown in a third partially deployed configuration.



FIG. 42 is a cross-sectional view taken along line A-A in FIG. 34 showing the actuation wires in a partially released position.



FIG. 43 is a flowchart illustrating a method of delivering and deploying a prosthetic valve within a heart, according to an embodiment.



FIG. 44 is a flowchart illustrating a method of delivering and deploying a prosthetic valve within a heart, according to an embodiment.





DETAILED DESCRIPTION

Apparatus and methods are described herein for prosthetic heart valves, such as prosthetic mitral valves, that can be configured to be moved to an inverted configuration for delivery of the prosthetic valve to within a heart of a patient. As described herein, in some embodiments, a prosthetic valve includes an outer frame that can be inverted relative to an inner frame when the prosthetic valve is in a biased expanded configuration. The prosthetic mitral valve can be formed with, for example, a shape-memory material. After inverting the outer frame, the prosthetic valve can be inserted into a lumen of a delivery sheath such that the prosthetic valve is moved to a collapsed configuration.


The delivery sheath can be used to deliver the prosthetic valve to within a patient's heart using a variety of different delivery approaches for delivering a prosthetic heart valve (e.g., prosthetic mitral valve) where the inverted prosthetic valve would enter the heart through the atrium of the heart. For example, the prosthetic valves described herein can be delivered using a transfemoral delivery approach as described in PCT International Application No. PCT/US15/14572 (the “572 PCT application”) and/or in PCT International Application No. PCT/US16/12305 (the “'305 PCT Application”), each disclosure of which is incorporated by reference in its entirety herein, or via a transatrial approach, such as described in U.S. Provisional Patent Application Ser. No. 62/220,704, entitled “Apparatus and Methods for Transatrial Delivery of Prosthetic Mitral Valve,” filed Sep. 18, 2015 (the “'704 provisional application”), which is incorporated herein by reference in its entirety. In another example, the prosthetic valves described herein (e.g., an inverted valve as described herein) could be delivered via a transjugular approach, e.g., via the right atrium and through the atrial septum and into the left atrium, as described in U.S. Provisional Patent Application Ser. No. 62/305,678, entitled “Apparatus and Methods for Delivery of Prosthetic Mitral Valve,” (the “'678 provisional application”) and in U.S. Patent Application Pub. No. 2017/0079790, entitled “Apparatus and Methods for Delivery of Prosthetic Mitral Valve,” (the “'790 publication”) each incorporated by reference in its entirety herein. The prosthetic valves described herein can also be delivered apically if desired. With a transapical approach, after the delivery sheath has been disposed within the left atrium of the heart, the prosthetic mitral valve is moved distally out of the delivery sheath such that the inverted outer frame reverts and the prosthetic valve assumes its biased expanded configuration. The prosthetic mitral valve can then be positioned within a mitral annulus of the heart.


In some embodiments, an apparatus includes a delivery sheath that defines a lumen, an elongate member that defines a first lumen and a second lumen and is at least partially disposed within the lumen of the delivery sheath. The apparatus further includes a prosthetic heart valve disposed at least partially within the lumen of the delivery sheath in a collapsed configuration and circumferentially about a portion of the elongate member. The prosthetic heart valve includes an outer frame coupled to an inner frame. The outer frame is movable between a first configuration relative to the inner frame and a second configuration relative to the inner frame in which the outer frame is inverted relative to the inner frame. The prosthetic heart valve is disposed within the lumen of the delivery sheath with the outer frame in the second configuration and disposed axially proximal to the inner frame. The apparatus further includes a first actuation wire releasably coupled to a first portion of the outer frame and routed from the first portion through the first lumen of the elongate member and out a proximal end portion of the delivery sheath. The apparatus further includes a second actuation wire releasably coupled to a second portion of the outer frame and routed from the second portion through the second lumen of the elongate member and out the proximal end portion of the delivery sheath. The first portion and the second portion of the outer frame are configured to be disposed within an atrium of a heart when implanted within the heart.


In some embodiments, a method includes inserting a distal end portion of a delivery sheath through an apical region of a heart and into an atrium of the heart. The delivery sheath has a prosthetic heart valve disposed within a lumen of the delivery sheath. The prosthetic heart valve includes an outer frame and an inner frame coupled to the outer frame. The outer frame is movable between a first position relative to the inner frame and a second position relative to the inner frame in which the outer frame is inverted relative to the inner frame. The prosthetic heart valve is disposed within the lumen of the delivery sheath with the outer frame in the second position relative to the inner frame during the inserting. The method further includes moving the prosthetic heart valve distally out of the delivery sheath. The method further includes causing the outer frame of the prosthetic heart valve to transition to the first position relative to the inner frame such that the prosthetic heart valve at least partially assumes a biased expanded configuration. The method further includes positioning the prosthetic heart valve within an annulus of the heart.


In some embodiments, a method includes inserting a distal end portion of a delivery sheath into an atrium of a heart. The delivery sheath has a prosthetic heart valve disposed within a lumen of the delivery sheath. The prosthetic heart valve includes an outer frame and an inner frame coupled to the outer frame. The outer frame is movable between a first position relative to the inner frame and a second position relative to the inner frame in which the outer frame is inverted relative to the inner frame. The prosthetic heart valve is disposed within the lumen of the delivery sheath with the outer frame in the second position relative to the inner frame and disposed at least partially axially proximal to the inner frame during the inserting. The method further includes moving the prosthetic heart valve distally out of the delivery sheath. The method further includes causing the outer frame of the prosthetic heart valve to transition to the first position relative to the inner frame such that the prosthetic heart valve at least partially assumes a biased expanded configuration. The method further includes positioning the prosthetic heart valve within an annulus of the heart.


In some embodiments, an apparatus includes an outer sheath that defines a lumen, a delivery sheath that defines a lumen and is movably disposed within the lumen defined by the outer sheath, and a prosthetic heart valve disposed within the lumen of the delivery sheath in a collapsed configuration. The prosthetic heart valve includes an outer frame coupled to an inner frame. The inner frame is removably coupled to a distal end portion of a valve holder. The outer frame is movable between a first configuration relative to the inner frame and a second configuration relative to the inner frame in which the outer frame is inverted relative to the inner frame. The prosthetic heart valve is disposed within the lumen of the delivery sheath with the outer frame in the second configuration. The apparatus further includes a first actuation wire releasably copuled to a first portion of the outer frame, and a second acutation wire releasably coupled to a second portion of the outer frame. Each of the first acutation wire and the second acutation wire has (1) a first portion extending proximally from the outer frame, through the lumen of the outer sheath, along an outside wall of the delivery sheaht, and through a first side aperture defined by the delivery sheath, and (2) a second portion extending proximally from the outer frame, through the lumen of the outer sheaht, along the outside all of the delivery sheaht, and through a second side aperture defined by the delivery sheath. The first portion and the second portion of each of the first acutation wire and the second acutation wire are configured to be pulled proximally to urge the outer frame from the second configuration towards the first configuration relative to the inner frame.


In some embodiments, an apparatus includes a prosthetic valve that includes an inner frame and an outer frame coupled to the inner frame at multiple coupling joints. The multiple coupling joints are configured to allow the outer frame to be moved relative to inner frame such that the prosthetic valve can be moved between a first configuration and a second configuration. The outer frame and the inner frame collectively define a first length of the prosthetic valve when the prosthetic valve is in the first configuration and a second length of the prosthetic valve when the prosthetic valve is in the second configuration and the second length is greater than the first length. The inner frame has a length that is the same when the prosthetic valve is in both the first configuration and the second configuration.


In some embodiments, an apparatus includes a prosthetic heart valve that includes an inner frame and an outer frame coupled to the inner frame at multiple coupling joints. The prosthetic valve is movable between a first configuration and a second configuration. The multiple coupling joints are configured to allow the outer frame to be moved between a first position relative to the inner frame and a second position relative to inner frame in which the outer frame is inverted relative to the inner frame. The prosthetic valve is in the first configuration when the outer frame is in the first position, and in the second configuration when the outer frame is in the second position.


In some embodiments, an apparatus includes a prosthetic heart valve that includes an inner frame, and an outer frame coupled to the inner frame at multiple coupling joints. The multiple coupling joints are configured to allow the outer frame to be moved relative to inner frame such that the prosthetic valve can be moved between a first configuration and a second configuration. The outer frame has an outer frame coupling portion coupled to the inner frame at multiple coupling joints and an outer frame free end portion. The inner frame has an inner frame coupling portion coupled to the outer frame at the multiple coupling joints. A first end portion and an inner frame free end portion are on an opposite end of the inner frame from the first end portion. The multiple coupling joints are disposed between the outer frame free end portion and the first end portion of the inner frame when the prosthetic valve is in the first configuration. The multiple coupling joints are disposed between the inner frame free end portion and the outer frame free end portion when the prosthetic valve is in the second configuration.


In some embodiments, an apparatus includes a prosthetic heart valve that includes an inner frame coupled to an outer frame at multiple coupling joints. The multiple coupling joints are configured to allow the outer frame to be moved relative to inner frame such that the prosthetic valve can be moved between a first configuration and a second configuration. The outer frame has an outer frame coupling portion coupled to the inner frame at the multiple coupling joints and an outer frame free end portion. The inner frame has an inner frame coupling portion coupled to the outer frame at the multiple coupling joints and an inner frame free end portion. The outer frame free end portion and the inner frame free end portion each open in the same direction when the prosthetic valve is in the first configuration. The outer frame free end portion and the inner frame free end portion open in opposite directions when the prosthetic valve is in the second configuration.


In some embodiments, an apparatus includes a delivery sheath that defines a lumen, a valve holder movably disposable within the lumen of the delivery sheath and a prosthetic heart valve disposed at least partially within the lumen of the delivery sheath in a collapsed configuration. The prosthetic heart valve includes an outer frame coupled to an inner frame and the inner frame is removably coupled to a distal end portion of the valve holder. The outer frame is movable between a first configuration relative to the inner frame and a second configuration relative to the inner frame in which the outer frame is inverted relative to the inner frame. The prosthetic heart valve is disposed within the lumen of the delivery sheath with the outer frame in the second configuration. A first actuation wire is releasably coupled to a first portion of an open free end portion of the outer frame and a second actuation wire is releasably coupled to a second portion of the open free end portion of the outer frame. Each of the first actuation wire and the second actuation wire have a first portion extending proximally from the outer frame and a second portion extending proximally from the outer frame. The first portion and the second portion of each of the first actuation wire and the second actuation wire are configured to be pulled proximally to urge the outer frame from the second configuration towards the first configuration relative to the inner frame.


In some embodiments, an apparatus includes an outer sheath that defines a lumen, an inner sheath movably disposed within the lumen of the outer sheath and defining a lumen, a tube member movably disposed within the lumen of the outer sheath and defining a lumen, a valve holder movably disposed within the lumen of the inner sheath and within a lumen defined by the tube member and a prosthetic heart valve disposed at least partially within the lumen of the outer sheath and at least partially within the lumen of the inner sheath. The prosthetic heart valve includes an outer frame coupled to an inner frame and the inner frame is removably coupled to a distal end portion of the valve holder. The outer frame is movable between a first configuration relative to the inner frame and a second configuration relative to the inner frame in which the outer frame is inverted relative to the inner frame. The prosthetic heart valve is disposed within the lumen of the outer sheath and the lumen of the inner sheath with the outer frame in the second configuration. A first actuation wire is releasably coupled to a first portion of an open free end portion of the outer frame and releasably coupled to the tube member at a first location on the tube member. A second actuation wire is releasably coupled to a second portion of the open free end portion of the outer frame and releasably coupled to the tube member at a second location on the tube member.


In some embodiments, a method includes inserting a distal end portion of a delivery sheath into a left atrium of a heart. The delivery sheath having a prosthetic mitral valve disposed within a lumen of the delivery sheath and the prosthetic mitral valve has an outer frame coupled to an inner frame such that the outer frame can be moved between a first position relative to the inner frame and a second position relative to the inner frame in which the outer frame is inverted relative to the inner frame. The prosthetic valve is disposed within the lumen of the delivery sheath with the outer frame in the second positon relative to the inner frame. The prosthetic mitral valve is moved distally out of the delivery sheath causing the outer frame of the prosthetic mitral valve to revert back to the first position relative to the inner frame such that the prosthetic mitral valve at least partially assumes a biased expanded configuration. The prosthetic mitral valve is positioned within a mitral annulus of the heart.



FIGS. 1A and 1B are schematic illustrations of a portion of a prosthetic heart valve 100, according to an embodiment, shown in a first configuration and a second configuration respectively, and FIGS. 1C and 1D illustrate the portions of the prosthetic heart valve 100 of FIGS. 1A and 1B, respectively, shown disposed within a lumen of a delivery sheath 126. FIGS. 2A and 2B illustrate a portion of the prosthetic heart valve 100 of FIGS. 1A and 1B, respectively, and show length dimensions for the prosthetic heart valve in each of the first configuration and the second configuration. As described above, in some situations, such as when delivering a prosthetic valve to the heart via a transfemoral, transatrial or transjugular approach, because of the smaller size of the lumen of the delivery sheath, the size of the prosthetic valve during delivery should be sized accordingly. Thus, it is desirable to have a prosthetic valve that can be reconfigured between a biased expanded configuration for implantation in the heart (e.g., within a native mitral annulus) and a delivery configuration that has a smaller outer perimeter or profile to allow for delivery within the lumen of the delivery sheath. The prosthetic valve 100 and the embodiments of a prosthetic valve described herein can be constructed and formed to achieve these desired functions and characteristics.


The prosthetic heart valve 100 (also referred to herein as “prosthetic valve” or “valve”) can be, for example, a prosthetic mitral valve. The valve 100 includes an outer frame 120 and an inner frame 150. The outer frame 120 and the inner frame 150 are each formed as a tubular structure as described in more detail below with reference to FIGS. 3-15. The outer frame 120 and the inner frame 150 can be coupled together at multiple coupling joints 146 disposed about a perimeter of the inner frame 150 and a perimeter of the outer frame 120 as described in more detail below. The valve 100 can also include other features, such as those described with respect to FIGS. 3-15 below. For illustration purposes, only the inner frame 150 and the outer frame 120 are discussed with respect to FIGS. 1A-2B. The various characteristics and features of valve 100 described with respect to FIGS. 1A-2B can apply to any of the prosthetic valves described here.


The outer frame 120 is configured to have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed or constrained) and, when released, return to its original (expanded or undeformed) shape. For example, the outer frame 120 can be formed of materials, such as metals or plastics, which have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used. The inner frame 150 can be formed from a laser-cut tube of Nitinol®. The inner frame 150 can also have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original (expanded or undeformed) shape. Further details regarding the inner frame 150 and the outer frame 120 are described below with respect to valve 200 and FIGS. 3-15.


The valve 100 can be delivered and deployed within a left atrium of a heart using a variety of different delivery approaches including, for example, a transfemoral delivery approach, as described in the '572 PCT application and/or in the '305 PCT application, or a transatrial or transjugular approach, as described in the '704 provisional application, the '678 provisional application and the '790 publication”) incorporated by reference above. As described above, in some situations, such as when delivering a prosthetic valve to the heart via a transfemoral or transatrial approach, because of the smaller size of the lumen of the delivery sheath, the size of the prosthetic valve during delivery should be sized accordingly. Thus, it is desirable to have a prosthetic valve that can be reconfigured between a biased expanded configuration for implantation in the heart (e.g., within a native mitral annulus) and a delivery configuration that has a smaller outer perimeter or profile to allow for delivery within the lumen of the delivery sheath. The prosthetic valve 100 and the embodiments of a prosthetic valve described herein can be constructed and formed to achieve these desired functions and characteristics.


More specifically, the valve 100 can have a biased expanded configuration (as shown in FIGS. 1A and 2A), an inverted configuration (as shown in FIGS. 1B and 2B), and a compressed or collapsed configuration (as shown in FIGS. 1C and 1D). The expanded configuration allows the valve 100 to function when implanted within the heart. The valve 100 can be moved to the inverted configuration and the compressed or collapsed configuration for delivery of the valve 100 to the heart of a patient.


To enable the valve 100 to be moved to the inverted configuration, the outer frame 120 can be coupled to the inner frame 150 in such a manner to allow the outer frame 120 to move relative to the inner frame 150. More specifically, the coupling joints 146 can couple the outer frame 120 to the inner frame 150 in such a manner to allow the outer frame 120 to be moved relative to the inner frame 150. For example, in some embodiments, the coupling joints 146 can be configured to allow the outer frame 120 to rotate about the coupling joint 146 relative to the inner frame 150. In some embodiments, coupling joints can provide a pivotal coupling between the outer frame 120 and the inner frame 150. In some embodiments, the coupling joints can provide a flexible attachment between the outer frame 120 and the inner frame 150. The coupling joints 146 can be a variety of different types and configurations as described herein with reference to the various embodiments of a prosthetic valve. For example, the coupling joints 146 can include a living hinge, a flexible member, sutures, a suture wrapped through an opening, a pin or tab inserted through an opening or any combinations thereof.


To move the valve 100 from the expanded configuration (FIG. 1A) to the inverted configuration (FIG. 1B), the outer frame 120 is moved to a prolapsed or inverted configuration relative to the inner frame 150, as shown in FIGS. 1B, 1D and 2B, by moving (e.g., rotating, pivoting, flexing) the outer frame 120 about the coupling joints 146. The elastic or superelastic structure of outer frame 120 of valve 100 also allows the outer frame 120 to be moved to, and disposed in, the prolapsed or inverted configuration relative to the inner frame 150. To move the outer frame 120 to the inverted configuration relative to the inner frame 150, the outer frame 120 is folded or inverted distally (to the right in FIG. 1B) relative to the inner frame 150 via the coupling joints 146. As shown in FIGS. 1A and 2A, the outer frame 120 is in a first position relative to the inner frame 150 prior to being inverted in which an open or free end portion 116 (also referred to the atrium portion 116 of the outer frame 120) is disposed proximally or to the left of the coupling joints 146 and in the same direction as a free end portion 147 (also referred to as a second end portion of the inner frame) of the inner frame 150. When the outer frame 120 is moved to an inverted configuration (i.e., second positon relative to the inner frame 150), the free end portion 116 is disposed distally of the coupling joints 146 (or to the right in FIGS. 1B and 2B) and in an opposite direction as the free end portion 147 of the inner frame 150. Said another way, when the valve 100 is in a biased expanded configuration (e.g., FIG. 1A), the coupling joints 146 are disposed between a first end portion 144 (also referred to as a tether coupling portion) of the inner frame 150 and the free end portion 116 of the outer frame 120. When the valve 100 is in the inverted configuration (e.g., FIG. 1B) (i.e., the outer frame 120 has been moved to an inverted configuration or position), the coupling joints 146 are disposed between the free end portion or second end portion 147 of the inner frame 150 and the free end portion 116 of the outer frame 120.


When in the inverted configuration, an overall length of the valve 100 is increased, but a length of the inner frame 150 and a length of the outer frame 120 remains the same (or substantially the same). For example, as shown in FIGS. 2A and 2B an overall length L1 of the valve 100 in the biased expanded configuration (prior to being inverted as shown in FIG. 2A) is less than the overall length L2 of the valve 100 when in the inverted configuration (FIG. 2B). A length Li of the inner frame 150 and a length Lo of the outer frame 120 is substantially the same (or the same) when the valve 100 is in both the biased expanded configuration and the inverted configuration. In addition, in some instances, depending on the specific configuration of the outer frame, an overall outer perimeter or outer diameter of the valve 100 can be smaller when the valve 100 is in the inverted configuration.


With the valve 100 in the inverted configuration, the valve 100 can be placed within a lumen of the delivery sheath 126 for delivery of the valve 100 to the left atrium of the heart, as shown in FIG. 1D. When placed within the lumen of the delivery sheath 126, the valve 100 is moved to the collapsed or compressed configuration in which the outer diameter or outer perimeter of the valve 100 is reduced. Because the valve 100 is in the inverted configuration, the valve 100 is able to be placed within a smaller delivery sheath 126 than would otherwise be possible. For example, for comparison purposes, FIG. 1C illustrates the valve 100 placed within a lumen of a delivery sheath 126′ where the valve 100 has not been moved to an inverted configuration prior to being disposed within the delivery sheath 126′. As shown in FIG. 1C, an outer diameter of the valve 100 is reduced, but not to as small of a diameter as for the valve 100 when placed in a delivery sheath 126 when in the inverted configuration. Thus, in FIG. 1C, the valve 100 has an overall outer perimeter or outer diameter D1 and in FIG. 1D, the valve 100 has an overall outer perimeter or outer diameter D2, which is less than D1.


Thus, by disposing the outer frame 120 in the inverted configuration, the valve 100 can be collapsed into a smaller overall diameter, i.e. placed in a smaller diameter delivery sheath 126, than would be possible if the valve 100 were merely collapsed radially. This is because when the valve is in the biased expanded configuration, the inner frame 150 is nested within an interior of the outer frame 120, and thus the outer frame 120 must be collapsed around the inner frame 150. In some embodiments, the inner frame 150 and the outer frame are disposed concentrically. Whereas in the inverted configuration, the inner frame 150 and the outer frame 120 are arranged axially with respect to each other (i.e., the inner frame is not nested within the outer frame 150), such that the outer frame 120 can be collapsed without needing to accommodate all of the structure of the inner frame 150 inside it. In other words, with the inner frame 150 disposed mostly inside or nested within the outer frame 120, the layers or bulk of the frame structures cannot be compressed to as small a diameter. In addition, if the frames are nested, the structure is less flexible, and therefore, more force is needed to bend the valve, e.g. to pass through tortuous vasculature or to make tight turn in the left atrium after passing through the atrial septum to be properly oriented for insertion into the mitral valve annulus.



FIGS. 3-14 illustrate another embodiment of a prosthetic heart valve that can be delivered and deployed within a left atrium of a heart using a variety of different delivery approaches including, for example, a transfemoral delivery approach or a transatrial delivery approach. FIGS. 3-5 are front, bottom, and top views, respectively, of a prosthetic heart valve 200 according to an embodiment. Prosthetic heart valve 200 (also referred to herein as “valve” or “prosthetic valve”) is designed to replace a damaged or diseased native heart valve such as a mitral valve. Valve 200 includes an outer frame assembly 210 and an inner valve assembly 240 coupled to the outer frame assembly 210.


As shown, outer frame assembly 210 includes an outer frame 220, covered on all or a portion of its outer face with an outer covering 230, and covered on all or a portion of its inner face by an inner covering 232. Outer frame 220 can provide several functions for prosthetic heart valve 200, including serving as the primary structure, as an anchoring mechanism and/or an attachment point for a separate anchoring mechanism to anchor the valve to the native heart valve apparatus, a support to carry inner valve assembly 240, and/or a seal to inhibit paravalvular leakage between prosthetic heart valve 200 and the native heart valve apparatus.


Outer frame 220 has a biased expanded configuration and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original unconstrained shape. To achieve this, outer frame 220 can be formed of materials, such as metals or plastics, which have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used.


As best shown in FIG. 3, outer frame assembly 210 has an upper end (e.g., at the atrium portion 216), a lower end (e.g., at the ventricle portion 212), and a medial portion (e.g., at the annulus portion 214) therebetween. The upper end or atrium portion 216 (also referred to as “outer free end portion”) defines an open end portion of the outer frame assembly 210. The medial or annulus portion 214 of the outer frame assembly 210 has a perimeter that is configured (e.g., sized, shaped) to fit into an annulus of a native atrioventricular valve. The upper end of the outer frame assembly 210 has a perimeter that is larger than the perimeter of the medial portion. In some embodiments, the perimeter of the upper end of the outer frame assembly 210 has a perimeter that is substantially larger than the perimeter of the medial portion. As shown best in FIG. 5, the upper end and the medial portion of the outer frame assembly 210 has a D-shaped cross-section. In this manner, the outer frame assembly 210 promotes a suitable fit into the annulus of the native atrioventricular valve.


Inner valve assembly 240 includes an inner frame 250, an outer covering (not shown), and leaflets 270. As shown, the inner valve assembly 240 includes an upper portion having a periphery formed with multiple arches. The inner frame 250 includes six axial posts or frame members that support the outer covering of the inner valve assembly 240 and leaflets 270. Leaflets 270 are attached along three of the posts, shown as commissure posts 252 (best illustrated in FIG. 4), and the outer covering of the inner valve assembly 240 is attached to the other three posts, 254 (best illustrated in FIG. 4), and optionally to commissure posts 252. Each of outer covering of the inner valve assembly 240 and leaflets 270 are formed of approximately rectangular sheets of material, which are joined together at their upper, or atrium end. The lower, ventricle end of the outer covering of the inner valve assembly 240 may be joined to inner covering 232 of outer frame assembly 210, and the lower, ventricle end of leaflets 270 may form free edges 275, though coupled to the lower ends of commissure posts 252.


Although inner valve assembly 240 is shown as having three leaflets, in other embodiments, an inner valve assembly can include any suitable number of leaflets. The leaflets 270 are movable between an open configuration and a closed configuration in which the leaflets 270 coapt, or meet in a sealing abutment.


Outer covering 230 of the outer frame assembly 210 and inner covering 232 of outer frame assembly 210, outer covering 260 of the inner valve assembly 240 and leaflets 270 of the inner valve assembly 240 may be formed of any suitable material, or combination of materials, such as those discussed above. In this embodiment, the inner covering 232 of the outer frame assembly 210, the outer covering of the inner valve assembly 240, and the leaflets 270 of the inner valve assembly 240 are formed, at least in part, of porcine pericardium. Moreover, in this embodiment, the outer covering 230 of the outer frame assembly 210 is formed, at least in part, of polyester.


Inner frame 250 is shown in more detail in FIGS. 6-8. Specifically, FIGS. 6-8 show inner frame 250 in an undeformed, initial state (FIG. 6), a side view of the inner frame 250 in an expanded configuration (FIG. 7), and a bottom view of the inner frame 250 in the expanded configuration (FIG. 8), respectively, according to an embodiment.


In this embodiment, inner frame 250 is formed from a laser-cut tube of Nitinol®. Inner frame 250 is illustrated in FIG. 6 in an undeformed, initial state, i.e. as laser-cut, but cut and unrolled into a flat sheet for ease of illustration. Inner frame 250 can be divided into four portions, corresponding to functionally different portions of the inner frame 250 in final form: atrial portion 247, body portion 242, strut portion 243, and tether clamp or connecting portion 244. Strut portion 243 includes six struts, such as strut 243A, which connect body portion 242 to tether connecting portion 244.


Tether connecting portion 244 (also referred to as first end portion of inner frame) includes longitudinal extensions of the struts, connected circumferentially by pairs of opposed, slightly V-shaped connecting members (or “micro-Vs”). Tether connecting portion 244 is configured to be radially collapsed by application of a compressive force, which causes the micro-Vs to become more deeply V-shaped, with the vertices moving closer together longitudinally and the open ends of the V shapes moving closer together circumferentially. Thus, tether connecting portion 244 can be configured to compressively clamp or grip one end of a tether, either connecting directly onto a tether line (e.g. braided filament line) or onto an intermediate structure, such as a polymer or metal piece that is in term firmly fixed to the tether line.


In contrast to tether connecting portion 244, atrial portion 247 (also referred to as “inner frame free end portion”) and body portion 242 are configured to be expanded radially. Strut portion 243 forms a longitudinal connection and radial transition between the expanded body portion and the compressed tether connecting portion 244. Body portion 242 provides an inner frame coupling portion 245 that includes six longitudinal posts, such as post 242A. The inner frame coupling portion 245 can be used to attach leaflets 270 to inner frame 240, and/or can be used to attach inner assembly 240 to outer assembly 210, such as by connecting inner frame 250 to outer frame 220. In the illustrated embodiment, the posts include openings through which connecting members (such as suture filaments and/or wires) can be passed to couple the posts to other structures.


Inner frame 250 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and bottom view in FIGS. 7 and 8, respectively.


Outer frame 220 of valve 200 is shown in more detail in FIGS. 9-11. In this embodiment, outer frame 220 is also formed from a laser-cut tube of Nitinol®. Outer frame 220 is illustrated in FIG. 9 in an undeformed, initial state, i.e. as laser-cut, but cut and unrolled into a flat sheet for ease of illustration. Outer frame 220 can be divided into an outer frame coupling portion 271, a body portion 272, and a cuff portion 273 (which includes the atrium or free end portion 216), as shown in FIG. 9. Outer frame coupling portion 271 includes multiple openings or apertures, such as 271A, by which outer frame 220 can be coupled to inner frame 250, as discussed in more detail below.


Outer frame 220 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and top view in FIGS. 10 and 11, respectively. As best seen in FIG. 11, the lower end of outer frame coupling portion 271 forms a roughly circular opening (identified by “O” in FIG. 11). The diameter of this opening preferably corresponds approximately to the diameter of body portion 242 of inner frame 250, to facilitate coupling of the two components of valve 200.


Outer frame 220 and inner frame 250 are shown coupled together in FIGS. 12-14, in front, side, and top views, respectively. The two frames collectively form a structural support for a prosthetic valve such as valve 200. The frames support the valve leaflet structure (e.g., leaflets 270) in the desired relationship to the native valve annulus, support the coverings (e.g., outer covering 230, inner covering 232, outer covering of inner valve assembly 240) for the two frames to provide a barrier to blood leakage between the atrium and ventricle, and couple to the tether (e.g., tether assembly 290) (by the inner frame 250) to aid in holding the prosthetic valve 200 in place in the native valve annulus by the tether connection to the ventricle wall. The outer frame 220 and the inner frame 250 are connected at six coupling points (representative points are identified as “C”). In this embodiment, the coupling points are implemented with a mechanical fastener, such as a short length of wire, passed through an aperture (such as aperture 271A) in outer frame coupling portion 271 and corresponding openings in inner frame coupling portion 245 (e.g., longitudinal posts, such as post 242A) in body portion 242 of inner frame 250. Inner frame 250 is thus disposed within the outer frame 220 and securely coupled to it.



FIGS. 15-21 illustrate a method of reconfiguring a prosthetic heart valve 300 (e.g., prosthetic mitral valve) prior to inserting the prosthetic heart valve 300 into a delivery sheath 326 (see, e.g., FIGS. 17-21) for delivery into the atrium of the heart. The prosthetic heart valve 300 (also referred to herein as “valve”) can be constructed the same as or similar to, and function the same as or similar to the valves 100 and 200 described above. Thus, some details regarding the valve 300 are not described below. It should be understood that for features and functions not specifically discussed, those features and functions can be the same as or similar to the valve 200.


As shown in FIG. 15, the valve 300 has an outer frame 320 and an inner frame 350. As discussed above for valves 100 and 200, the outer frame 320 and the inner frame 350 of valve 300 can each be formed with a shape-memory material and have a biased expanded configuration. The outer frame 320 and the inner frame 350 can be moved to a collapsed configuration for delivery of the valve 300 to the heart. In this example method of preparing the valve 300 for delivery to the heart, the outer frame 320 of the valve 300 is first disposed in a prolapsed or inverted configuration as shown in FIG. 16. Specifically, the elastic or superelastic structure of outer frame 320 of valve 300 allows the outer frame 320 to be disposed in the prolapsed or inverted configuration prior to the valve 300 being inserted into the lumen of the delivery sheath 326. As shown in FIG. 16, to dispose the outer frame 320 in the inverted configuration, the outer frame 320 is folded or inverted distally (to the right in FIG. 16) such that an open free end 316 of the outer frame 320 is pointed away from an open free end 347 of the inner frame 350. As described above for valve 100, in this inverted configuration, the overall outer perimeter or outer diameter of the valve 300 is reduced and the overall length is increased. For example, the diameter D1 shown in FIG. 15 is greater than the diameter D2 shown in FIG. 16, and the length L1 (shown in FIG. 12 for valve 200) is less than the length L2 shown in FIG. 16 for valve 300. With the outer frame 320 in the inverted configuration relative to the inner frame 350, the valve 300 can be placed within a lumen of a delivery sheath 326 as shown in FIG. 17 for delivery of the valve 300 to the left atrium of the heart. By disposing the outer frame 320 in the inverted configuration relative to the inner frame 350, the valve 300 can be collapsed into a smaller overall diameter, i.e. when placed in a smaller diameter delivery sheath, than would be possible if the valve 300 in the configuration shown in FIG. 15 were collapsed radially without being inverted. This is because in the configuration shown in FIG. 15, the two frames are concentric or nested, and thus the outer frame 320 must be collapsed around the inner frame 350, whereas in the configuration shown in FIG. 16, the two frames are substantially coaxial but not concentric or nested. Thus, in the configuration shown in FIG. 16 the outer frame 320 can be collapsed without the need to accommodate the inner frame 350 inside of it. In other words, with the inner frame 350 disposed mostly inside or nested within the outer frame 320, the layers or bulk of the frame structures cannot be compressed to as small a diameter. In addition, if the frames are nested, the structure is less flexible, and therefore, more force is needed to bend the valve, e.g. to pass through tortuous vasculature or to make tight turn in the left atrium after passing through the atrial septum to be properly oriented for insertion into the mitral valve annulus.



FIGS. 22-24 illustrate a portion of a procedure to deliver the valve 300 to the heart. In this embodiment, the valve 300 is shown being delivered via a transfemoral delivery approach as described, for example, in the '572 PCT application and/or in the '305 PCT Application incorporated by reference above. The delivery sheath 326, with the valve 300 disposed within a lumen of the delivery sheath 326 and in an inverted configuration as shown in FIG. 17, can be inserted into a femoral puncture, through the femoral vein, through the inferior vena cava, into the right atrium, through the septum Sp and into the left atrium LA of the heart. With the distal end portion of the delivery sheath 326 disposed within the left atrium of the heart, the valve 300 can be deployed outside a distal end of the delivery sheath 326. For example, in some embodiments, a pusher device 338 can be used to move or push the valve 300 out the distal end of the delivery sheath 326. As shown in FIGS. 22-24, a tether 336 can be attached to the valve 300, and extend though the mitral annulus, through the left ventricle LV, and out a puncture site at the apex Ap. In some embodiments, the valve 300 can be moved out of the delivery sheath 326 by pulling proximally on the tether 336. In some embodiments, the valve 300 can be deployed by pushing with the pusher device and pulling with the tether.


As the valve 300 exits the lumen of the delivery sheath 326, the outer frame assembly 310 exits first in its inverted configuration as shown in the progression of FIGS. 18-20 (see also FIG. 22). After the outer frame assembly 310 is fully outside of the lumen of the delivery sheath 326, the outer frame 320 can revert to its expanded or deployed configuration as shown in FIGS. 21, 23 and 24. In some embodiments, the outer frame 320 can revert automatically after fully exiting the lumen of the delivery sheath due to its shape-memory properties. In some embodiments, a component of the delivery sheath or another device can be used to aid in the reversion of the outer frame assembly 310. In some embodiments, the pusher device and/or the tether can be used to aid in the reversion of the outer frame assembly 310. The valve 300 can continue to be deployed until the inner frame 350 is fully deployed with the left atrium and the valve 300 is in the expanded or deployed configuration (as shown, e.g., in FIGS. 15 and 24). The valve 300 and the tether 336 can then be secured to the apex of the heart with an epicardial pad device 339 as shown in FIG. 24 and as described in more detail in the '572 PCT application and the '305 PCT application.



FIG. 25 illustrates schematically another embodiment of a delivery system that can be used to delivery and deploy a prosthetic heart valve within a heart of a patient with, for example, a transvascular approach. In this embodiment, a delivery system 405 includes a delivery sheath 426, a valve holder 438 (also referred to as a “pusher”), and one or more actuation wires 474 and 476. In this schematic illustration, only two actuation wires are illustrated, but in other embodiments, only one actuation wire or more than two actuation wires can be used.


The delivery sheath 426 can be used to deliver a valve 400 that includes an inner valve assembly 440 including an inner frame (not labeled in FIG. 25) and an outer frame assembly 410 including an outer frame (not labeled in FIG. 25). The valve 400 can be constructed the same as or similar to, and function the same as or similar to, for example, any of the prosthetic valves described herein and/or in the '305 PCT Application, and can be moved between a deployed or expanded configuration and a delivery configuration in which the outer frame is disposed in an inverted positon relative to the inner frame as described herein and/or in the '305 PCT Application. As shown in FIG. 25, the valve 400 can be disposed within a lumen of the delivery sheath 426 when the valve is in the delivery configuration (i.e., the outer frame is inverted relative to the inner frame). In this embodiment, when in the delivery configuration and placed within a delivery sheath, the outer frame assembly 410 is disposed distal of the inner valve assembly 440. The valve holder 438 is coupled to the inner valve assembly 440 and the actuation wires are coupled to the outer fame assembly 410. The valve holder 438 can be releasably coupled to the inner valve assembly 440 via couplers 406 that are attached to the inner valve assembly 440 as shown in FIGS. 26A-26C. In this embodiment, the couplers 406 are in the form of a T-bar or hammer shape. It should be understood that couplers with other configurations and shapes can be used.


As shown in FIG. 26A, the couplers 406 are received within the recesses 404 and the valve 400 and the valve holder 438 can be disposed within the lumen of the delivery sheath 426. The inner diameter of the delivery sheath 426 can be sized such that when the valve holder 438 and valve 400 are disposed therein, the couplers 406 are unable to exit the recesses 404. In other words, the inner walls of the delivery sheath 426 maintain the couplers 406 within the recesses 404. When the valve 400 is moved outside of the delivery sheath 426, the couplers 406 will be able to freely exit the recesses 404 releasing the inner frame 450 from the valve holder 438.


In alternative embodiments, the valve holder 438 can be removably coupled to the valve 400 (e.g., the inner frame 450 of the valve 400) via wires or sutures that can be cut after delivery of the valve 400 to the heart. In some cases, the valve holder 438 can be decoupled from the valve 400 when the valve is still disposed within the delivery sheath 426, while in other instances the valve holder 438 can be decoupled from the valve 400 after the valve 400 exits the delivery sheath 426 within the heart.


The actuation wires 474 and 476 can be coupled to the outer frame of the outer frame assembly 410 with a variety of different coupling methods. For example, the outer frame 410 can include loops (as described herein with respect to outer frame 510, outer frame 1010, and in the '305 PCT Application) through which the actuation wires 474 and 476 can be received or threaded. The number of loops on the outer frame can vary and the number of loops through which each actuation wire is connected can vary. For example, in some embodiments, the outer frame includes 12 loops and a first actuation wire is threaded through 6 of the loops and a second actuation wire is threaded through 6 of the loops. In other embodiments, the outer frame can include 12 loops and there can be 4 actuation wires, each coupled to 3 of the loops. In some embodiments, a single actuation wire is coupled through all of the loops of the outer frame.


In this embodiment, the delivery sheath 426 can be used to deliver the valve 400 to the left atrium of the heart using a transvascular approach (e.g., transfemoral, transatrial, transjugular). When the distal end of the delivery sheath 426 is disposed within the left atrium, the valve 400 is moved out of the lumen of the delivery sheath 426 using the actuation wires 474, 476 to assist in pulling the valve 400 out of the delivery sheath 426. In some cases, the valve holder 438 can also be used to push the valve 400 out of the delivery sheath 426. More specifically, the actuation wires 474 and 476 can extend from the outer frame assembly 410 out a distal end of the delivery sheath and extend proximally. In some embodiments, the actuation wires 474, 476 extend proximally outside the delivery sheath 426, then pass back into the lumen of the delivery sheath 426 through side apertures or holes (not shown) and then out a proximal end of the delivery sheath 426. Thus, a user (e.g., physician) can pull the proximal end portions of the actuation wires 474 and 476 to in turn pull the outer frame assembly 410 out of the distal end of the delivery sheath 426. In some embodiments, the actuation wires 474, 476 extend proximally from the outer frame assembly 410, back through the distal end of the delivery sheath 426 (e.g., rather than through side apertures or holes of the delivery sheath) and within the lumen of the delivery sheath, and then out a proximal end of the delivery sheath 426. Various different embodiments and configurations are described in more detail below.


As the outer frame assembly 410 exits the delivery sheath 426 it will still be in an inverted configuration relative to the inner valve assembly 440. After the outer frame assembly 410 is at least partially outside of the lumen of the delivery sheath 426, the outer frame assembly 410 can begin to revert to its expanded or deployed configuration (not shown in FIG. 25). In this embodiment, however, the actuation wires 474 and 476 can function to selectively (e.g., by an operator) assist and/or control the expansion, deployment and/or articulation of the valve 400 as the valve 400 is delivered to the heart. In this manner, in use, the proximal end portions of the actuation wires 474, 476 can be pulled distally to manipulate the outer frame assembly 410 to assist and control the transition of the outer frame assembly 410 from its inverted configuration relative to the inner valve assembly 440 to its expanded or deployed configuration (not shown). In some embodiments, the actuation wires 474, 476 can be manually grasped by a user to pull the actuation wires proximally. In some embodiments, the actuation wires 474, 476 can be operatively coupled to the delivery system 405 such that the user does not have to manually handle the actuation wires. For example, the actuation wires can be coupled to a delivery sheath and/or to a handle assembly (not shown) of the delivery system 405. Various embodiments of a delivery system are described in more detail below and in the '305 PCT Application.



FIG. 27 illustrates an embodiment of a delivery system 505 that can be used to deliver and deploy a prosthetic heart valve 500 (also referred to herein as “valve”) within a heart in a procedure similar to or the same as the procedures described with respect to other embodiments described herein (e.g., the embodiments illustrated in and described with respect to FIGS. 34-42) and embodiments described in the '305 PCT Application. Thus, some details regarding the valve 500 and procedures performed therewith are not described herein. It should be understood that for features and functions not specifically discussed, those features and functions can be the same as or similar to the valves described herein (e.g., the valve 1000) and/or in the '305 PCT Application. The valve 500 can be constructed the same as or similar to, and function the same as or similar to any of the valves described herein and/or in the '305 PCT Application. For example, the valve 500 includes an outer frame assembly that has an outer frame 520, an inner valve assembly 540 that has an inner frame 550, and a tether 536 coupled to the inner valve assembly. The delivery system 505 includes an outer delivery sheath 526, an inner sheath 508, a valve holder 538 (also referred to as a “pusher”) and a multi-lumen elongate tube member 503 (also referred to as “tube” or “tube member” or “multi-lumen elongate member”). As shown in FIG. 27, the inner sheath 508 is movably disposed within the lumen 582 defined by the outer delivery sheath 526, and the tube member 503 is movably disposed within a lumen 583 defined by the inner sheath 508. The valve holder 538 is movably disposed the lumen 583 defined by the inner sheath 508.


As with other embodiments described herein and embodiments of the '305 PCT Application, the valve 500 can be moved from a biased expanded configuration to an inverted configuration for delivery of the valve 500 to the heart. More specifically, to place the valve 500 in the inverted configuration, the outer frame 520 can be moved to an inverted configuration relative to the inner frame 550. In this embodiment, the valve 500 is placed at least partially within the lumen of the inner sheath 508 when the valve 500 is in the inverted configuration, and disposed near a distal end of the inner sheath 508. The valve holder 538 is also disposed within the lumen 583 of the inner sheath 508. The inner frame 550 can be releasably coupled to the valve holder 538 with couplers 506 in the same or similar manner as described above with respect to couplers 406, couplers 1006, and/or any of the couplers described in the '305 PCT Application. Similarly, the outer frame 520 includes loops 562 through which actuation wires 574-577 can be threaded through in the same or similar manner as described herein (e.g., with respect to valve 1000) and/or in the '305 PCT Application. The inner sheath 508 is movably disposed within the outer delivery sheath 526. As shown in FIG. 6, a portion of the valve 500 is disposed outside of the inner sheath 508 and within the lumen 582 of the outer delivery sheath 526. In some cases, the entire valve 500 can be disposed within the lumen 583 of the inner sheath 508 prior to performing the procedure to deploy the valve.


In this embodiment, the inner sheath 508 defines side apertures 509 through which the actuation wires 574-577 can pass through. More specifically, as shown in FIG. 27, when the valve 500 is disposed within the lumen 583 of the inner sheath 508, the actuation wires 574-577 extend proximally from the outer frame 520, along the outside of the inner sheath 508 and within the lumen 582 of the outer delivery sheath 526, back through side apertures 509 defined by the inner sheath 508, within the lumen 583 of the inner sheath 508, and are pinned by an elongate pinning member 578-1, 578-2, 578-3, 578-4 (collectively referred to as pinning member 578; pinning members 578-3 and 578-4 are not shown in FIG. 27; for illustrative purposes, refer to pinning members 1078-3 and 1078-4 shown in and described with respect to FIGS. 35-37A) to the tube member 503. As shown, a first end of the actuation wire 574 and a first end of the actuation wire 575 are pinned by a pinning member 578-2, and a first end of the actuation wire 576 and a first end of the actuation wire 577 are pinned by a pinning member 578-1. A second end of the actuation wire 574 and a second end of the actuation wire 576 are pinned by a pinning member 578-4 (not shown), and a second end of the actuation wire 575 and a second end of the actuation wire 577 are pinned by a pinning member 578-3 (not shown).


The actuation wires 574-577 can be pinned to the tube member 503 by the pinning members 578-1, 578-2, 578-3, 578-4 in the same or similar manner as described below with respect to the delivery system 1005. Thus, some details regarding, for example, the tube member 503, the pinning member 578-1, 578-2, 578-3, 578-4 and the actuation wires 574-577, and procedures performed therewith, are not described with respect to this embodiment. It should be understood that for features and functions not specifically discussed with respect to this embodiment, those features and functions can be the same as or similar to the delivery systems described in herein (e.g., the delivery system 1005) and/or in the '305 PCT Application.


A user (e.g., physician) can use the tube member 503, to which the actuation wires 574-577 are coupled, to control and/or manipulate movement and/or deployment of the valve 500 as described, for example, with respect to the delivery system 1005. In this embodiment, as shown, at least a portion of the actuation wires 574-577 can be disposed within the interior of the delivery sheath 526, thus limiting the exposure of the actuation wires 574-577 to areas external to the delivery sheath 526 for at least a portion of the delivery and/or deployment of the valve 500. Although the side apertures 509 defined by the inner sheath 508 are shown as disposed at or near the distal end portion of the inner sheath 508, in other embodiments, side apertures 509 can be disposed at any suitable location along the length of the inner sheath 508 (e.g., towards a middle portion or a proximal portion of the management sheath).


In this embodiment, to deliver the valve 500 to the heart, the distal end of the outer delivery sheath 526, with the valve 500, inner sheath 508, valve holder 538, and tube member 503 disposed therein, is disposed within the left atrium of the heart. With the distal end portion of the delivery sheath 526 disposed within the left atrium of the heart, the valve 500 can be deployed outside of the delivery sheath 526. For example, the inner sheath 508, valve holder 538, and tube member 503 can be moved distally relative to the outer sheath 526, moving or pushing the valve 500 outside the lumen 582 of the outer sheath 526. In addition, or alternatively, the outer sheath 526 can be moved or pulled proximally, leaving at least a portion of the valve 500 disposed within the heart. In some instances, the tether 536 coupled to the valve 500 can be used to help pull the valve 500 out of the lumen 582 of the outer sheath 526.


As described in other embodiments herein and embodiments of the '305 PCT Application, as the outer frame 520 becomes unconstrained by the outer sheath 526, the outer frame 520 can begin to revert to its expanded or uninverted configuration. The actuation wires 575-577 can be used to control the reversion of the outer frame 520. More specifically, after the outer frame 520 is disposed at least partially outside the distal end of the outer sheath 526, the tube member 503 can be pulled proximally such that the actuation wires (pinned to the tube member 503) pull the distally disposed portion of the outer frame 520 proximally (the same as or similar to as shown in FIG. 40) in a controlled manner and such that the reversion of the outer frame 520 from its inverted configuration relative to the inner frame 550 can be controlled.


In addition, in some instances, the actuation wires 574-577 can assist in the articulation and placement of the valve 500 into its destination (e.g., a native annulus of an atrioventricular valve of a heart). For example, the actuation wires 574-577 can also be used to constrain, collapse, or otherwise move the valve 500 (e.g., radially compress the outer frame 520 of the valve 500) after the valve 500 exits the outer sheath 526 and is in its reverted, expanded or partially expanded configuration. More specifically, in this embodiment, the tube member 503 with the actuation wires 574-577 pinned thereto, can be manipulated by a user to move or urge the outer frame 520 to a more compressed configuration (similar to or the same as shown in FIG. 41) by pulling or moving the tube member 503 proximally. This may be desirable, for example, to reposition the valve 500 within the heart before fully deploying the valve 500.


With the outer frame 520 of the valve 500 disposed in its non-inverted and at least partially expanded configuration, and in a desired positon within the heart, the inner frame 550 can be deployed. As described in the '305 PCT Application with respect to valve 2100, to decouple the inner frame 550 from the valve holder 538, the valve holder 538 can be moved distally and/or the inner sheath 508 can be moved proximally such that the valve holder 538 is disposed outside of the lumen 583 of the inner sheath 508. As such, the couplers 506 can be released from the recesses 504, releasing or decoupling the inner frame 550 from the valve holder 538. In some embodiments, the tether 536 can be pulled to help move the inner frame 550 outside of the inner sheath 508. When the inner frame 550 is released from the valve holder 538 and disposed outside the inner sheath 508, the inner frame 550 can assume its biased expanded configuration.


The actuation wires 574-577 can also be released or decoupled from the outer frame 520 before or after the inner frame 550 is released form the valve holder 538. To decouple the actuation wires 574-577 from the outer frame 520, one end of each of the actuation wires 574-577 can be unpinned or decoupled from the tube member 503. For example, the pinning member 578-3 can be withdrawn proximally from a groove of the tube member 503 (the same as or similar to the groove 1084 shown in and described with respect to the delivery system 1005) such that the second end of the actuation wire 577 and the second end of the actuation wire 575 are each released or unpinned from the tube member 503, but remain pinned by pinning members 578-2 and 578-1, respectively. Similarly, the pinning member 578-4 can be withdrawn proximally from the groove such that the second end of the actuation wire 574 and the second end of actuation wire 576 can each be released or unpinned from the tube member 503, but remain pinned by pinning members 578-2 and 578-1, respectively. With one end of each of the actuation wires 575-577 coupled to the tube member 503 (via pinning members 578-1 and 578-2 in this example), the tube member 503 can be pulled proximally, which in turn will pull the opposite ends of the actuation wires 574-577 out of the loops 562 of outer frame 520. Thus with the actuation wires 574-577 detached from the outer frame 520, the outer frame can assume a biased expanded or partially expanded configuration.


Although in the above example, the pinning members 578-3 and 578-4 are described as being withdrawn to release the ends of the actuation wires 574-577, alternatively, the pinning members 578-1 and 578-2 can be withdrawn leaving the actuation wires 574-577 pinned by pinning members 578-3 and 578-4. Further, the actuation wires 574-577 can be decoupled from the outer frame 520 at any suitable sequence or time period within the procedure. For example, in some instances it may be desirable for the actuation wires 574-577 to be released after the valve 500 has at least partially exited the delivery sheath 526 but before the valve 500 is seated within the native annulus of the atrioventricular valve. In other instances, for example, the actuation wires 574-577 can be released after the valve 500 has at least partially exited the outer delivery sheath 526 and after the valve 500 is seated within the native annulus of the atrioventricular valve.


In some instances, for example as shown in FIG. 28, a delivery system 505′ can include a dilator device or member 511′. The dilator 511′ can be, for example, a balloon dilator and can be configured to expand an opening or passage, for example, during delivery of the prosthetic valve 500′. The dilator device 511′ can be the same as or similar to the dilator device 1711 and used in the same or similar manner as described in the '305 application with respect to FIGS. 43-48 and the method of delivery of FIG. 72. Delivery system 505′ can include the same as or similar features, and function the same as or similar to, for example, the delivery system 505 and/or the delivery system 1005 described herein and/or delivery systems described in the '305 PCT Application.


In some embodiments, a prosthetic heart valve (e.g., any prosthetic heart valve described herein and/or in the '305 PCT Application) can include an outer frame having multiple rows of loops through which any suitable number of actuator wires can be routed and/or slidably disposed (e.g., to control the reversion profile and timing of the outer frame as it is deployed and delivered from a delivery sheath). FIGS. 29A and 29B illustrate such an embodiment of a prosthetic heart valve 600 and a delivery system 605 that can be used to deliver and deploy the prosthetic heart valve 600 (also referred to herein as “valve”) within a heart in a procedure similar to or the same as the procedures described herein with respect to other embodiments and embodiments described in the '305 PCT Application. Thus, some details regarding the valve 600 and procedures performed therewith are not described herein. It should be understood that for features and functions not specifically discussed, those features and functions can be the same as or similar to the valves and/or delivery system components described herein and/or in the '305 PCT Application. For example, the valve 600 can be constructed the same as or similar to, and function the same as or similar to any of the valves described herein and/or in the '305 PCT Application. For example, the valve 600 includes an outer frame assembly that has an outer frame 620, and an inner valve assembly that has an inner frame 650. As shown in FIGS. 29A and 29B, the delivery system 605 includes an outer delivery sheath 626. The delivery system 605 can also include other components and features not shown in FIGS. 29A and 29B, such as, for example, an inner sheath similar to inner sheath 508, a valve holder similar to valve holder 538 described herein, and/or any other suitable components and/or features described with respect to other embodiments herein and in the '305 PCT Application.


As with other embodiments described herein and embodiments of the '305 PCT Application, the valve 600 can be moved from a biased expanded configuration to an inverted configuration for delivery of the valve 600 to the heart, as shown in FIG. 29A. In this embodiment, the valve 600 is positioned for transvascular delivery similar to as described for valve 500 above. Thus, when disposed in the inverted configuration within the sheath 626, the outer frame is disposed distal of the inner frame. In this embodiment, the outer frame 620 includes a first row of loops 662 and a second row of loops 664, through which actuation wires 674-679 can be threaded through in the same or similar manner as described herein with respect to valve 400 and/or valve 1000 and/or in the '305 PCT Application with respect to valve 2100.


In this embodiment, the actuation wires 674-679 extend proximally from the outer frame 620, within the lumen 682 of the outer delivery sheath 626, and out the proximal end of the outer delivery sheath 626. In alternative embodiments, the actuator wires 674-679 can be pinned to a tube member by pinning members (not shown in FIGS. 29A and 29B) in the same or similar manner as described herein with respect to the delivery system 505 and/or the delivery system 1005.


In this embodiment, to deliver the valve 600 to the heart, the distal end of the outer delivery sheath 626, with the valve 600 disposed therein, is disposed within the left atrium of the heart. With the distal end portion of the outer delivery sheath 626 disposed within the left atrium of the heart, the valve 600 can be deployed outside of the outer sheath 626. For example, the valve 600 can be moved distally relative to the outer sheath 626 outside the lumen 682 of the outer sheath 626. In addition, or alternatively, the outer sheath 626 can be moved or pulled proximally, leaving at least a portion of the valve 600 disposed within the heart. In some embodiments, a tether (not shown) coupled to the valve 600 can be used to help pull the valve 600 out of the lumen 682 of the outer sheath 626.


As described in previous embodiments and embodiments of the '305 PCT Application, as the outer frame 620 becomes unconstrained by the outer sheath 626, the outer frame 620 can begin to revert to its expanded or uninverted configuration. The actuation wires 674-679 can be used to control the reversion of the outer frame 620. More specifically, after the outer frame 620 is disposed at least partially outside the distal end of the outer sheath 626, the proximal ends of the actuator wires 674-679 can be pulled proximally, which will in turn pull the open end of the outer frame 620 (to which the actuation wires 674-679 are coupled) distally to help revert the outer frame 620. For example, as described with respect to other embodiments herein and in the '305 PCT Application, a user (e.g., a physician) can pull the end portions of the actuator wires 674-679 to in turn move the outer frame 620 to its reverted configuration, as shown in FIG. 29B. Similarly stated, the actuation wires (coupled to the outer frame 620) pull the distally disposed portion of the outer frame 620 proximally (the same as or similar to as shown in FIG. 40) in a controlled manner and such that the reversion of the outer frame 620 from its inverted configuration relative to the inner frame 650 can be controlled. Having multiple rows of loops (e.g., the first row of loops 662 and the second row of loops 664), as shown and described with respect to this embodiment, provides increased control of the reversion of the outer frame 620 from its inverted configuration.


In this embodiment, the outer frame 620 has two rows of loops, each row having 12 loops. In alternative embodiments, however, an outer frame can have any suitable number of loops and/or rows of loops such that the outer frame 620 can be reverted in a controlled manner. For example, in some alternative embodiments, an outer frame can have 3 or more rows of loops. Further, in some embodiments, the loops can be integrally or monolithically formed with the outer frame, while in other embodiments, one or more of the loops can be formed separately from and coupled to the outer frame (e.g., sewn onto the outer frame).


In addition, in some instances, the actuation wires 674-679 can assist in the articulation and placement of the valve 600 into its destination (e.g., a native annulus of an atrioventricular valve of a heart). For example, the actuation wires 674-679 can also be used to constrain, collapse, or otherwise move the valve 600 (e.g., radially compress the outer frame 620 of the valve 600) after the valve 600 exits the outer sheath 626 and is in its reverted, expanded or partially expanded configuration.


With the outer frame 620 of the valve 600 disposed in its non-inverted and at least partially expanded configuration (see e.g., FIG. 29B), and in a desired positon within the heart, the inner frame 650 can be deployed and allowed to assume its biased expanded configuration. The actuation wires 674-679 can also be released or decoupled from the outer frame 620 before or after the inner frame 650 is deployed. To decouple the actuation wires 674-679 from the outer frame 620, one end of each of the actuation wires 674-679 can be pulled proximally, which in turn will pull the opposite ends of the actuation wires 674-679 out of the loops 674-679 of the outer frame 620. With the actuation wires 674-679 detached from the outer frame 620, the outer frame can assume a biased expanded or partially expanded configuration.


In some instances, the actuation wires 674-679 can be decoupled from the outer frame 620 at any suitable sequence or time period within the procedure. For example, in some instances it may be desirable for the actuation wires 674-677 to be released after the valve 600 has at least partially exited the delivery sheath 626 but before the valve 600 is seated within the native annulus of the atrioventricular valve. In other instances, for example, the actuation wires 674-679 can be released after the valve 600 has at least partially exited the outer delivery sheath 626 and after the valve 600 is seated within the native annulus of the atrioventricular valve.


The embodiments described above and in the '305 PCT Application are described for use in transfemoral delivery. In other embodiments, similar delivery devices and methods can be used for transapical delivery of a prosthetic heart valve. The following apparatus and methods are described herein for use in transapical delivery and deployment of prosthetic heart valves, such as prosthetic mitral valves, that can be configured to be moved to an inverted configuration for delivery of the prosthetic valve to within a heart of a patient. As described herein, in some embodiments, a prosthetic valve includes an outer frame that can be inverted relative to an inner frame when the prosthetic valve is in a biased expanded configuration. The prosthetic mitral valve can be formed with, for example, a shape-memory material. After inverting the outer frame, the prosthetic valve can be inserted into a lumen of a delivery sheath such that the prosthetic valve is moved to a collapsed configuration.


The delivery sheath can be used to deliver the prosthetic valve to within a patient's heart using a variety of different delivery approaches for delivering a prosthetic heart valve (e.g., a prosthetic mitral valve) where the inverted prosthetic valve would enter the heart through the ventricle of the heart and into the atrium of the heart. For example, as described in further detail herein with respect to FIGS. 30A-30D and FIGS. 31A and 31B, an inverted prosthetic valve can be delivered using an apical approach, i.e., delivered through the apex of the left ventricle of a heart.


After the delivery sheath has been disposed within the left atrium of the heart (e.g., via an apical approach), the prosthetic mitral valve is moved distally out of the delivery sheath such that the inverted outer frame reverts and the prosthetic valve assumes its biased expanded configuration. The prosthetic mitral valve can then be positioned within a mitral annulus of the heart.



FIGS. 30A and 30B are schematic illustrations of a portion of a prosthetic heart valve 700, according to an embodiment, shown in a first configuration and a second configuration respectively, and FIGS. 30C and 30D illustrate the portions of the prosthetic heart valve 700 of FIGS. 30A and 30B, respectively, shown disposed within a lumen of a delivery sheath 726′ and 726, respectively. FIGS. 31A and 31B illustrate a portion of the prosthetic heart valve 700 in the first configuration and second configuration of FIGS. 30A and 30B, respectively, and show length dimensions for the prosthetic heart valve in each of the first configuration and the second configuration. The prosthetic heart valve 700 (also referred to herein as “prosthetic valve” or “valve”) can be, for example, a prosthetic mitral valve. The valve 700 includes an outer frame 720 and an inner frame 750. The outer frame 720 and the inner frame 750 are each formed as a tubular structure similar to as described in more detail above with respect to previous embodiments and/or with reference to the prosthetic valves in the '305 PCT Application. The outer frame 720 and the inner frame 750 can be coupled together at multiple coupling joints 746 disposed about a perimeter of the inner frame 750 and a perimeter of the outer frame 720. The valve 700 can also include other features, such as any of those described herein and/or in the '305 PCT Application. For illustration purposes, only the inner frame 750 and the outer frame 720 are discussed with respect to FIGS. 30A-31B. The various characteristics and features of valve 700 described with respect to FIGS. 30A-31B can apply to any of the prosthetic valves described herein.


The outer frame 720 is configured to have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed or constrained) and, when released, return to its original (expanded or undeformed) shape. For example, the outer frame 720 can be formed of materials, such as metals or plastics, that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used. The inner frame 750 can be formed from a laser-cut tube of Nitinol®. The inner frame 750 can also have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original (expanded or undeformed) shape.


The valve 700 can be delivered and deployed within a left atrium of a heart using a variety of different delivery approaches including, for example, a transapical delivery approach, as described in more detail below, or, for example, a transatrial, transjugular or transfemoral approach. As described above, in some situations, such as when delivering a prosthetic valve to the heart via a transapical approach, it may be desirable to use a delivery sheath with a relatively small lumen, and therefore, the size of the prosthetic valve during delivery should be sized accordingly. Thus, it is desirable to have a prosthetic valve that can be reconfigured between a biased expanded configuration for implantation in the heart (e.g., within a native mitral annulus) and a delivery configuration that has a smaller outer perimeter or profile to allow for delivery within the lumen of the delivery sheath. The prosthetic valve 700 and the embodiments of a prosthetic valve described herein can be constructed and formed to achieve these desired functions and characteristics.


More specifically, the valve 700 can have a biased expanded configuration (as shown in FIGS. 30A and 31A), an inverted configuration (as shown in FIGS. 30B and 31B), and a compressed or collapsed configuration (as shown in FIGS. 30C and 30D). The expanded configuration allows the valve 700 to function when implanted within the heart. The valve 700 can be moved to the inverted configuration and the compressed or collapsed configuration for delivery of the valve 700 to the heart of a patient.


To enable the valve 700 to be moved to the inverted configuration, the outer frame 720 can be coupled to the inner frame 750 in such a manner to allow the outer frame 720 to move relative to the inner frame 750. More specifically, the coupling joints 746 can couple the outer frame 720 to the inner frame 750 in such a manner to allow the outer frame 720 to be moved relative to the inner frame 750. For example, in some embodiments, the coupling joints 746 can be configured to allow the outer frame 720 to rotate about the coupling joint 746 relative to the inner frame 750. In some embodiments, coupling joints can provide a pivotal coupling between the outer frame 720 and the inner frame 750. In some embodiments, the coupling joints can provide a flexible attachment between the outer frame 720 and the inner frame 750. The coupling joints 746 can be a variety of different types and configurations as described in the '305 application incorporated herein with reference to the various embodiments of a prosthetic valve. For example, the coupling joints 746 can include a living hinge, a flexible member, sutures, a suture wrapped through an opening, a pin or tab inserted through an opening or any combinations thereof.


To move the valve 700 from the expanded configuration (FIG. 30A) to the inverted configuration (FIG. 30B), the outer frame 720 is moved to a prolapsed or inverted configuration relative to the inner frame 750, as shown in FIGS. 30B, 30D and 31B, by moving (e.g., rotating, pivoting, flexing) the outer frame 720 about the coupling joints 746. The elastic or superelastic structure of outer frame 720 of valve 700 also allows the outer frame 720 to be moved to, and disposed in, the prolapsed or inverted configuration relative to the inner frame 750. To move the outer frame 720 to the inverted configuration relative to the inner frame 750, the outer frame 720 is folded or inverted proximally (to the right in FIG. 30B) relative to the inner frame 750 via the coupling joints 746. As shown in FIGS. 30A and 31A, the outer frame 720 is in a first position relative to the inner frame 750 prior to being inverted in which an open or free end portion 716 (also referred to the atrium portion 716 of the outer frame 720) is disposed distally or to the left of the coupling joints 746 and in the same direction as a free end portion 747 (also referred to as a second end portion of the inner frame) of the inner frame 750. When the outer frame 720 is moved to an inverted configuration (i.e., second positon relative to the inner frame 750), the free end portion 716 is disposed proximally of the coupling joints 746 (or to the right in FIGS. 30B and 31B) and in an opposite direction as the free end portion 747 of the inner frame 750. Said another way, when the valve 700 is in a biased expanded configuration (e.g., FIG. 30A), the coupling joints 746 are disposed between a first end portion 744 (also referred to as a tether coupling portion) of the inner frame 750 and the free end portion 716 of the outer frame 720. When the valve 700 is in the inverted configuration (e.g., FIG. 30B) (i.e., the outer frame 720 has been moved to an inverted configuration or position), the coupling joints 746 are disposed between the free end portion or second end portion 747 of the inner frame 750 and the free end portion 716 of the outer frame 720.


When in the inverted configuration, an overall length of the valve 700 is increased, but a length of the inner frame 750 and a length of the outer frame 720 remains the same (or substantially the same). For example, as shown in FIGS. 31A and 31B an overall length L1 of the valve 700 in the biased expanded configuration (prior to being inverted as shown in FIG. 31A) is less than the overall length L2 of the valve 700 when in the inverted configuration (FIG. 31B). A length Li of the inner frame 750 and a length Lo of the outer frame 720 is substantially the same (or the same) when the valve 700 is in both the biased expanded configuration and the inverted configuration. In addition, in some instances, depending on the specific configuration of the outer frame, an overall outer perimeter or outer diameter of the valve 700 can be smaller when the valve 700 is in the inverted configuration.


With the valve 700 in the inverted configuration, the valve 700 can be placed within a lumen of the delivery sheath 726 for delivery of the valve 700 to the left ventricle and left atrium of the heart, as shown in FIG. 30D. When placed within the lumen of the delivery sheath 726, the valve 700 is moved to the collapsed or compressed configuration in which the outer diameter or outer perimeter of the valve 700 is reduced. Because the valve 700 is in the inverted configuration, the valve 700 is able to be placed within a smaller delivery sheath 726 than would otherwise be possible. For example, for comparison purposes, FIG. 30C illustrates the valve 700 placed within a lumen of a delivery sheath 726′ where the valve 700 has not been moved to an inverted configuration prior to being disposed within the delivery sheath 726′. As shown in FIG. 30C, an outer diameter of the valve 700 is reduced, but not to as small of a diameter as for the valve 700 when placed in a delivery sheath 726 when in the inverted configuration. Thus, in FIG. 30C, the valve 700 has an overall outer perimeter or outer diameter D1 and in FIG. 30D, the valve 700 has an overall outer perimeter or outer diameter D2, which is less than D1.


Thus, by disposing the outer frame 720 in the inverted configuration, the valve 700 can be collapsed into a smaller overall diameter, i.e. placed in a smaller diameter delivery sheath 726, than would be possible if the valve 700 were merely collapsed radially. This is because when the valve is in the biased expanded configuration, the inner frame 750 is nested within an interior of the outer frame 720, and thus the outer frame 720 must be collapsed around the inner frame 750. In some embodiments, the inner frame 750 and the outer frame are disposed concentrically. Whereas in the inverted configuration, the inner frame 750 and the outer frame 720 are arranged axially with respect to each other (i.e., the inner frame is not nested within the outer frame 750), such that the outer frame 720 can be collapsed without needing to accommodate all of the structure of the inner frame 750 inside it. In other words, with the inner frame 750 disposed mostly inside or nested within the outer frame 720, the layers or bulk of the frame structures cannot be compressed to as small a diameter. In addition, if the frames are nested, the structure is less flexible, and therefore, more force is needed to bend the valve, e.g. to pass through tortuous anatomy or to make turns through a patient to be properly oriented for insertion into the mitral valve annulus.



FIG. 32A is a schematic illustration in side view of a delivery system that can be used to deliver and deploy a prosthetic heart valve within a heart of patient with, for example, a transapical approach. In this embodiment, a delivery system 805 includes a delivery sheath 826, a dilator 870, an elongate member 880, and two actuation wires 874 and 876. FIG. 32B is a schematic illustration in front view of the elongate member 880. In this schematic illustration, only two actuation wires are illustrated, but in other embodiments, only one actuation wire or more than two actuation wires can be used.


The delivery sheath 826 can be used to deliver a valve 800 that includes an inner valve assembly 840 including an inner frame (not labeled in FIG. 32A and FIG. 32B) and an outer frame assembly 810 including an outer frame (not labeled in FIG. 32A and FIG. 32B). The valve 800 can be constructed the same as or similar to, and function the same as or similar to, for example, the prosthetic valves described herein and/or in the '305 PCT Application, and can be moved between a deployed or expanded configuration and a delivery configuration in which the outer frame is disposed in an inverted positon relative to the inner frame as described above. As shown in FIG. 32A, the valve 800 can be disposed within a lumen of the delivery sheath 826 when the valve is in the delivery configuration (i.e., the outer frame is inverted relative to the inner frame and positioned proximal of the inner frame when in the delivery sheath). The actuation wires 874, 876 are releasably coupled to the outer frame assembly 810. In this manner, after delivery to and seating within the native annulus of the patient's heart, the actuation wires 874, 876 can be released from the outer frame assembly 810 and removed from the patient, leaving the prosthetic heart valve implanted within the patient's heart, as described in more detail herein.


The dilator 870 has a fluid delivery portion 872 and a collapsible dilation portion 873 (also referred to herein as “dilation portion”). The fluid delivery portion 872 is configured to receive a fluid and deliver the fluid to the dilation portion 873 to inflate the dilation portion 873. The dilation portion 873 is configured to be inflated such that when inflated it can dilate (e.g., expand an opening or passage) to one or more portions of the heart as the delivery system 805 is introduced into the heart of the patient. For example, in use during a transapical delivery approach, the dilation portion 873, when inflated, can extend outside a distal end of the delivery sheath 826 and provide a lead-in for the delivery sheath 826 and help open or enlarge the entry opening at the epicardial surface and ease entry through the mitral annulus without entangling the valve's chordae tendinae. With the delivery sheath 826 placed at a desired position within the heart, the dilator portion 873 can be deflated and removed leaving the delivery sheath 826 within the heart.


The dilation portion 873 can have any suitable shape or size to dilate a portion of the heart (e.g., an incision in an apical portion of the heart) and thereby assist delivery of the valve 800 to the atrium of the heart. For example, in some embodiments, a dilation portion can have a conical and/or tapered shape with a rounded or blunt distal tip. In other embodiments, a dilation portion can have a round shape, an oval shape, triangular, or other suitable shape. Although not shown, in some embodiments, a dilator can define a guide wire lumen therethrough. During delivery of a prosthetic valve, for example, a guidewire can be extended through an apical portion of the heart, through the left ventricle and into the left atrium of the heart. In such an embodiment, the dilator can be threaded over the guidewire to be inserted into the heart. The guidewire can be any suitable size. For example, in some embodiments, the guidewire can be from about a 0.03″ guidewire to a 0.04″ guidewire (e.g., a 0.035″ guidewire). An example dilator device is described in U.S. patent application No. 14,527,382, filed Oct. 29, 2014 (“the '382 application”), the entire disclosure of which is incorporated herein by reference. As described in more detail herein, with the delivery sheath 826 placed at the desired position within the heart, the dilator portion 873 can be deflated (by removing the fluid therefrom) and removed along the guidewire leaving the delivery sheath 826 within the heart.


The elongate member 880 can be used to flip the outer frame assembly 810 and deliver to and retract from the heart at least a portion of the dilator 870. The elongate member 880 defines a dilator lumen 882 configured to slidably receive the dilator 870. More specifically, the dilator lumen 882 is configured to slidably receive the delivery portion 872, and the dilation portion 873 when deflated, as described in more detail herein. The elongate member 880 further defines four actuator wire lumens 884 (as shown in FIG. 32B) spaced radially apart from the dilator lumen 882 and configured to slidably receive the actuator wires 874, 876. The elongate member 880 is slidably disposed within the delivery catheter 826 and through a center portion of both the inner valve assembly 840 and the outer frame assembly 810. Although not shown, in some embodiments, the elongate member 880 can vary in size, e.g., its outer diameter or perimeter can increase and/or decrease at various portions of the elongate member 880. For example, in some embodiments, a portion of the elongate member 880 proximal to the valve 800, when the elongate member 880 is disposed within the delivery sheath 826 and extends through the center portions of the valve 800, can have a first diameter; and a portion of the elongate member 880 extending through the center portions (e.g., between the leaflets of the inner valve assembly 840) of the valve 800 can have a second diameter smaller than the first diameter. In this manner, the reduced diameter of the portion of the elongate member 880 configured to be disposed through a portion of the valve 800 can prevent or reduce potential undesirable interference with the valve 800 by the elongate member 880. Similarly, portions of the dilator 870, e.g., the fluid delivery portion 872, can vary in size (e.g., diameter) corresponding to the size variations of the elongate member 880.


The actuation wires 874, 876 can be coupled to the outer frame of the outer frame assembly 810 with a variety of different coupling methods. For example, the outer frame of the outer frame assembly 810 can include loops (not shown in FIGS. 32A and 32B) through which the actuation wires 874, 876 can be received or threaded. Such an outer frame is described in the '305 PCT Application incorporated herein (see, e.g., FIG. 57) and with respect to FIG. 27 herein. The number of loops on the outer frame can vary and the number of loops through which each actuation wire is connected can vary. For example, in some embodiments, the outer frame includes 12 loops and a first actuation wire (e.g., actuation wire 874) is threaded through 6 of the loops and a second actuation wire (e.g., actuation wire 876) is threaded through 6 of the loops. In other embodiments, the outer frame can include 12 loops and there can be 4 actuation wires, each coupled to 3 of the loops. In some embodiments, a single actuation wire is coupled through all of the loops of the outer frame.


To deliver and deploy the prosthetic valve 800 within a heart, the delivery sheath 826 can be inserted through the epicardial surface of the patient's heart (e.g., at or near an apex region of the heart) and extended through the left ventricle and to the left atrium of the heart. Prior to inserting the delivery sheath 826 into the heart, with the dilation portion 873 of the dilator 870 extending outside a distal end of the delivery sheath 826, a fluid can be injected to the fluid delivery portion 872 thereby inflating the dilation portion 873 of the dilator 870. The distal end portion (e.g., tapered distal end) of the dilation portion 873 can provide a lead-in for the delivery sheath 826 and help open or enlarge the entry opening at the epicardial surface and through the mitral annulus. When the delivery sheath 826 is placed at the desired position within the heart, the fluid can be at least partially withdrawn or removed from the dilation portion 873 thereby deflating the dilation portion 873, and the deflated dilation portion 873 can be removed through the delivery catheter 826, leaving the delivery sheath 826, the inner valve assembly 840 and the outer frame assembly 810 within the heart.


With the distal end of the delivery sheath 826 disposed within the left atrium, the valve 800 can be moved out of the lumen of the delivery sheath 826 by withdrawing the delivery sheath 826 proximally and/or using a pusher device to push the valve 800 out the distal end of the delivery sheath 826 and/or using the elongate member 880 and actuation wires 874, 876 to assist in pulling the valve 800 out of the distal end of the delivery sheath 826. More specifically, with the actuation wires 874, 876 coupled to the outer frame assembly 810, the ends of the actuation wires 874, 876 can extend distally from the outer frame assembly 810 out the distal end of the delivery sheath 826 and then pass into the actuation wire lumens 884 of the elongate member 880 via side apertures or holes 886 (labeled in FIG. 32A) defined by the elongate member 880. In some embodiments, rather than side openings, the actuation wires lumens extend out openings in a distal end of the elongate member 880. In other words, the lumens 884 can extend to the distal end of the elongate member 880. The ends of the actuation wires 874, 876 can then extend proximally through the actuation wire lumens 884 of the elongate member 880 and out the proximal end of the elongate member 880 and the proximal end of the delivery sheath 826. More specifically, each wire 874, 876 has two ends. A first end is held at the proximal end of the elongate member 880, and the second end extends distally through a first actuation wire lumen 884, through the loops (not shown) of the outer frame assembly 810, back through a second actuation wire lumen 884 and extends proximally out the proximal end of the elongate member 880. Thus, for an embodiment with two actuation wires and four actuation wire lumens, four ends of the actuation wires will extend proximal of a distal end of the delivery system 305 or coupled to a portion of the delivery system (e.g., a catheter or handle). Thus, a user (e.g., physician) can pull the end portions of the actuation wires 874, 876 to in turn pull the outer frame assembly 810 out of the distal end of the delivery sheath 826 as described in more detail below.


In some embodiments, the end portions of the actuation wires 874, 876 extend proximally from the proximal end of the elongate member 880 and are operably coupled to a handle (not shown). The handle can be manipulated by a user to selectively pull and/or release the actuation wires 874, 876. In some embodiments, the handle can include one or more toggle switches or similar mechanisms to help control the transition of the valve 800. In this manner, a user can use the handle to selectively pull the valve 800 distally and out from the delivery sheath 826, and selectively control the flipping or transition between configurations of the outer frame assembly 810. In some embodiments, the end portions of actuation wires extend proximally through actuation wire lumens of a delivery sheath and out the proximal end of an elongate member, but remain within the delivery sheath. In such embodiments, a handle or functionally similar actuation wire manipulator is operably coupled to the actuation wires, and can be actuated and/or manipulated to selectively pull or release the actuation wires for delivery and/or deployment of the valve 800, as described above.


During delivery of the valve 800, as the inner valve assembly 840 exits the distal end of the delivery sheath 826, the outer frame assembly 810 will be in an inverted configuration relative to the inner valve assembly 840 (similar to as shown and described with respect to FIG. 30B). After the inner valve assembly 840 is outside of the lumen of the delivery sheath 826, the outer frame assembly 810 can begin to exit the lumen of the delivery sheath 826 and to revert to its expanded or deployed configuration (similar to as shown, for example, with respect to FIG. 30A). In this embodiment, the actuation wires 874, 876 can function to selectively (e.g., by an operator) assist and/or control the expansion and reversion profile of the valve 800 as the valve 800 is delivered to the heart. For example, a distal end of the elongate member 880 can be moved distally out of the delivery sheath 826, and the end portions (extending proximally out of the delivery sheath 826) of the actuation wires 874, 876 can be pulled proximally (or a handle coupled thereto can be manipulated), which in turn pulls the open end of the outer frame distally relative to the inner frame to help move the outer frame to its reverted expanded configuration. Thus the actuation wires and elongate member 880 can be used to help manipulate the outer frame assembly 810 to assist and control the transition of the outer frame assembly 810 from its inverted configuration relative to the inner valve assembly 840 to its expanded or deployed configuration. In this manner, the profile of the valve 800 as the outer frame assembly 810 transitions from its inverted configuration to its reverted, expanded or deployed configuration can be selectively minimized and/or otherwise manipulated as desired by a user. Such control of the profile of the valve 800 throughout its transition between configurations and during delivery and deployment of the valve 800 can promote a safer, more repeatable and efficient valve delivery and deployment procedure. In some embodiments, the actuation wires 874, 876 can be manually grasped by a user to pull the actuation wires proximally. In some embodiments, the actuation wires 874, 876 can be operatively coupled to the delivery system 805 such that the user does not have to manually handle the actuation wires. For example, the actuation wires can be coupled to a delivery sheath and/or to a handle assembly (not shown) of the delivery system 805.


With the outer frame assembly 810 reverted relative to the inner valve assembly 840 such that the valve 800 is disposed in its deployed configuration within the annulus of the heart, the delivery system 805 can be removed from the heart. For example, the actuation wires 874, 876 can be decoupled from the outer frame assembly 810 and removed from the heart via the elongate member 880, and the elongate member 880 and the delivery sheath 826 can be withdrawn from the heart, leaving the valve 800 implanted within the annulus of the heart. More specifically, to decouple the actuation wires 874, 876 from the outer frame assembly 810 and remove the actuation wires 874, 876 from the patient, a single proximal end of the actuation wires 874, 876 can be pulled proximally such that the other proximal end of the actuation wires 874, 876 gets pulled distally through the actuator wire lumens 884, out the apertures or holes 886 in the elongate member 880, through the loops of the outer frame 820, and back out through the actuator wire lumens 884. In this manner, the actuation wires 874, 876 can be removed from the elongate member 880, the delivery sheath 826, and the patient after the actuation wires 874, 876 are used to facilitate delivery and deployment of the valve 800 within the heart.



FIG. 33A is an illustration in side view of a delivery system 905 that can be used to delivery and deploy a prosthetic heart valve 900 within a heart of a patient with, for example, a transapical approach. The delivery system 905 can be constructed the same as or similar to, and function the same as or similar to, for example, the delivery system 805. Further, the valve 900 can be constructed the same as or similar to, and function the same as or similar to, for example, any of the prosthetic valves described herein or any of the prosthetic valves described in the '305 PCT Application, and can be moved between a deployed or expanded configuration and a delivery configuration in which the outer frame is disposed in an inverted position relative to the inner frame as described herein with respect to the valve 800. As shown in FIG. 33A, the valve 900 is disposed in its inverted configuration and radially constrained within the delivery sheath prior to being deployed and implanted within a heart as described in more detail below. Further, as shown in FIG. 33B, the valve 900 is disposed in its reverted, deployed configuration after being delivered to the heart and before the actuation wires and delivery sheath have been removed. It should be understood that for features and functions not specifically discussed with respect to the delivery system 905, those features and functions can be the same as or similar to the delivery system 805 or any of the delivery systems described herein. Similarly, it should be understood that for features and functions not specifically discussed with respect to the prosthetic valve 900, those features and functions can be the same as or similar to the valve 800 or any of the valves described in the '305 PCT Application.


The delivery system 905 includes a delivery sheath 926, a dilator 970, an elongate member 980, and two actuation wires 974 and 976. FIG. 33C is a distal end view of the elongate member 980. The delivery sheath 926 can be used to deliver a valve 900 that includes an inner valve assembly 940 including an inner frame (not labeled in FIG. 33A) and an outer frame assembly 910 including an outer frame (not labeled in FIG. 33A).


The elongate member 980 can be used to assist in the flipping of the outer frame assembly 910 and deliver to and retract from the heart at least a portion of the dilator. As shown in FIG. 33C, the elongate member 980 defines a dilator lumen 982 configured to slidably receive the dilator 970. More specifically, the dilator lumen 982 is configured to slidably receive the dilator 970 therethrough when the dilator portion 973 is deflated. The elongate member 980 further defines four actuator wire lumens 984 (as shown in FIG. 33C) spaced radially apart from the dilator lumen 982 and configured to receive the actuation wires 974, 976. The elongate member 980 is slidably disposed within the delivery catheter 926 and through a center portion of both the inner valve assembly 940 and the outer frame assembly 910. In alternative embodiments, an elongate member can define any suitable number of actuator wire lumens. For example, as shown in FIG. 33D, an elongate member 980′ can define six actuator wire lumens 984′ spaced radially apart from the dilator lumen 982′. Similar to the actuator wire lumens 984 discussed above, the six actuator wire lumens 984′ can be configured to receive actuator wires (e.g., actuator wires 974 and 976). In yet alternative embodiments, actuator wire lumens can be configured to receive any suitable number of actuator wires. For example, in some embodiments in which a delivery system includes an elongate member defining six actuator wire lumens (e.g., actuator wire lumens 984′), the delivery system can include three actuator wires. In such embodiments, in some instances, each actuator wire can be routed through two actuator wire lumens. Said another way, a first actuator wire can be routed through a first set of two actuator wire lumens; a second actuator wire can be routed through a second set of two actuator wire lumens; and a third actuator wire can be routed through a third set of two actuator wire lumens. Further, an elongate member can have any suitable shape (e.g., circular, oval, triangular, or the like). For example, as shown in FIG. 33D, the elongate member 980′ is circular.


In this embodiment, as shown, the actuation wires 974, 976 can be releasably coupled to the outer frame of the outer frame assembly 910. For example, as shown in FIGS. 33A and 33B, the actuation wires 974, 976 can be passed through loops 962 disposed around an open end portion of the outer frame assembly 910. More specifically, as described above, a first end of each actuation wire 974, 976 is held at the proximal end of the elongate member 980, and the second end extends distally through a first actuation wire lumen 984, through the loops 962 of the outer frame assembly 910, back through a second actuation wire lumen 984 and extends proximally out the proximal end of the elongate member 980 (see e.g., FIG. 33B).


To deliver and deploy the prosthetic valve 900 within a heart, the delivery sheath 926 can be inserted through the epicardial surface of the patient's heart (e.g., at or near an apex region of the heart) and extended through the left ventricle and to the left atrium of the heart. Prior to inserting the delivery sheath 926 into the heart, with the dilation portion of the dilator extending outside a distal end of the delivery sheath 926, a fluid can be injected to the fluid delivery portion 972 thereby inflating the dilation portion 973 of the dilator 970. The distal end portion (e.g., tapered distal end) of the dilation portion 973 can provide a lead-in for the delivery sheath 926 and help open or enlarge the entry opening at the epicardial surface and through the mitral annulus. When the delivery sheath 926 is placed at the desired position within the heart, the fluid can be at least partially withdrawn or removed from the dilation portion 973 thereby deflating the dilation portion 973, and the deflated dilation portion 973 can be removed through the delivery catheter 926, leaving the delivery sheath 926, the inner valve assembly 940 and the outer frame assembly 910 within the heart.


With the distal end of the delivery sheath 926 disposed within the left atrium, the valve 900 can be moved out of the lumen of the delivery sheath 926 by, for example, withdrawing the delivery sheath 926 proximally and/or moving the elongate member 980 distally and using the actuation wires 974, 976 to assist in pulling the valve 900 out of the distal end of the delivery sheath 926. As described above for the previous embodiment, the inner valve assembly 940 will exit the delivery sheath 926 first and then the outer frame assembly 910. Unconstrained by the delivery sheath 926, the inner valve assembly 940 and outer frame assembly 910 can assume their biased expanded configurations.


To flip or revert the outer frame assembly 910, the elongate member 980 can be moved distally out of the delivery sheath 926 as shown in FIG. 33B. With the elongate member 980 moved distally, the proximal ends of the actuation wires 974, 976 can be pulled proximally, which will in turn pull the open end of the outer frame assembly 910 (to which the actuation wires 974, 976 are coupled) distally to help revert the outer frame. For example, as described above, a user (e.g., physician) can pull the end portions of the actuation wires 974, 976 to in turn move the outer frame assembly 910 to its reverted configuration. In some embodiments, the end portions of the actuation wires 974, 976 extend proximally from the proximal end of the elongate member 980 and are operably coupled to a handle (not shown). The handle can be manipulated by a user to selectively pull and/or release the actuation wires 974, 976. In some embodiments, the handle can include one or more toggle switches or similar mechanisms to help control the transition of the valve 900. In this manner, a user can use the handle to selectively pull the valve 900 distally and out from the delivery sheath 926, and selectively control the flipping or transition between configurations of the outer frame assembly 910. In some embodiments, the end portions of actuation wires extend proximally through actuation wire lumens of a delivery sheath and out the proximal end of an elongate member, but remain within the delivery sheath. In such embodiments, a handle or functionally similar actuation wire manipulator is operably coupled to the actuation wires, and can be actuated and/or manipulated to selectively pull or release the actuation wires for delivery and/or deployment of the valve 900, as described above.


As described above, as the valve 900 exits the distal end of the delivery sheath 926, the outer frame assembly 910 will be in an inverted configuration relative to the inner valve assembly 940 (similar to as shown and described with respect to FIG. 30B). After the inner valve assembly 940 is outside of the lumen of the delivery sheath 926, the outer frame assembly 910 can begin to exit the lumen of the delivery sheath 926 and to revert to its expanded or deployed configuration (as shown in FIG. 33B). In this embodiment, the actuation wires 974, 976 can function to selectively (e.g., by an operator) assist and/or control the expansion and reversion profile of the valve 900 as the valve 900 is delivered to the heart. For example, a distal end of the elongate member 980 can be moved distally out of the delivery sheath 926, and the end portions (extending proximally out of the delivery sheath 926) of the actuation wires 974, 976 can be pulled proximally (or a handle coupled thereto can be manipulated), which in turn pulls the open end of the outer frame distally relative to the inner frame to help move the outer frame to its reverted expanded configuration. Thus the actuation wires 974, 976 and the elongate member 980 can be used to help manipulate the outer frame assembly 910 to assist and control the transition of the outer frame assembly 910 from its inverted configuration relative to the inner valve assembly 940 to its expanded or deployed configuration. In this manner, the profile of the valve 900 as the outer frame assembly 910 transitions from its inverted configuration to its reverted, expanded or deployed configuration can be selectively minimized and/or otherwise manipulated as desired by a user. Such control of the profile of the valve 900 throughout its transition between configurations and during delivery and deployment of the valve 900 can promote a safer, more repeatable and efficient valve delivery and deployment procedure. In some embodiments, the actuation wires 974, 976 can be manually grasped by a user to pull the actuation wires proximally. In some embodiments, the actuation wires 974, 976 can be operatively coupled to the delivery system 905 such that the user does not have to manually handle the actuation wires. For example, the actuation wires can be coupled to a delivery sheath and/or to a handle assembly (not shown) of the delivery system 905.


With the outer frame assembly 910 reverted relative to the inner valve assembly 940 such that the valve 900 is disposed in its deployed configuration (as shown in FIG. 33B) within the annulus of the heart, the delivery system 905 can be removed from the heart. For example, the actuation wires 974, 976 can be decoupled from the outer frame assembly 910 and removed from the heart via the elongate member 980, and the elongate member 980 and the delivery sheath 926 can be withdrawn from the heart, leaving the valve 900 implanted within the annulus of the heart. More specifically, to decouple the actuation wires 974, 976 from the outer frame assembly 910 and remove the actuation wires 974, 976 from the patient, a single proximal end of the actuation wires 974, 976 can be pulled proximally such that the other proximal end of the actuation wires 974, 976 gets pulled distally through the actuator wire lumens 984, out the side apertures or holes 986 in the elongate member 980 (each side aperture or hole 986 being in communication with a corresponding actuator wire lumen 984), through the loops 962 of the outer frame 920, and back out through the actuator wire lumens 984. In this manner, the actuation wires 974, 976 can be removed from the elongate member 980, the delivery sheath 926, and the patient after the actuation wires 974, 976 are used to facilitate delivery and deployment of the valve 900 within the heart.


In some embodiments, after the valve 900 has been delivered and deployed within the heart, the delivery sheath 926 can be moved distally (before and/or after the actuation wires 974, 976 have been removed from the elongate member 980, the delivery sheath 926, and/or the patient) to capture or otherwise engage with at least a proximal portion of the valve 900 and at least partially collapse the proximal portion of the valve. The delivery sheath 926 can then be used to move and/or reorient (e.g., rotate, clock, angle) the valve 900 within the heart. For example, a user can rotate the delivery sheath 926 about its longitudinal axis to in turn rotate the valve 900 about its longitudinal axis. In this manner, a user can ensure proper implantation of the valve 900 within the heart without having to remove the valve 900 from the heart, for example, when the valve 900 is not first implanted in a proper manner.



FIGS. 34-42 illustrate a delivery system 1005 for delivering and deploying a prosthetic heart valve, such as, prosthetic heart valve 1000, within a heart, according to another embodiment. The prosthetic heart valve 1000 (also referred to herein as “valve”) can be constructed the same as or similar to, and function the same as or similar to any of the valves described herein. Thus, some details regarding the valve 1000 are not described herein. As shown in FIG. 34, the valve 1000 has an outer frame assembly 1010 with an outer frame 1020 and an inner valve assembly 1040 with an inner frame 1050, and a tether 1036 coupled to the inner frame 1050. As described above for previous embodiments (e.g., valve 100, 200, 300 etc.), the outer frame 1020 and the inner frame 1050 of valve the 1000 can each be formed with a shape-memory material and have a biased, expanded or deployed configuration. The outer frame 1020 and the inner frame 1050 can be moved to a collapsed or undeployed configuration for delivery of the valve 1000 to the heart in which the outer frame 1020 is inverted relative to the inner frame 1050. To prepare the valve 1000 for delivery to the heart, the outer frame 1020 of the valve 1000 is first disposed in a prolapsed or inverted configuration as shown in FIG. 34. Specifically, the elastic or superelastic structure of outer frame 1020 of valve 1000 allows the outer frame 1020 to be disposed in the prolapsed or inverted configuration relative to the inner frame 1050 as described above, for example with respect to valve 100.


For example, to dispose the outer frame 1020 in its inverted configuration relative to the inner frame 1050, the outer frame 1020 is folded or inverted distally such that the outer frame 1020 is pointed away from the inner frame 1050. With the outer frame 1020 in the inverted configuration, the valve 1000 can be placed within a lumen of the delivery system 1005 as shown in FIG. 34 for delivery of the valve 1000 to the left atrium of the heart. As discussed above, by disposing the outer frame 1020 of the valve 1000 in the inverted configuration, the valve 1000 can be collapsed into a smaller overall diameter, i.e., placed in a smaller diameter delivery sheath, than would be possible if the valve 1000 were collapsed radially when the inner frame 1050 and the outer frame 1020 are disposed concentric to one another.


In this embodiment, the delivery system 1005 includes an outer delivery sheath 1026, an inner sheath 1008, a valve holder 1038 (also referred to as a “pusher”) and a multi-lumen elongate tube member 1003 (also referred to as “tube” or “tube member” or “multi-lumen elongate member”). As shown in FIGS. 34 and 39-41, the tube member 1003 is movably disposed within a lumen 1082 defined by the outer delivery sheath 1026. The inner sheath 1008 is movably disposed within the lumen 1082 and within a lumen 1080 defined by the tube member 1003. The valve holder 1038 is movably disposed within a first lumen 1083 and a second lumen 1085 defined by the inner sheath 1008 that are in fluid communication with each other.


To deploy the valve 1000 within a heart, the outer frame 1020 of the valve 1000 is first moved or placed in its inverted configuration relative to the inner frame 1050. As shown in FIG. 34, a portion of the valve 1000 is placed within the lumen 1082 of the outer sheath and a portion of the valve 1000 is placed within the lumen 1083 of the inner sheath 1008. As described above for previous embodiments, when the valve 1000 is placed within the delivery system (e.g., outer sheath 1026 and inner sheath 1008) the valve 1000 can be compressed or collapsed to a smaller configuration (e.g., a smaller outer perimeter).


The inner frame 1050 can be releasably coupled to the valve holder 1038 via couplers 1006 that are received within corresponding recesses 1004 defined by the valve holder 1038 in the same manner as described above for delivery system 405 (see, e.g., FIGS. 26A-26C). In this manner, the valve holder 1038 can be used to hold the valve 1000 to aid in the control and manipulation of the valve 1000 as it is being deployed within a heart. In addition, the valve holder 1038 can limit radial expansion of the inner frame 1050 as the valve 1000 is moved within the lumen of the delivery sheath 1026 and during deployment outside of the delivery sheath 1026. As described above for valve 400, an inner diameter 1082 of the inner sheath 1008 can be sized such that when the valve holder 1038 and valve 1000 are disposed therein, the couplers 1006 are unable to exit the recesses 1004. In other words, the inner walls of the inner sheath 1008 maintain the couplers 1006 within the recesses 1004. When the valve 1000 is moved outside of the inner sheath 1008, the couplers 1006 will be able to freely exit the recesses 1004, releasing the inner frame 1050 from the valve holder 1038.


In alternative embodiments, the valve holder 1038 can be removably coupled to the valve 1000 (e.g., the inner frame 1050 of the valve 1000) via wires or sutures that can be cut after delivery of the valve 1000 to the heart. In some cases, the valve holder 1038 can be decoupled from the valve 1000 when the valve is still disposed within the outer delivery sheath 1026, while in other instances the valve holder 1038 can be decoupled from the valve 1000 after the valve 1000 exits the delivery sheath 1026 within the heart.


Although not shown, in other embodiments, the valve holder 1038 can merely contact and push the valve 1000 during deployment, as described for previous embodiments, without securing the inner frame 1050 to the valve holder 1038. In such embodiments, in some instances, radial expansion of the inner frame 1050 can be restricted by the inner sheath 1008 when the inner frame 1050 is disposed therein.


In this embodiment a first actuation wire 1076, a second actuation wire 1074, a third actuation wire 1076 and a fourth actuation wire 1077 are each coupled to the outer frame assembly 1010. More specifically, the outer frame 1020 of the outer frame assembly 1010 includes loops 1062 through which the actuation wires 1074-1077 can be threaded or received therethrough. In this embodiment, the outer frame 1020 includes 12 loops 1062 and each actuation wire 1074-1077 is threaded through 3 of the loops 1062. In other embodiments, there can be a different number of loops disposed on the outer frame 1020 and there can be a different number of actuators. Further, each actuation wire can be threaded or received through a different number of loops than shown for this embodiment.


When the valve 1000 is disposed within the delivery system 1005 as shown, for example, in FIG. 34, the actuation wires 1074-1077 each extend from the outer frame 1020 proximally within the lumen 1082 of the outer sheath and along an outside wall of the inner sheath 1008, are tucked or placed behind one or more seals 1081 or other holding device, and pinned by an elongate pinning member 1078-1, 1078-2, 1078-3, 1078-4 (collectively referred to as pinning members 1078) to the tube member 1003. The seal 1081 can be configured such that the actuation wires 1074-1077 can slide relative to the seal 1081 during actuation and deployment of the valve 1000 as described in more detail below.


As shown in FIGS. 34 and 39-41, a first end of the actuation wire 1074 and a first end of the actuation wire 1075 are pinned by a pinning member 1078-2, and a first end of the actuation wire 1076 and a first end of the actuation wire 1077 are pinned by a pinning member 1078-1. A second end of the actuation wire 1074 and a second end of the actuation wire 1076 are pinned by a pinning member 1078-4 (not shown in the partial cross-sectional views of FIGS. 34 and 39-41), and a second end of the actuation wire 1075 and a second end of the actuation wire 1077 are pinned by a pinning member 1078-3 (not shown in the partial cross-sectional views of FIGS. 34 and 39-41). The second ends of the actuation wires are shown detached in FIGS. 34 and 39-41 for ease of illustration.



FIG. 35 is a cross-sectional view taken along line 35-35 in FIG. 34 and illustrates the pinning of the actuation wires 1074-1077. The actuation wires 1074-1077 are shown unattached to the outer frame for illustration purposes. FIG. 38A illustrates the actuation wire 1074 and is representative of the other actuation wires 1075-1077. FIGS. 38B, 67B and 67C illustrate alternative embodiments for the actuation wires labeled 1074′, 1074″ and 1074″. As shown in FIG. 38A, the actuation wires 1074-1077 each include a loop on both ends of the actuation wire, which is pinned by the pinning members 1078. In FIG. 38B, the pinning members can pin the smaller loop on one end of the actuation wire 1074′ and the end of the larger loop on the opposite end of the actuation wire 1074′. In FIG. 38C, the actuation wire 2475″ is in the form of a closed loop and each end of the loop can be pinned by a pinning member. In FIG. 38D, the actuation wire 1074′″ includes two elongate loops and a center smaller loop. In this embodiment, the actuation wire 1074′″ can be pinned by three pinning members, a first pinning member can pin an end of one of the larger loops, a second pinning member can pin an end of the other larger loop, and the small loop can be pinned by a third pinning member. In each of the embodiments of FIGS. 38B-38D, a double layer of the actuation wire would be passed or threaded through the loops of the outer frame of the valve. Other alternative configurations can also be used.


As shown in FIGS. 36 and 37A, the multi-lumen tube member 1003 defines four pinning member lumens 1079-1, 1079-2, 1079-3, 1079-4 (collectively referred to as pinning member lumens 1079). The end portions of the actuation wires 1074-1077 are placed within the circumferential recess or groove 1084 defined by the tube member 1003, where the pinning members 1078 are received through the loops on the ends of the actuation wires 1074-1077, pinning the actuation wires 1074-1077 to the tube member 1003. Thus, during deployment of the valve 1000 within a heart, a user (e.g., physician) can use the tube member 1003, to which the actuation wires 1074-1077 are coupled, to control and/or manipulate movement of the valve 1000 as described in more detail below.



FIGS. 37B and 37C, illustrate an alternative embodiment of a multi-lumen tube member 1103 that can be used with a distal retention element 1186 as shown in FIG. 37B, or a distal retention element 1286 as shown in FIG. 37C. The distal retention elements 1186 and 1286 can be disposed abutting a distal end of the multi-lumen tube member 1103 and can define at least in part a recess area to receive the loop ends of the actuation wires, and can provide increased overall strength and durability to the multi-lumen tube member 1103 during delivery and deployment of the prosthetic valve. The distal retention element 1186, 1286 can be formed with the same or a different material as the multi-lumen tube member 1103. In some embodiments, in may be desirable for the distal retention element 1186, 1286 to be formed of a material having greater strength characteristics than the multi-lumen tube member 1103. For example, the distal retention element 1186, 1286 can be formed with a metal or rigid plastic.


As shown in FIGS. 37B and 37C, the multi-lumen tube member 1103 (also referred to herein as “tube member”) can define a center lumen 1180 and multiple pinning member lumens, including pinning member lumens 1179-3 and 1179-4 (collectively referred to as 1179) shown in FIGS. 37B and 37C that can receive therein pinning members, such as pinning members 1078-3 and 1078-4, respectively. Although not show, the tube member 1103 can also define pinning member lumens that can receive pinning members 1078-1 and 1078-2 as shown for tube member 1003 in FIG. 36.


As shown in FIG. 37B, the distal retention element 1186 can be received within the lumen 1180 and can define a lumen 1187 through which the valve holder 1038 can be slidably received. Although not shown, the distal retention element 1186 can be coupled to the tube member 1103 using various different coupling methods. For example, in some embodiments, the distal retention element 1186 can be bonded to the tube member 1103. In some embodiments the distal retention element 1186 can include a feature(s), such as barbs, that allow it to be inserted into the tube member 1103, but not removed. In some embodiments the distal retention element 1186 can include notches that interlock with a corresponding feature o the tube member 1103 and/or the tube member 1103 can be reflowed or molded over the retention element 1186. Various other coupling methods and/or combinations of securement strategies could be used to couple the distal retention element 1186 to the tube member 1103. In some embodiments, the distal retention element 1186 can extend proximally within the lumen 1180 of the tube member 1103 and be coupled at a proximal end portion of the tube member 1103.


The distal retention element 1186 also defines pinning member lumens 1169 that align with the pinning member lumens 1179 of the multi-lumen tube member 1103 such that the pinning members 1078 can be received therein. A proximal shoulder 1188 can be disposed abutting a distal end of the multi-lumen tube member 1103. The distal retention element 1186 also defines a circumferential recess area 1184 defined between the proximal shoulder 1188 and a distal end portion of the distal retention element 1186. As shown in FIG. 37B, the loop ends of the actuation wires 1074-1077 can be received within the recess area 1184 and pinned by the pinning members 1078 as described above for multi-lumen tube member 1003.



FIG. 37C illustrates a distal retention element 1286 disposed abutting the distal end of the multi-lumen tube member 1103. As with the previous embodiment, the distal retention element 1286 can be received within the lumen 1180 and can define a lumen 1287 through which the valve holder 1038 can be slidably received. The distal retention element 1286 can be coupled to the tube member 1103 in the same manner as described above for distal retention element 1186. The distal retention element 1286 also includes a proximal shoulder 1288 configured to abut the distal end of the multi-lumen tube member 1103. The distal retention element 1286 also defines a circumferential recess area 1284 that can receive the loop ends of actuation wires 1074″-1077″, which can be pinned by the pinning members 1078 (1078-3 and 1078-4 shown in FIG. 37C). In this example, the actuation wires are configured as a closed loop as shown for actuation wire 1074″ in FIG. 38C.


The procedure to deliver the valve 1000 to the heart can be the same as or similar to any of the procedures described herein, in '572 PCT Application and/or the '305 PCT Application incorporated by reference above. For example, the valve 1000, disposed within the delivery system 1005 in an inverted configuration, can be delivered to the left atrium of the heart in the same or similar manner as described herein with respect to other embodiments and/or with reference to FIGS. 43-48 of the '305 PCT Application. With the distal end portion of the delivery sheath 1026 disposed within the left atrium of the heart, the valve 1000 can be deployed outside of the delivery sheath 1026. For example, as shown in FIG. 39, the inner sheath 1008, valve holder 1038 and tube member 1003 can be moved distally relative to the outer sheath 1026, moving or pushing the valve 1000 outside the lumen 1082 of the outer sheath 1026. In addition, or alternatively, the outer sheath 1026 can be moved or pulled proximally, leaving at least a portion of the valve 1000 disposed within the heart. In some cases, the tether 1036 coupled to the valve 1000 can be used to help pull the valve 1000 out of the lumen of the outer sheath 1026.


As described above for previous embodiments, as the outer frame 1020 becomes unconstrained by the outer sheath 1026, the outer frame 1020 can begin to revert to its expanded or uninverted configuration. The actuation wires 1075-1077 can be used to control the reversion of the outer frame 1020. More specifically, the tube member 1003 can be pulled proximally such that the actuation wires (pinned to the tube member 1003) pull the distally disposed portion of the outer frame 1020 proximally (as shown in FIG. 40) in a controlled manner and such that the reversion of the outer frame 1020 from its inverted configuration relative to the inner frame 1050 can be controlled.


In addition, in some instances, the actuation wires 1074-1077 can assist in the articulation and placement of the valve 1000 into its destination (e.g., a native annulus of an atrioventricular valve of a heart). For example, as shown in FIG. 41, the actuation wires 1074-1077 can also be used to constrain, collapse, or otherwise move the valve 1000 (e.g., radially compress the outer frame 1020 of the valve 1000) after the valve 1000 exits the outer sheath 1026 and is in its reverted, expanded or partially expanded configuration. More specifically, in this embodiment, the tube member 1003 with the actuation wires 1074-1077 pinned thereto, can be manipulated by a user to move or urge the outer frame to a more compressed configuration (as shown in FIG. 41) by pulling or moving the tube member 1003 proximally. This may be desirable, for example, to reposition the valve 1000 within the heart before fully deploying the valve 1000.


Referring back to FIG. 40, when the outer frame 1020 of the valve 1000 is disposed in its non-inverted and at least partially expanded configuration, and is in a desired positon within the heart, the inner frame 1050 can be deployed. As described above for valve 400, to decouple the inner frame 1050 from the valve holder 1038, the valve holder 1038 can be moved distally and/or the inner sheath 1008 can be moved proximally such that the valve holder 1038 is disposed outside of the lumen 1083 of the inner sheath 1008. As such, the couplers 1006 can be released from the recesses 1004 releasing or decoupling the inner frame 1050 from the valve holder 1038. In some embodiments, the tether 1036 can be pulled to help move the inner frame 1050 outside of the inner sheath 1008. When the inner frame 1050 is released from the valve holder 1038 and disposed outside the inner sheath 1008, the inner frame 1050 can assume its biased expanded configuration.


The actuation wires 1074-1077 can also be released or decoupled from the outer frame 1020 before or after the inner frame 1050 is released form the valve holder 1038. To decouple the actuation wires 1074-1077 from the outer frame 1020, one end of each of the actuation wires 1074-1077 can be unpinned or decoupled from the tubular member 1003. For example, as shown in FIG. 42, the pinning member 1078-3 (See FIG. 35) can be withdrawn proximally from groove 1084 such that the second end of the actuation wire 1077 and the second end of the actuation wire 1075 are each released or unpinned from the tube member 1003, but remain pinned by pinning members 1078-2 and 1078-1, respectively. Similarly, the pinning member 1078-4 (see FIG. 35) can be withdrawn proximally from groove 1084 such that the second end of the actuation wire 1074 and the second end of actuation wire 1076 can each be released or unpinned from the tube member 1003, but remain pinned by pinning members 1078-2 and 1078-1, respectively. With one end of each of the actuation wires 1075-1077 coupled to the tube member 1003 (via pinning members 1078-1 and 1078-2 in this example), the tube member 1003 can be pulled proximally, which in turn will pull the opposite ends of the actuation wires 1074-1077 out of the loops 1062 of outer frame 1020. Thus with the actuation wires 1074-1077 detached from the outer frame 1020, the outer frame can assume a biased expanded or partially expanded configuration.


Although in the above example, the pinning members 1078-3 and 1078-4 are shown withdrawn to release the ends of the actuation wires 1074-1077, alternatively, the pinning members 1078-1 and 1078-2 can be withdrawn leaving the actuation wires 1074-1077 pinned by pinning members 1078-3 and 1078-4. Further, the actuation wires 1074-1077 can be decoupled from the outer frame 1020 at any suitable sequence or time period within the procedure. For example, in some instances it may be desirable for the actuation wires 1074-1077 to be released after the valve 1000 has at least partially exited the delivery sheath 1026 but before the valve 1000 is seated within the native annulus of the atrioventricular valve. In other instances, for example, the actuation wires 1074-1077 can be released after the valve 1000 has at least partially exited the outer delivery sheath 1026 and after the valve 1000 is seated within the native annulus of the atrioventricular valve.



FIG. 43 is a flowchart illustrating a method of delivering and deploying a prosthetic valve within a heart. The method includes at 1300, inserting a distal end of a delivery sheath through an apical region of a heart and into an atrium of the heart. The delivery sheath has a prosthetic heart valve disposed within a lumen of the delivery sheath. The prosthetic heart valve includes an outer frame and an inner frame coupled to the outer frame. The outer frame is movable between a first position relative to the inner frame and a second position relative to the inner frame in which the outer frame is inverted relative to the inner frame. The prosthetic valve is disposed within the lumen of the delivery sheath with the outer frame in the second position relative to the inner frame during the inserting. At 1302, the prosthetic heart valve is moved distally out of the delivery sheath. At 1304, the outer frame of the prosthetic heart valve is transitioned to the first position relative to the inner frame such that the prosthetic heart valve at least partially assumes a biased expanded configuration. At 1306, the prosthetic heart valve is positioned within an annulus of the heart.



FIG. 44 is a flowchart illustrating a method of delivering and deploying a prosthetic valve within a heart. At 1400 a distal end portion of a delivery sheath is inserted into an atrium of a heart. The delivery sheath has a prosthetic heart valve disposed within a lumen of the delivery sheath. The prosthetic heart valve includes an outer frame and an inner frame coupled to the outer frame. The outer frame is movable between a first position relative to the inner frame and a second position relative to the inner frame in which the outer frame is inverted relative to the inner frame. The prosthetic heart valve is disposed within the lumen of the delivery sheath with the outer frame in the second position relative to the inner frame and disposed at least partially axially proximal to the inner frame during the inserting. At 1402, the prosthetic heart valve is moved distally out of the delivery sheath. At 1404 the outer frame of the prosthetic heart valve is transitioned to the first position relative to the inner frame such that the prosthetic heart valve at least partially assumes a biased expanded configuration. At 1406, the prosthetic heart valve is positioned within an annulus of the heart.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above


Where schematics and/or embodiments described above indicate certain components arranged in certain orientations or positions, the arrangement of components may be modified. While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components, and/or features of the different embodiments described.


For example, although not specifically described for each embodiment, any of the embodiments of a delivery system can include a dilator device or member such as balloon dilator member. Further, the prosthetic heart valves described herein can be secured to a heart using an epicardial pad device as described with respect to FIGS. 43-48 and 72 of the '305 PCT Application. Moreover, although not shown for each embodiment, any of the embodiments of a delivery device or system can include a valve holder or valve pusher configured to urge the valve out the distal end of the delivery sheath during delivery of the valve.


Further, although not shown, any of the embodiments of a delivery device or system can include a handle or handle assembly to which the various delivery sheaths and components can be operatively coupled and which a user (e.g., physician) can grasp and use to manipulate the delivery device or system.


In addition, the systems and methods described herein can also be adapted for use with a prosthetic tricuspid valve. For example, in such a case, a procedural catheter can be inserted into the right ventricle of the heart, and the delivery sheath delivered to the right atrium of the heart either directly (transatrial), or via the jugular or femoral vein.


In addition, the systems and methods described herein can also be adapted for use with a prosthetic tricuspid valve. For example, in such a case, a delivery sheath can be delivered to the heart transapically.

Claims
  • 1. A method of delivering a prosthetic heart valve to an annulus of a heart, the method comprising: inserting a distal end portion of a delivery sheath into an atrium of the heart, the delivery sheath having the prosthetic heart valve disposed within a lumen of the delivery sheath, the prosthetic heart valve including an outer frame and an inner frame coupled to the outer frame, the outer frame being disposed distal to the inner frame when the prosthetic heart valve is disposed within the lumen of the delivery sheath;moving the prosthetic heart valve distally out of the delivery sheath so that the outer frame begins to deploy from the delivery sheath prior to the inner frame deploying from the delivery sheath;causing the outer frame of the prosthetic heart valve to begin to transition from an inverted position in which the outer frame is disposed distal to the inner frame to a reverted position in which the outer frame at least partially surrounds the inner frame; andpositioning the prosthetic heart valve within the annulus of the heart,wherein as the prosthetic heart valve transitions from the inverted position to the reverted position,couplers of the inner frame are received within recesses of a valve holder within the delivery sheath to prevent the inner frame from moving axially relative to the valve holder;wherein causing the outer frame of the prosthetic heart valve to begin to transition from the inverted position to the reverted position includes pulling an actuation wire coupled to the outer frame in a proximal direction while the couplers of the inner frame are received within the recesses of the valve holder.
  • 2. The method of claim 1, wherein the couplers of the inner frame are “T”-shaped.
  • 3. The method of claim 1, further comprising: after causing the outer frame of the prosthetic heart valve to begin to transition from the inverted position to the reverted position, fully deploying the inner frame from the delivery sheath.
  • 4. The method of claim 3, wherein an inner diameter of the delivery sheath is sized such that, when the valve holder and the prosthetic heart valve are disposed therein, the couplers are unable to exit the recesses.
  • 5. The method of claim 4, wherein fully deploying the inner frame from the delivery sheath includes allowing the couplers to exit the recesses of the valve holder when the recesses are positioned distal to the distal end portion of the delivery sheath.
  • 6. The method of claim 1, wherein an inner sheath is movably positioned within the delivery sheath, and the valve holder is movably positioned within the inner sheath.
  • 7. The method of claim 1, wherein the actuation wire includes a first actuation wire releasably coupled to a first portion of the outer frame, and a second actuation wire releasably coupled to a second portion of the outer frame.
  • 8. The method of claim 7, wherein the first actuation wire is threaded circumferentially through a first group of loops on the first portion of the outer frame, and the second actuation wire is threaded circumferentially through a second group of loops on the second portion of the outer frame.
  • 9. The method of claim 1, further comprising decoupling the actuation wire from the outer frame after the outer frame has transitioned to the reverted position.
  • 10. The method of claim 9, wherein decoupling the actuation wire from the outer frame is performed while a portion of the prosthetic heart valve is still disposed within the delivery sheath.
  • 11. The method of claim 9, wherein decoupling the actuation wire from the outer frame is performed after the prosthetic heart valve is seated within the annulus of the heart.
  • 12. The method of claim 1, wherein inserting the distal end portion of the delivery sheath into the atrium of the heart includes piercing an atrial septum, and the atrium is a left atrium.
  • 13. The method of claim 12, wherein the annulus of the heart is a mitral valve annulus.
  • 14. The method of claim 1, wherein inserting the distal end portion of the delivery sheath into the atrium of the heart is performed via a transjugular or transfemoral approach.
  • 15. The method of claim 14, wherein the atrium of the heart is a right atrium, and the annulus of the heart is a tricuspid valve annulus.
  • 16. The method of claim 1, wherein the prosthetic heart valve includes a tether positioned within a tether coupling portion of the inner frame.
  • 17. The method of claim 16, further comprising positioning the tether so that it passes through the annulus of the heart, through a ventricle of the heart, and out a puncture site at an apex of the heart.
  • 18. The method of claim 17, wherein moving the prosthetic heart valve distally out of the delivery sheath is performed, at least in part, by pulling on the tether.
  • 19. The method of claim 17, wherein moving the prosthetic heart valve distally out of the delivery sheath is performed, at least in part, by pushing with the valve holder while pulling on the tether.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 16/310,661, filed Dec. 17, 2018, which is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/US2017/039972 filed Jun. 29, 2017, published in English, which claims priority to and the benefit of U.S. Provisional Application No. 62/356,828, filed Jun. 30, 2016, entitled “Prosthetic Heart Valves and Apparatus and Methods for Delivery of Same,” the disclosures of which are all incorporated herein by reference in their entireties.

US Referenced Citations (785)
Number Name Date Kind
2697008 Ross Dec 1954 A
3409013 Berry Nov 1968 A
3472230 Fogarty et al. Oct 1969 A
3476101 Ross Nov 1969 A
3548417 Kischer Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3976079 Samuels et al. Aug 1976 A
4003382 Dyke Jan 1977 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4073438 Meyer Feb 1978 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4585705 Broderick et al. Apr 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4626255 Reichart et al. Dec 1986 A
4638886 Marietta Jan 1987 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4824180 Levrai Apr 1989 A
4829990 Thuroff et al. May 1989 A
4830117 Capasso May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4923013 De Gennaro May 1990 A
4960424 Grooters Oct 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
4996873 Takeuchi Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5035706 Giantureo et al. Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5064435 Porter Nov 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5201880 Wright et al. Apr 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5306296 Wright et al. Apr 1994 A
5332402 Teitelbaum Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5344442 Deac Sep 1994 A
5360444 Kusuhara Nov 1994 A
5364407 Poll Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554184 Machiraju Sep 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5607462 Imran Mar 1997 A
5607464 Frescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5639274 Fischell et al. Jun 1997 A
5662704 Gross Sep 1997 A
5665115 Cragg Sep 1997 A
5674279 Wright et al. Oct 1997 A
5697905 d'Ambrosio Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735842 Krueger et al. Apr 1998 A
5741333 Frid Apr 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5792179 Sideris Aug 1998 A
5800508 Goicoechea et al. Sep 1998 A
5833673 Ockuly et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5904697 Gifford, III et al. May 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968052 Sullivan, III et al. Oct 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5993481 Marcade et al. Nov 1999 A
6027525 Suh et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6063112 Sgro May 2000 A
6077214 Mortier et al. Jun 2000 A
6099508 Bousquet Aug 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr. et al. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6350277 Kocur Feb 2002 B1
6358277 Duran Mar 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6537198 Vidlund et al. Mar 2003 B1
6540782 Snyders Apr 2003 B1
6569196 Vesely May 2003 B1
6575252 Reed Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6622730 Ekvall et al. Sep 2003 B2
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6648077 Hoffman Nov 2003 B2
6648921 Anderson et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6669724 Park et al. Dec 2003 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6740105 Yodfat et al. May 2004 B2
6746401 Panescu Jun 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6797002 Spence et al. Sep 2004 B2
6810882 Langberg et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6854668 Wancho et al. Feb 2005 B2
6855144 Lesh Feb 2005 B2
6858001 Aboul-Hosn Feb 2005 B1
6890353 Cohn et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908424 Mortier et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
6945996 Sedransk Sep 2005 B2
6955175 Stevens et al. Oct 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6976543 Fischer Dec 2005 B1
6997950 Chawla Feb 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7044905 Vidlund et al. May 2006 B2
7060021 Wilk Jun 2006 B1
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7108717 Freidberg Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7141064 Scott et al. Nov 2006 B2
7175656 Khairkhahan Feb 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7275604 Wall Oct 2007 B1
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316706 Bloom et al. Jan 2008 B2
7318278 Zhang et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329278 Seguin et al. Feb 2008 B2
7331991 Kheradvar et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7374571 Pease et al. May 2008 B2
7377941 Rhee et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7381218 Schreck Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7416554 Lam et al. Aug 2008 B2
7422072 Dade Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470285 Nugent et al. Dec 2008 B2
7500989 Solem et al. Mar 2009 B2
7503931 Kowalsky et al. Mar 2009 B2
7510572 Gabbay Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7513908 Lattouf Apr 2009 B2
7524330 Berreklouw Apr 2009 B2
7527647 Spence May 2009 B2
7534260 Lattouf May 2009 B2
7556646 Yang et al. Jul 2009 B2
7579381 Dove Aug 2009 B2
7585321 Cribier Sep 2009 B2
7591847 Navia et al. Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7632304 Park Dec 2009 B2
7632308 Loulmet Dec 2009 B2
7635386 Gammie Dec 2009 B1
7674222 Nikolic et al. Mar 2010 B2
7674286 Alfieri et al. Mar 2010 B2
7695510 Bloom et al. Apr 2010 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7766961 Patel et al. Aug 2010 B2
7789909 Andersen et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7803184 McGuckin, Jr. et al. Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7806928 Rowe et al. Oct 2010 B2
7837727 Goetz et al. Nov 2010 B2
7854762 Speziali et al. Dec 2010 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7901454 Kapadia et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7931630 Nishtala et al. Apr 2011 B2
7942928 Webler et al. May 2011 B2
7955247 Levine et al. Jun 2011 B2
7955385 Crittenden Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7988727 Santamore et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
8007992 Tian et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8043368 Crabtree Oct 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8052751 Aklog et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8152821 Gambale et al. Apr 2012 B2
8157810 Case et al. Apr 2012 B2
8167932 Bourang et al. May 2012 B2
8167934 Styrc et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308796 Lashinski et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8353955 Styrc et al. Jan 2013 B2
RE44075 Williamson et al. Mar 2013 E
8449599 Chau et al. May 2013 B2
8454656 Tuval Jun 2013 B2
8470028 Thornton et al. Jun 2013 B2
8480730 Maurer et al. Jul 2013 B2
8486138 Vesely Jul 2013 B2
8506623 Wilson et al. Aug 2013 B2
8506624 Vidlund et al. Aug 2013 B2
8578705 Sindano et al. Nov 2013 B2
8579913 Nielsen Nov 2013 B2
8591573 Barone Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8597347 Maurer et al. Dec 2013 B2
8685086 Navia et al. Apr 2014 B2
8790394 Miller et al. Jul 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8900214 Nance et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8932342 McHugo et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8945208 Jimenez et al. Feb 2015 B2
8956407 Macoviak et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986376 Solem Mar 2015 B2
9011522 Annest Apr 2015 B2
9023099 Duffy et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9039759 Alkhatib et al. May 2015 B2
9078645 Conklin et al. Jul 2015 B2
9078749 Lutter et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9149357 Seguin Oct 2015 B2
9161837 Kapadia Oct 2015 B2
9168137 Subramanian et al. Oct 2015 B2
9232995 Kovalsky et al. Jan 2016 B2
9232998 Wilson et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9241702 Maisano et al. Jan 2016 B2
9254192 Lutter et al. Feb 2016 B2
9265608 Miller et al. Feb 2016 B2
9289295 Aklog et al. Mar 2016 B2
9289297 Wilson et al. Mar 2016 B2
9345573 Nyuli et al. May 2016 B2
9480557 Pellegrini et al. Nov 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9526611 Tegels et al. Dec 2016 B2
9597181 Christianson et al. Mar 2017 B2
9610159 Christianson et al. Apr 2017 B2
9675454 Vidlund et al. Jun 2017 B2
9730792 Lutter et al. Aug 2017 B2
9827092 Vidlund et al. Nov 2017 B2
9833315 Vidlund et al. Dec 2017 B2
9867700 Bakis et al. Jan 2018 B2
9883941 Hastings et al. Feb 2018 B2
9895221 Vidlund Feb 2018 B2
9986993 Vidlund et al. Jun 2018 B2
10327894 Vidlund et al. Jun 2019 B2
20010018611 Solem et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025171 Mortier et al. Sep 2001 A1
20020010427 Scarfone et al. Jan 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020139056 Finnell Oct 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020161377 Rabkin Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20020183827 Derus et al. Dec 2002 A1
20030010509 Hoffman Jan 2003 A1
20030036698 Kohler et al. Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030078652 Sutherland Apr 2003 A1
20030100939 Yodat et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040064014 Melvin et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040093075 Kuehne May 2004 A1
20040097865 Anderson et al. May 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040163828 Silverstein et al. Aug 2004 A1
20040181239 Dorn et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20050004652 van der Burg et al. Jan 2005 A1
20050004666 Alfieri et al. Jan 2005 A1
20050075727 Wheatley Apr 2005 A1
20050080402 Santamore et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050096498 Houser et al. May 2005 A1
20050107661 Lau et al. May 2005 A1
20050113798 Slater et al. May 2005 A1
20050113810 Houser et al. May 2005 A1
20050113811 Houser et al. May 2005 A1
20050119519 Girard et al. Jun 2005 A9
20050121206 Dolan Jun 2005 A1
20050125012 Houser et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050256567 Lim et al. Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060042803 Gallaher Mar 2006 A1
20060047338 Jenson et al. Mar 2006 A1
20060052868 Mortier et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060094983 Burbank et al. May 2006 A1
20060129025 Levine et al. Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060161040 McCarthy et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060247491 Vidlund et al. Nov 2006 A1
20060252984 Rahdert et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070005231 Seguchi Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070027535 Purdy et al. Feb 2007 A1
20070038291 Case et al. Feb 2007 A1
20070050020 Spence Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070073387 Forster et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070083076 Lichtenstein Apr 2007 A1
20070083259 Bloom et al. Apr 2007 A1
20070088431 Bourang et al. Apr 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070112355 Salahieh et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118210 Pinchuk May 2007 A1
20070118213 Loulmet May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070161846 Nikolic et al. Jul 2007 A1
20070162048 Quinn et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070168024 Khairkhahan Jul 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070185571 Kapadia et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070215362 Rodgers Sep 2007 A1
20070221388 Johnson Sep 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070256843 Pahila Nov 2007 A1
20070265658 Nelson et al. Nov 2007 A1
20070267202 Mariller Nov 2007 A1
20070270932 Headley et al. Nov 2007 A1
20070270943 Solem et al. Nov 2007 A1
20070293944 Spenser et al. Dec 2007 A1
20080009940 Cribier Jan 2008 A1
20080033543 Gurskis et al. Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082163 Woo Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080091264 Machold et al. Apr 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125861 Webler et al. May 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183203 Fitzgerald et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080195199 Kheradvar et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080243150 Starksen et al. Oct 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288060 Kaye et al. Nov 2008 A1
20080293996 Evans et al. Nov 2008 A1
20090005863 Goetz Jan 2009 A1
20090048668 Wilson et al. Feb 2009 A1
20090054968 Bonhoeffer et al. Feb 2009 A1
20090054974 McGuckin, Jr. et al. Feb 2009 A1
20090062908 Bonhoeffer et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090082619 De Marchena Mar 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099410 De Marchena Apr 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090131849 Maurer et al. May 2009 A1
20090132035 Roth et al. May 2009 A1
20090137861 Goldberg et al. May 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090164005 Dove et al. Jun 2009 A1
20090171432 Von Segesser et al. Jul 2009 A1
20090171447 Von Segesser et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090224529 Gill Sep 2009 A1
20090234318 Loulmet et al. Sep 2009 A1
20090234435 Johnson et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090248149 Gabbay Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090292262 Adams et al. Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090326575 Galdonik et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100021382 Dorshow et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100161041 Maisano et al. Jun 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100179641 Ryan et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100185278 Schankereli Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100192402 Yamaguchi et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100210899 Schankereli Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249489 Jarvik Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100256754 Styrc Oct 2010 A1
20100280589 Styrc Nov 2010 A1
20100280604 Zipory et al. Nov 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298755 McNamara et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015616 Straubinger et al. Jan 2011 A1
20110015728 Jimenez et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110029072 Gabbay Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137408 Bergheim Jun 2011 A1
20110208283 Rust Aug 2011 A1
20110218619 Benichou et al. Sep 2011 A1
20110224655 Asirvatham et al. Sep 2011 A1
20110224678 Gabbay Sep 2011 A1
20110224728 Martin et al. Sep 2011 A1
20110224784 Quinn Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110288637 De Marchena Nov 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120016468 Robin et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120053686 McNamara et al. Mar 2012 A1
20120059487 Cunanan et al. Mar 2012 A1
20120089171 Hastings et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120116351 Chomas et al. May 2012 A1
20120123529 Levi et al. May 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120226348 Lane et al. Sep 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120289945 Segermark Nov 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130123898 Tung et al. May 2013 A1
20130131788 Quadri et al. May 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130184811 Rowe et al. Jul 2013 A1
20130190860 Sundt, III Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197622 Mitra et al. Aug 2013 A1
20130197629 Gainor et al. Aug 2013 A1
20130226288 Goldwasser et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130274874 Hammer Oct 2013 A1
20130282101 Eidenschink et al. Oct 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130325041 Annest et al. Dec 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130338752 Geusen et al. Dec 2013 A1
20140046433 Kovalsky Feb 2014 A1
20140081323 Hawkins Mar 2014 A1
20140094918 Vishnubholta et al. Apr 2014 A1
20140142691 Pouletty May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140243965 Benson Aug 2014 A1
20140243966 Garde et al. Aug 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140288639 Gainor Sep 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296972 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303718 Tegels et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324161 Tegels et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140331475 Duffy et al. Nov 2014 A1
20140343670 Bakis et al. Nov 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364942 Straubinger et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140371844 Dale Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150005874 Vidlund et al. Jan 2015 A1
20150011821 Gorman et al. Jan 2015 A1
20150025553 Del Nido et al. Jan 2015 A1
20150057705 Vidlund Feb 2015 A1
20150073542 Heldman Mar 2015 A1
20150073545 Braido Mar 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150105856 Rowe et al. Apr 2015 A1
20150119936 Gilmore et al. Apr 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150127093 Hosmer et al. May 2015 A1
20150127096 Rowe et al. May 2015 A1
20150134050 Solem et al. May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150142101 Coleman et al. May 2015 A1
20150142103 Vidlund May 2015 A1
20150142104 Braido May 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150196688 James Jul 2015 A1
20150202044 Chau et al. Jul 2015 A1
20150216653 Freudenthal Aug 2015 A1
20150216660 Pintor Aug 2015 A1
20150223820 Olson Aug 2015 A1
20150223934 Vidlund et al. Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238729 Jenson et al. Aug 2015 A1
20150272731 Racchini et al. Oct 2015 A1
20150305860 Wang et al. Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150305868 Lutter et al. Oct 2015 A1
20150327995 Morin et al. Nov 2015 A1
20150328001 McLean Nov 2015 A1
20150335424 McLean Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150342717 O'Donnell et al. Dec 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20160000562 Siegel Jan 2016 A1
20160008131 Christianson et al. Jan 2016 A1
20160067042 Murad et al. Mar 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106537 Christianson et al. Apr 2016 A1
20160113764 Sheahan Apr 2016 A1
20160143736 Vidlund et al. May 2016 A1
20160151155 Lutter et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
20160242902 Morriss Aug 2016 A1
20160262879 Meiri et al. Sep 2016 A1
20160262881 Schankereli et al. Sep 2016 A1
20160278955 Liu et al. Sep 2016 A1
20160317290 Chau Nov 2016 A1
20160324635 Vidlund et al. Nov 2016 A1
20160331527 Vidlund et al. Nov 2016 A1
20160346086 Solem Dec 2016 A1
20160367365 Conklin Dec 2016 A1
20160367367 Maisano et al. Dec 2016 A1
20160367368 Vidlund et al. Dec 2016 A1
20170007970 Baruch et al. Jan 2017 A1
20170100248 Tegels et al. Apr 2017 A1
20170128208 Christianson et al. May 2017 A1
20170181854 Christianson et al. Jun 2017 A1
20170189174 Braido et al. Jul 2017 A1
20170196688 Christianson et al. Jul 2017 A1
20170252153 Chau et al. Sep 2017 A1
20170266001 Vidlund et al. Sep 2017 A1
20170281343 Christianson et al. Oct 2017 A1
20170312076 Lutter et al. Nov 2017 A1
20170312077 Vidlund et al. Nov 2017 A1
20170319333 Tegels et al. Nov 2017 A1
20170325955 Richter et al. Nov 2017 A1
20180028314 Ekvall et al. Feb 2018 A1
20180078368 Vidlund et al. Mar 2018 A1
20180078370 Kovalsky et al. Mar 2018 A1
20180147055 Vidlund et al. May 2018 A1
Foreign Referenced Citations (153)
Number Date Country
1486161 Mar 2004 CN
1961845 May 2007 CN
2902226 May 2007 CN
101146484 Mar 2008 CN
101180010 May 2008 CN
101686858 Mar 2010 CN
101861134 Oct 2010 CN
101180010 Dec 2010 CN
101984938 Mar 2011 CN
102639179 Aug 2012 CN
102791223 Nov 2012 CN
102858276 Jan 2013 CN
102869317 Jan 2013 CN
102869318 Jan 2013 CN
102869321 Jan 2013 CN
103220993 Jul 2013 CN
103826569 May 2014 CN
103974674 Aug 2014 CN
104055602 Sep 2014 CN
105188612 Dec 2015 CN
105208973 Dec 2015 CN
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049815 Apr 2002 DE
102006052564 Dec 2007 DE
102006052710 May 2008 DE
102007043830 Apr 2009 DE
102007043831 Apr 2009 DE
0103546 Mar 1984 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1469797 Oct 2004 EP
1469797 Nov 2005 EP
2111800 Oct 2009 EP
2193762 Jun 2010 EP
2278944 Feb 2011 EP
2747707 Jul 2014 EP
2918248 Sep 2015 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2003505146 Feb 2003 JP
2005515836 Jun 2005 JP
2009514628 Apr 2009 JP
2009519783 May 2009 JP
2009530070 Aug 2009 JP
2010518947 Jun 2010 JP
2013512765 Apr 2013 JP
2014524760 Sep 2014 JP
2014533190 Dec 2014 JP
1017275 Aug 2002 NL
1271508 Nov 1986 SU
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9829057 Jul 1998 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
2000018333 Apr 2000 WO
2000030550 Jun 2000 WO
200041652 Jul 2000 WO
200047139 Aug 2000 WO
2001035878 May 2001 WO
2001049213 Jul 2001 WO
0154625 Aug 2001 WO
2001054624 Aug 2001 WO
2001056512 Aug 2001 WO
2001061289 Aug 2001 WO
0176510 Oct 2001 WO
200176510 Oct 2001 WO
0182840 Nov 2001 WO
2001082840 Nov 2001 WO
2002004757 Jan 2002 WO
0222054 Mar 2002 WO
2002022054 Mar 2002 WO
2002028321 Apr 2002 WO
0236048 May 2002 WO
2002041789 May 2002 WO
0243620 Jun 2002 WO
0249540 Jun 2002 WO
2002043620 Jun 2002 WO
2002049540 Jun 2002 WO
02076348 Oct 2002 WO
2003003943 Jan 2003 WO
2003030776 Apr 2003 WO
2003047468 Jun 2003 WO
2003049619 Jun 2003 WO
2004019825 Mar 2004 WO
2005102181 Nov 2005 WO
2006014233 Feb 2006 WO
2006034008 Mar 2006 WO
2006064490 Jun 2006 WO
2006070372 Jul 2006 WO
2006105009 Oct 2006 WO
2006113906 Oct 2006 WO
2006127756 Nov 2006 WO
2007081412 Jul 2007 WO
2007100408 Sep 2007 WO
2008005405 Jan 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008125906 Oct 2008 WO
2008147964 Dec 2008 WO
2009024859 Feb 2009 WO
2009026563 Feb 2009 WO
2009045338 Apr 2009 WO
2009132187 Oct 2009 WO
2010090878 Aug 2010 WO
2010098857 Sep 2010 WO
2010121076 Oct 2010 WO
2011017440 Feb 2011 WO
2011022658 Feb 2011 WO
2011069048 Jun 2011 WO
2011072084 Jun 2011 WO
2011106735 Sep 2011 WO
2011109813 Sep 2011 WO
2011159342 Dec 2011 WO
2011163275 Dec 2011 WO
2012027487 Mar 2012 WO
2012036742 Mar 2012 WO
2012095116 Jul 2012 WO
2012158837 Nov 2012 WO
2012177942 Dec 2012 WO
2013028387 Feb 2013 WO
2013045262 Apr 2013 WO
2013059747 Apr 2013 WO
2013028387 May 2013 WO
2013096411 Jun 2013 WO
2013175468 Nov 2013 WO
2014121280 Aug 2014 WO
2014144937 Sep 2014 WO
2014162306 Oct 2014 WO
2014189974 Nov 2014 WO
2014210124 Dec 2014 WO
2015051430 Apr 2015 WO
2015058039 Apr 2015 WO
2015063580 May 2015 WO
2015065646 May 2015 WO
2015120122 Aug 2015 WO
2015138306 Sep 2015 WO
2015173609 Nov 2015 WO
2016112085 Jul 2016 WO
2016126942 Aug 2016 WO
2016168609 Oct 2016 WO
2016196933 Dec 2016 WO
2017096157 Jun 2017 WO
2017132008 Aug 2017 WO
2017218375 Dec 2017 WO
2018005779 Jan 2018 WO
2018013515 Jan 2018 WO
Non-Patent Literature Citations (53)
Entry
US 9,155,620 B2, 10/2015, Gross et al. (withdrawn)
International Search Report (dated Sep. 20, 2017).
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenos's,” British Heart Journal, Jan. 1987, vol. 57, No. 1, pp. 51-53.
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 1989, 3:305-311.
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6):1310-1314.
H. R. Andersen et al., “Transluminal Implantation of Artificial Heart Valves: Description of a New Expandable Aortic Valve and Initial Results with Implantation by Catheter Technique in Closed Chest Pigs,” European Heart Journal, 1992, Issue 5, vol. 13, pp. 704-708.
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346.
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2):102-106.
Robert C. Ashton Jr., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and in Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, Issue/vol. 112, pp. 979-983.
Benchimol, A. et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977, 273(1):55-62.
G. M. Bernacca, et al., “Polyurethane Heart Valves: Fatigue Failure, Calcification, and Polyurethane Structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, Issue 3, vol. 34, pp. 371-379.
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves: An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365.
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration In Dilated Hearts,” Interactive Cardiovascular and Thoracic Surgery, 2005, 4:475-477.
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages.
Choo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsava,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415.
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012.
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670.
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996, 3 pages.
Gray, H., The Aorta, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://www.bartleby.com/107/142.html>, Dec. 10, 2012, 5 pages.
Gray, H., The Heart, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://education.yahoo.com/reference/gray/subjects/subject/138>, Aug. 10, 2012, 9 pages.
Greenhalgh, E. S., “Design and characterization of a biomimetic prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages.
Inoue, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402.
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150.
Knudsen, L. L. et al., “Catheter-implanted prosthetic heart valves. Transluminal catheter implantation of a new expandable artificial heart valve in the descending thoracic aorta in isolated vessels and closed chest pigs,” The International Journal of Artificial Organs, 1993, 16(5):253-262.
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-ar-teries-gets-a-faili . . . ,>, published Jan. 3, 1991,retrieved from the Internet on Feb. 5, 2016, 3 pages.
Lawrence, D. D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 1987, 163:357-360.
Lozonschi, L., et al. “Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, 140(2):422-426 (Aug. 2010) published online Mar. 12, 2010, 1 page.
Lutter, Georg, et al., Mitral valved stent implantation, European Journal of Cardio-Thoracic Surgery, 2010, vol. 38, pp. 350-355.
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2): 194-198.
Moazami, N. et al., “Transluminal aortic valve placement: A feasibility study with a newly designed collapsible aortic valve,” ASAIO Journal, Sep./ Oct. 1996, 42(5):M381-M385.
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Symposium: Small Animal Proceedings, 2011, pp. 311-312.
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
Porstmann, W. et al., “Der Verschluß des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203.
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966, 196( 11 ): 173-174.
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367.
Reul, H. et al., “The Geomety of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191.
Rosch, J. et al., “The Birth, Early Years and Future of Interventional Radiology,” J Vasc Interv Radiol., Jul. 2003, 4:841-853.
Ross, D. N., “Aortic Valve Surgery,” Guy's Hospital, London, 1968, pp. 192-197.
Rousseau, E. P. M. et al., “A Mechanical Analysis of the Closed Hancock Heart Valve Prosthesis,” Journal of Biomechanics, 1998, 21(7):545-562.
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309.
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538.
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989.
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/.about.database/MEMS/sma.html>, Nov. 14, 2012, 3 pages.
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440.
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187.
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, pp. 227-230.
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850.
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, ButtenNorths 1986.
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, Mar. 20, 1983, pp. 111-150, American Chemical Society.
Search Report from 1st Chinese Office Action for Application No. 201780052626.9 dated Jun. 2, 2020; 4 pages.
Bernacca, G. M. et al., “Polyurethane heart valves: Fatigue failure, calcification, and polyurethane structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, 34(3):371-379.
Uchida, B. T. et al., “Modifications of Gianturco Expandable Wire Stents,” Am. J. Roentgenol., May 1988, 150 (5):1185-1187.
Related Publications (1)
Number Date Country
20210259837 A1 Aug 2021 US
Provisional Applications (1)
Number Date Country
62356828 Jun 2016 US
Continuations (1)
Number Date Country
Parent 16310661 US
Child 17319136 US