Prosthetic heart valves with tether coupling features

Information

  • Patent Grant
  • 11191639
  • Patent Number
    11,191,639
  • Date Filed
    Thursday, August 23, 2018
    5 years ago
  • Date Issued
    Tuesday, December 7, 2021
    2 years ago
Abstract
Apparatus and methods are described herein for various embodiments of a prosthetic heart valve that have a tether securement feature that can be used to secure an anchoring tether to the prosthetic heart valve such that the tether can maintain the prosthetic heart valve in a desired position within the heart under high tensile forces applied to the tether during functioning of the heart. In some embodiments the tether securement feature can also include an engagement member that can be used to help position the prosthetic heart valve within a heart. Such an engagement member can be matingly engaged by a positioning device that can be used to help in radial positioning of the prosthetic heart valve during delivery and deployment of the prosthetic heart valve.
Description
BACKGROUND

Embodiments are described herein that relate to devices and methods for use in the delivery and deployment of prosthetic heart valves, and particularly to devices and methods for prosthetic heart valves having a tether securement portion to secure an anchoring tether to the prosthetic heart valve.


Prosthetic heart valves can pose particular challenges for delivery and deployment within a heart. Valvular heart disease, and specifically, aortic and mitral valve disease is a significant health issue in the United States (US); annually approximately 90,000 valve replacements are conducted in the US. Traditional valve replacement surgery involving the orthotopic replacement of a heart valve is considered an “open heart” surgical procedure. Briefly, the procedure necessitates surgical opening of the thorax, the initiation of extra-corporeal circulation with a heart-lung machine, stopping and opening the heart, excision and replacement of the diseased valve, and re-starting of the heart. While valve replacement surgery typically carries a 1-4% mortality risk in otherwise healthy persons, a significantly higher morbidity is associated to the procedure largely due to the necessity for extra-corporeal circulation. Further, open heart surgery is often poorly tolerated in elderly patients. Thus elimination of the extra-corporeal component of the procedure could result in reduction in morbidities and cost of valve replacement therapies could be significantly reduced.


While replacement of the aortic valve in a transcatheter manner is the subject of intense investigation, lesser attention has been focused on the mitral valve. This is in part reflective of the greater level of complexity associated to the native mitral valve apparatus, and thus, a greater level of difficulty with regards to inserting and anchoring the replacement prosthesis. A need exists for delivery devices and methods for transcatheter mitral valve replacements.


Some known delivery methods include delivering a prosthetic mitral valve through an apical puncture site. In such a procedure, the valve is placed in a compressed configuration within a lumen of a delivery catheter of, for example, 34-36 Fr (i.e. an outer diameter of about 11-12 mm). Delivery of a prosthetic valve to the atrium of the heart can be accomplished, for example, via a transfemoral approach, transatrially directly into the left atrium of the heart or via a jugular approach. After the prosthetic heart valve has been deployed, various known anchoring techniques have been used. For example, some prosthetic heart valves are anchored within the heart using anchoring mechanisms attached to the valve, such as barbs, or other features that can engage surrounding tissue in the heart and maintain the prosthetic valve in a desired position within the heart. Some known anchoring techniques include the use of an anchoring tether that is attached to the valve and anchored to a location on the heart such as an interior or exterior wall of the heart.


A need exists for improved techniques for securing an anchoring tether to a prosthetic heart valve that can provide for a secure attachment of the anchoring tether to the valve and also provide for maintaining the prosthetic heart valve in a desired position in the heart during normal heart functioning. A need also exists for devices and methods for aiding in the delivery and positioning of a prosthetic heart valve within a heart


SUMMARY

Apparatus and methods are described herein for various embodiments of a prosthetic heart valve that have a tether securement feature that can be used to secure an anchoring tether to the prosthetic heart valve such that the tether can maintain the prosthetic heart valve in a desired position within the heart under high tensile forces applied to the tether during functioning of the heart. In some embodiments the tether securement feature can also include an engagement member that can be used to help position the prosthetic heart valve within a heart. Such an engagement member can be matingly engaged by a positioning device that can be used to help in radial positioning of the prosthetic heart valve during delivery and deployment of the prosthetic heart valve.





BRIEF DESCRIPTION OF THE FIGURES


FIG. 1 is a schematic illustration of a prosthetic heart valve, according to an embodiment.



FIGS. 2A and 2B are each a schematic illustration of a portion of the prosthetic heart valve of FIG. 1 and a positioning device.



FIGS. 3-5 are front, bottom, and top views of a prosthetic heart valve according to an embodiment.



FIG. 6 is an opened and flattened view of the inner frame of the prosthetic heart valve of FIGS. 3-5, in an unexpanded configuration.



FIGS. 7 and 8 are side and bottom views, respectively, of the inner frame of FIG. 6 in an expanded configuration.



FIG. 9 is an opened and flattened view of the outer frame of the valve of FIGS. 3-5, in an unexpanded configuration.



FIGS. 10 and 11 are side and top views, respectively, of the outer frame of FIG. 9 in an expanded configuration.



FIGS. 12-14 are side, front, and top views of an assembly of the inner frame of FIGS. 6-8 and the outer frame of FIGS. 9-11.



FIG. 15 is a side perspective view of an assembly of an inner frame and an outer frame shown in a biased expanded configuration, according to an embodiment.



FIG. 16 is a side perspective view of the assembly of FIG. 15 with the outer frame shown inverted.



FIG. 17 is a side view of the assembly of FIG. 16 shown in a collapsed configuration within a lumen of a delivery sheath.



FIG. 18 is a side view of the assembly of FIG. 17 shown in a first partially deployed configuration.



FIG. 19 is a side view of the assembly of FIG. 17 shown in a second partially deployed configuration.



FIG. 20 is a side view of the assembly of FIG. 17 shown in a third partially deployed configuration in which the inverted outer frame is substantially deployed outside of the delivery sheath.



FIG. 21 is a side view of the assembly of FIG. 17 shown in a fourth partially deployed configuration in which the outer frame has reverted and assumed a biased expanded configuration.



FIGS. 22-24 illustrate steps of a portion of a method to deliver the prosthetic valve of FIGS. 15-21 to an atrium of a heart and within the native mitral annulus.



FIG. 25A is a side view of a portion of an inner frame of a prosthetic heart valve, according to another embodiment.



FIG. 25B is an enlarged view of a strut in the tether connecting portion of the prosthetic valve of FIG. 25A.



FIG. 26 is an opened and flattened view of the inner frame of the prosthetic heart valve of FIG. 25A, in an unexpanded configuration.



FIG. 27 is a side view of a portion of the inner frame of the prosthetic heart valve of FIG. 25A shown coupled to a tether.



FIG. 28 is an enlarged view of a portion of the inner frame and tether of FIG. 27 illustrating the coupling of the inner frame to the tether with sutures.



FIG. 29 is an enlarged view of a portion of the inner frame and tether of FIG. 28 illustrating the coupling of the inner frame to the tether with sutures.



FIG. 30 is a side view of a portion of an inner frame of a prosthetic heart valve having a positive engagement feature at the tether connecting portion, according to an embodiment.



FIG. 31 is an opened and flattened view of the inner frame of the prosthetic heart valve of FIG. 30, in an unexpanded configuration.



FIG. 32 is an enlarged view of a portion of the inner frame and tether of FIG. 30 illustrating the coupling of the inner frame to the tether with sutures.



FIG. 33 is an enlarged view of a portion of the inner frame and tether of FIG. 32 illustrating the coupling of the inner frame to the tether with sutures.





DETAILED DESCRIPTION

Apparatus and methods are described herein for prosthetic heart valves, such as prosthetic mitral valves, that can include a tether securement or coupling portion that can be used to secure an anchoring tether to the prosthetic heart valve. As described herein, in some embodiments, a prosthetic heart valve includes an outer frame and an inner frame coupled to the outer frame. The inner frame can include a tether coupling portion disposed at a proximal end portion of the prosthetic heart valve. The prosthetic heart valve can be formed with, for example, a shape-memory material and the anchoring tether can be, for example, formed with a braided filament. In some embodiments, the anchoring tether can be coupled to the tether coupling portion of the valve with a compressive force. In some embodiments, one or more sutures can be used to secure the tether coupling portion to the anchoring tether. In some embodiments, the tether coupling portion can include an engagement feature that can be matingly and releasably engaged by an engagement portion of a positioning device that can be used to help position the prosthetic heart valve in a desired location within the heart.


In some embodiments, a prosthetic heart valve includes an outer frame and an inner frame coupled to the outer frame. The inner frame includes a tether coupling portion disposed at a proximal end portion of the prosthetic heart valve. An anchoring tether is coupled to the tether coupling portion of the inner frame with at least one suture. The anchoring tether is configured to be secured to a wall of a heart of a patient to secure a position of the prosthetic heart valve within the heart of the patient.


In some embodiments, a kit includes a prosthetic heart valve and a positioning device. The prosthetic valve includes an outer frame, an inner frame coupled to the outer frame, and an anchoring tether coupled to the inner frame. The inner frame includes a tether coupling portion disposed at a proximal end portion of the prosthetic heart valve. The anchoring tether is coupled to the tether coupling portion of the inner frame with at least one suture and is configured to be secured to a wall of a heart of a patient to secure a position of the prosthetic heart valve within the heart of the patient. The positioning device is configured to engage the tether coupling portion of the inner frame and to be used to help position the prosthetic heart valve within the heart of the patient.


A prosthetic heart valve can be delivered to a heart of patient using a variety of different delivery approaches for delivering a prosthetic heart valve (e.g., prosthetic mitral valve). For example, the prosthetic heart valves described herein can be delivered using a transfemoral delivery approach as described in PCT International Application No. PCT/US15/14572 (referred to herein as the '572 PCT Application) and International Application No. PCT International Application No. PCT/US2016/012305 (referred to herein as “the '305 PCT Application”) each of the disclosures of which is incorporated by reference herein in its entirety, or via a transatrial approach or a transjugular approach such as described in U.S. Patent Application Pub. No. 2017/0079790 (the '290 publication), the disclosure of which is incorporated herein by reference in its entirety. The prosthetic valves described herein can also be delivered apically if desired.


In one example, where the prosthetic heart valve is a prosthetic mitral valve, the valve is placed within a lumen of a delivery sheath in a collapsed configuration. A distal end portion of a delivery sheath can be disposed within the left atrium of the heart, and the prosthetic valve can be moved out of the lumen of the delivery sheath and allowed to move to a biased expanded configuration. The prosthetic mitral valve can then be positioned within a mitral annulus of the heart. As described herein, in some embodiments, the tether coupling portion of the valve can include an engagement portion that can be matingly engaged by a positioning device. The positioning device can be inserted through an opening in the apex portion of the heart and moved into engagement with the engagement portion of the valve. The positioning device can then be used to help position the valve within, for example, the mitral annulus of the heart.



FIG. 1 is a schematic illustration of a prosthetic heart valve 100, according to an embodiment, and FIGS. 2A and 2B are schematic illustrations of a tether coupling portion of the prosthetic heart valve and a positioning device 190, according to an embodiment. The prosthetic heart valve 100 (also referred to herein as “prosthetic valve” or “valve”) can be, for example, a prosthetic mitral valve. The valve 100 can be delivered and deployed within an atrium of a heart using a variety of different delivery approaches including, for example, a transfemoral delivery approach, as described in the '572 PCT application and the '305 PCT application, or a transatrial approach or transjugular approach, as described in the '290 publication. The positioning device 190 can be used to help position the valve 100 within the atrium of the heart. For example, the positioning device 190 can be inserted into the heart via an apical access opening and a distal end portion of the positioning device 190 can engage with and be releasably coupled to the valve 100 such that the positioning device 190 can be used to provide better control and maneuvering of the valve 100. In some embodiments, the prosthetic valve 100 and the positioning device 190 can be provided together in a kit. In some embodiments, such a kit can have other devices such as a valve delivery device.


The valve 100 includes an outer frame assembly having an outer frame 120 and an inner valve assembly having an inner frame 150. Each of the outer frame 120 and the inner frame 150 can be formed as a tubular structure as described in more detail below with reference to FIGS. 3-14. The outer frame 120 and the inner frame 150 can be coupled together at multiple coupling joints (not shown) disposed about a perimeter of the inner frame 150 and a perimeter of the outer frame 120. The valve 100 can also include other features, such as those described with respect to FIGS. 3-14 below. For illustration purposes, only the inner frame 150 and the outer frame 120 are discussed with respect to FIGS. 1 and 2. The various characteristics and features of valve 100 described with respect to FIGS. 1 and 2 can apply to any of the prosthetic valves described here.


The outer frame 120 is configured to have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed or constrained) and, when released, return to its original (expanded or undeformed) shape. For example, the outer frame can be formed of materials, such as metals or plastics, which have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used. The inner frame can be formed from a laser-cut tube of Nitinol®. The inner frame 150 can also have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original (expanded or undeformed) shape. Further details regarding the inner frame and the outer frame are described below with respect to valve 200 and FIGS. 3-14.


As shown in more detail with respect to inner frame 250 (see, e.g., FIGS. 6-8), the inner frame 150 can be formed from a laser-cut tube of Nitinol®. Inner frame 150 can be divided into four portions, corresponding to functionally different portions of the inner frame 150 in final form: atrial portion 147, body portion 142, strut portion 143, and tether clamp or connecting portion 144. In the schematic illustration of FIG. 1, the atrial and body portions (147 and 142) are within the outer frame 120, indicated by the dashed lines.


The strut portion 143 of the inner frame 150 can include a suitable number of individual struts which connect the body portion 142 to the tether connecting portion 144. For example, FIG. 6 shows an inner frame 250 of an embodiment similar to inner frame 150 of FIG. 1. The inner frame 150 can be formed the same or similar way and include the same or similar portions and/or functions as inner frame 250 shown in FIG. 6.


The strut portion 143 of inner frame 150 can include struts (not shown in FIGS. 1, 2A and 2B) (e.g., see struts 243a in FIG. 6) that connect the body portion 142 with the tether connecting portion 144. In some embodiments, the tether connecting portion 144 can include longitudinal extensions of the struts of the strut portion 143 that can be connected circumferentially by pairs of opposed, slightly V-shaped connecting members (or “micro-Vs”) (see, e.g., inner frame 250 in FIG. 6). For example, in some embodiments, the strut portion 143 can include six struts that extend to form six struts of the tether connecting portion 144, with each of the six struts of the tether connecting portion 144 connected circumferentially by micro-Vs.


The tether connecting portion or the coupling portion 144 (also referred to as first end portion of inner frame 150) can be configured to be radially collapsible by application of a compressive force as described in more detail below with reference to valve 200 and inner frame 250. Thus, tether connecting portion 144 can be configured to compressively clamp or grip one end of a tether 136 (e.g. braided filament line), either connecting directly onto the tether 136 or onto an intermediate structure, such as a polymer or metal piece that is in turn firmly fixed to the tether 136 (not shown). The tether connecting portion 144 can also include openings (not shown in FIGS. 1, 2A and 2B) through which sutures or wires can be inserted to fasten around the collapsed struts and around the end of the tether 136 to couple the tether 136 to the tether connecting portion 144.


As described above, in some embodiments, the strut portion 143 can include, for example, six struts each extending to form six struts of the tether connecting portion 144. In other embodiments, the strut portion 143 can include a different number of struts and/or can include a different configuration and formation of struts as described in more detail below.


For example, in some embodiments, the valve 100 can include a strut portion 143 that includes six struts, with every two struts of the six struts coming together or being fused into a single strut of the tether connecting portion 144. In other words, the strut portion 143 includes three pairs of struts and the tether connecting portion 144 includes three struts. Each of the three struts of the tether connecting portion 144 can define openings for insertion of sutures for fastening the tether 136 to the tether connecting portion 144. The combining of a pair of struts from the strut portion 143 to form a single strut of the tether connecting portion 144 can provide increased wall thickness at the end portion of the tether connecting portion 144, providing a robust tether connecting portion 144 with high tensile capacity to hold the tether 136 when sutured in.


In some embodiments six struts may be combined to form three pairs of combined or fused tether struts with openings provided for sutures and/or wires. In other embodiments, only a subset of pairs of struts may come together while others remain singly extended to the tether connecting portion 144. For example, one or two pairs may come together while the remaining two or more struts are singly extending to the tether connecting portion.


Additionally, the pairs of struts that are joined to form the strut of the tether connecting portion may either be pre-formed in the joined or fused state or formed as separate struts and coupled together with a suitable fastening mechanism to form a single tether connecting portion strut. The struts of the strut portion can be, for example, releasably or fixedly coupled together to form the combined strut of the tether connecting portion. The struts of the strut portion may also be configured to be separate until sutured together at the time of being coupled to the tether 136.


The tether connecting portion 144 can also include an engagement feature 122 that can be matingly engaged with or releasably coupled to a corresponding engagement feature 123 on the positioning device 190 as shown in FIGS. 2A and 2B. FIGS. 2A and 2B show the engagement features 122 and 123 disengaged and engaged, respectively. The engagement features 122 and 123 can be used to releasably couple the valve 100 to the positioning device 190 such that the positioning device 190 can be used to help in the positioning of the valve 100 within a heart during deployment of the valve 100. For example, the positioning device 190 can define a lumen through which the tether 136 can be received therethrough, and the positioning device 190 can be inserted through the apex of the heart and moved distally to engagement with the valve 100 via the engagement features 122, 123. Upon engagement, the transapical positioning device 190 can be used to radially position the valve 100 within the heart by applying torque to turn the valve 100 about the axis of the tether 136.


The illustrations in FIGS. 2A and 2B show the engagement feature 122 on the tether connecting portion 144 to be an extension or protrusion and the counter engagement feature 123 on the positioning device 190 (e.g., a transapical positioning device) to be an aperture or slot to matingly connect with the engagement feature 122. For example, the engagement feature 122 can be configured as an extension of one or more of the struts of the tether connecting portion 144. Such an embodiment is described below with respect to valve 400. In other embodiments, the engagement feature 122 can be a slot or aperture while the counter engagement feature 123 on the positioning device 190 is an extension to be received within the slot or aperture. Alternatively, other types of suitable configurations can be used to enable releasably attaching the positioning device 190 to the tether connecting portion 144 to facilitate radial positioning by applying torque about the axis of the tether 136. Although a single engagement feature 122 and a single engagement feature 123 are shown in FIGS. 2A and 2B, in other embodiments, the tether connecting portion 144 can include more than one engagement feature 122 and the positioning device 190 can include a corresponding number of engagement features 123 to matingly couple thereto.



FIGS. 3-14 illustrate another embodiment of a prosthetic heart valve that can be delivered and deployed within a left atrium of a heart using a variety of different delivery approaches including, for example, a transfemoral delivery approach or a transatrial delivery approach. FIGS. 3-5 are front, bottom, and top views, respectively, of a prosthetic heart valve 200 according to an embodiment. Prosthetic heart valve 200 (also referred to herein as “valve” or “prosthetic valve”) is designed to replace a damaged or diseased native heart valve such as a mitral valve. Valve 200 includes an outer frame assembly 210 and an inner valve assembly 240 coupled to the outer frame assembly 210.


As shown, outer frame assembly 210 includes an outer frame 220, covered on all or a portion of its outer face with an outer covering 230, and covered on all or a portion of its inner face by an inner covering 232. Outer frame 220 can provide several functions for prosthetic heart valve 200, including serving as the primary structure, as an anchoring mechanism and/or an attachment point for a separate anchoring mechanism to anchor the valve to the native heart valve apparatus, a support to carry inner valve assembly 240, and/or a seal to inhibit paravalvular leakage between prosthetic heart valve 200 and the native heart valve apparatus.


Outer frame 220 has a biased expanded configuration and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original unconstrained shape. To achieve this, outer frame 220 can be formed of materials, such as metals or plastics that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used.


As best shown in FIG. 3, outer frame assembly 210 has an upper end (e.g., at the atrium portion 216), a lower end (e.g., at the ventricle portion 212), and a medial portion (e.g., at the annulus portion 214) therebetween. The upper end or atrium portion 216 (also referred to as “outer free end portion”) defines an open end portion of the outer frame assembly 210. The medial or annulus portion 214 of the outer frame assembly 210 has a perimeter that is configured (e.g., sized, shaped) to fit into an annulus of a native atrioventricular valve. The upper end of the outer frame assembly 210 has a perimeter that is larger than the perimeter of the medial portion. In some embodiments, the perimeter of the upper end of the outer frame assembly 210 has a perimeter that is substantially larger than the perimeter of the medial portion. As shown best in FIG. 5, the upper end and the medial portion of the outer frame assembly 210 has a D-shaped cross-section. In this manner, the outer frame assembly 210 promotes a suitable fit into the annulus of the native atrioventricular valve.


Inner valve assembly 240 includes an inner frame 250, an outer covering (not shown), and leaflets 270. As shown, the inner valve assembly 240 includes an upper portion having a periphery formed with multiple arches. The inner frame 250 includes six axial posts or frame members that support the outer covering of the inner valve assembly and leaflets 270. Leaflets 270 are attached along three of the posts, shown as commissure posts 252 (best illustrated in FIG. 4), and the outer covering of the inner valve assembly 240 is attached to the other three posts, 254 (best illustrated in FIG. 4), and optionally to commissure posts 252. Each of the outer covering of the inner valve assembly 240 and leaflets 270 are formed of approximately rectangular sheets of material, which are joined together at their upper, or atrium end. The lower, ventricle end of the outer covering may be joined to inner covering 232 of outer frame assembly 210, and the lower, ventricle end of leaflets 270 may form free edges 275, though coupled to the lower ends of commissure posts 252.


Although inner valve assembly 240 is shown as having three leaflets, in other embodiments, an inner valve assembly can include any suitable number of leaflets. The leaflets 270 are movable between an open configuration and a closed configuration in which the leaflets 270 coapt, or meet in a sealing abutment.


Outer covering 230 of the outer frame assembly 210 and inner covering 232 of outer frame assembly 210, and the outer covering of the inner valve assembly 240 and leaflets 270 of the inner valve assembly 240 may be formed of any suitable material, or combination of materials, such as those discussed above. In this embodiment, the inner covering 232 of the outer frame assembly 210, the outer covering of the inner valve assembly 240, and the leaflets 270 of the inner valve assembly 240 are formed, at least in part, of porcine pericardium. Moreover, in this embodiment, the outer covering 230 of the outer frame assembly 210 is formed, at least in part, of polyester.


Inner frame 250 is shown in more detail in FIGS. 6-8. Specifically, FIGS. 6-8 show inner frame 250 in an undeformed, initial state (FIG. 6), a side view of the inner frame 250 in an expanded configuration (FIG. 7), and a bottom view of the inner frame 250 in the expanded configuration (FIG. 8), respectively, according to an embodiment.


In this embodiment, inner frame 250 is formed from a laser-cut tube of Nitinol®. Inner frame 250 is illustrated in FIG. 6 in an undeformed, initial state, i.e. as laser-cut, but cut and unrolled into a flat sheet for ease of illustration. Inner frame 250 can be divided into four portions, corresponding to functionally different portions of the inner frame 250 in final form: atrial portion 247, body portion 242, strut portion 243, and tether clamp or connecting portion 244. Strut portion 243 includes six struts, such as strut 243A, which connect body portion 242 to tether connecting portion 244.


Tether connecting portion 244 (also referred to as first end portion of inner frame) includes longitudinal extensions of the struts, connected circumferentially by pairs of opposed, slightly V-shaped connecting members (or “micro-Vs”). Tether connecting portion 244 is configured to be radially collapsed by application of a compressive force, which causes the micro-Vs to become more deeply V-shaped, with the vertices moving closer together longitudinally and the open ends of the V shapes moving closer together circumferentially. Thus, tether connecting portion 244 can be configured to compressively clamp or grip one end of a tether, either connecting directly onto a tether line (e.g. braided filament line) or onto an intermediate structure, such as a polymer or metal piece that is in turn firmly fixed to the tether line.


In contrast to tether connecting portion 244, atrial portion 247 (also referred to as “inner frame free end portion”) and body portion 242 are configured to be expanded radially. Strut portion 243 forms a longitudinal connection and radial transition between the expanded body portion and the compressed tether connecting portion 244. Body portion 242 provides an inner frame coupling portion 245 that includes six longitudinal posts, such as post 242A. The inner frame coupling portion 245 can be used to attach leaflets 270 to inner frame 240, and/or can be used to attach inner assembly 240 to outer assembly 210, such as by connecting inner frame 250 to outer frame 220. In the illustrated embodiment, the posts include openings through which connecting members (such as suture filaments and/or wires) can be passed to couple the posts to other structures.


Inner frame 250 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and bottom view in FIGS. 7 and 8, respectively.


Outer frame 220 of valve 200 is shown in more detail in FIGS. 9-11. In this embodiment, outer frame 220 is also formed from a laser-cut tube of Nitinol®. Outer frame 220 is illustrated in FIG. 9 in an undeformed, initial state, i.e. as laser-cut, but cut and unrolled into a flat sheet for ease of illustration. Outer frame 220 can be divided into an outer frame coupling portion 271, a body portion 272, and a cuff portion 273 (which includes the atrium or free end portion 216), as shown in FIG. 9. Outer frame coupling portion 271 includes multiple openings or apertures, such as 271A, by which outer frame 220 can be coupled to inner frame 250, as discussed in more detail below.


Outer frame 220 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and top view in FIGS. 10 and 11, respectively. As best seen in FIG. 11, the lower end of outer frame coupling portion 271 forms a roughly circular opening (identified by “O” in FIG. 11). The diameter of this opening preferably corresponds approximately to the diameter of body portion 242 of inner frame 250, to facilitate coupling of the two components of valve 200.


Outer frame 220 and inner frame 250 are shown coupled together in FIGS. 12-14, in front, side, and top views, respectively. The two frames collectively form a structural support for a prosthetic valve such as valve 200. The frames support the valve leaflet structure (e.g., leaflets 270) in the desired relationship to the native valve annulus, support the coverings (e.g., outer covering 230 and inner covering 232 of outer frame assembly 210, outer covering of inner valve assembly 240) for the two frames to provide a barrier to blood leakage between the atrium and ventricle, and couple to a tether (not shown in FIGS. 3-14) (e.g., tether 136 described above with respect to FIGS. 1, 2A and 2B) by the inner frame 250 to aid in holding the prosthetic valve 200 in place in the native valve annulus by the tether connection to the ventricle wall. The outer frame 220 and the inner frame 250 are connected at six coupling points (representative points are identified as “C” in FIGS. 12-14). In this embodiment, the coupling points are implemented with a mechanical fastener, such as a short length of wire, passed through an aperture (such as aperture 271A) in outer frame coupling portion 271 and corresponding openings in inner frame coupling portion 245 (e.g., longitudinal posts, such as post 242A) in body portion 242 of inner frame 250. Inner frame 250 is thus disposed within the outer frame 220 and securely coupled to it.



FIGS. 15-21 illustrate a method of reconfiguring a prosthetic heart valve 300 (e.g., prosthetic mitral valve) prior to inserting the prosthetic heart valve 300 into a delivery sheath 326 (see, e.g., FIGS. 17-21) for delivery into the atrium of the heart. The prosthetic heart valve 300 (also referred to herein as “valve”) can be constructed the same as or similar to, and function the same as or similar to the valves 100 and 200 described above. Thus, some details regarding the valve 300 are not described below. It should be understood that for features and functions not specifically discussed, those features and functions can be the same as or similar to the valve 200.


As shown in FIG. 15, the valve 300 has an outer frame 320 and an inner frame 350. As discussed above for valves 100 and 200, the outer frame 320 and the inner frame 350 of valve 300 can each be formed with a shape-memory material and have a biased expanded configuration. The outer frame 320 and the inner frame 350 can be moved to a collapsed configuration for delivery of the valve 300 to the heart. In this example method of preparing the valve 300 for delivery to the heart, the outer frame 320 of the valve 300 is first disposed in a prolapsed or inverted configuration as shown in FIG. 16. Specifically, the elastic or superelastic structure of outer frame 320 of valve 300 allows the outer frame 320 to be disposed in the prolapsed or inverted configuration prior to the valve 300 being inserted into the lumen of the delivery sheath 326. As shown in FIG. 16, to dispose the outer frame 320 in the inverted configuration, the outer frame 320 is folded or inverted distally (to the right in FIG. 16) such that an open free end 316 of the outer frame 320 is pointed away from an open free end 347 of the inner frame 350. As described above for valve 100, in this inverted configuration, the overall outer perimeter or outer diameter of the valve 300 is reduced and the overall length is increased. For example, the diameter D1 shown in FIG. 15 is greater than the diameter D2 shown in FIG. 16, and the length L1 (shown in FIG. 12 for valve 200) is less than the length L2 shown in FIG. 16 for valve 300. With the outer frame 320 in the inverted configuration relative to the inner frame 350, the valve 300 can be placed within a lumen of a delivery sheath 326 as shown in FIG. 17 for delivery of the valve 300 to the left atrium of the heart. By disposing the outer frame 320 in the inverted configuration relative to the inner frame 350, the valve 300 can be collapsed into a smaller overall diameter, i.e. when placed in a smaller diameter delivery sheath, than would be possible if the valve 300 in the configuration shown in FIG. 15 were collapsed radially without being inverted. This is because in the configuration shown in FIG. 15, the two frames are concentric or nested, and thus the outer frame 320 must be collapsed around the inner frame 350, whereas in the configuration shown in FIG. 16, the two frames are substantially coaxial but not concentric or nested. Thus, in the configuration shown in FIG. 16 the outer frame 320 can be collapsed without the need to accommodate the inner frame 350 inside of it. In other words, with the inner frame 350 disposed mostly inside or nested within the outer frame 320, the layers or bulk of the frame structures cannot be compressed to as small a diameter. In addition, if the frames are nested, the structure is less flexible, and therefore, more force is needed to bend the valve, e.g. to pass through tortuous vasculature or to make a tight turn in the left atrium after passing through the atrial septum to be properly oriented for insertion into the mitral valve annulus.



FIGS. 22-24 illustrate a portion of a procedure to deliver the valve 300 to the heart. In this embodiment, the valve 300 is shown being delivered via a transfemoral delivery approach as described, for example, in the '305 PCT application incorporated by reference above. The delivery sheath 326, with the valve 300 disposed within a lumen of the delivery sheath 326 and in an inverted configuration as shown in FIG. 17, can be inserted into a femoral puncture, through the femoral vein, through the inferior vena cava, into the right atrium, through the septum Sp and into the left atrium LA of the heart. With the distal end portion of the delivery sheath 326 disposed within the left atrium of the heart, the valve 300 can be deployed outside a distal end of the delivery sheath 326. For example, in some embodiments, a pusher device 338 can be used to move or push the valve 300 out the distal end of the delivery sheath 326. As shown in FIGS. 22-24, a tether 336 can be attached to the valve 300, and extend through the mitral annulus, through the left ventricle LV, and out a puncture site at the apex Ap. In some embodiments, the valve 300 can be moved out of the delivery sheath 326 by pulling proximally on the tether 336. In some embodiments, the valve 300 can be deployed by pushing with the pusher device and pulling with the tether.


As the valve 300 exits the lumen of the delivery sheath 326, the outer frame assembly 310 exits first in its inverted configuration as shown in the progression of FIGS. 18-20 (see also FIG. 22). After the outer frame assembly 310 is fully outside of the lumen of the delivery sheath 326, the outer frame 320 can revert to its expanded or deployed configuration as shown in FIGS. 21, 23 and 24. In some embodiments, the outer frame 320 can revert automatically after fully exiting the lumen of the delivery sheath due to its shape-memory properties. In some embodiments, a component of the delivery sheath or another device can be used to aid in the reversion of the outer frame assembly 310. In some embodiments, the pusher device and/or the tether can be used to aid in the reversion of the outer frame assembly 310. The valve 300 can continue to be deployed until the inner frame 350 is fully deployed with the left atrium and the valve 300 is in the expanded or deployed configuration (as shown, e.g., in FIGS. 15 and 24). The valve 300 and the tether 336 can then be secured to the apex of the heart with an epicardial pad device 339 as shown in FIG. 24 and as described in more detail in the '572 PCT application and the '305 PCT application.



FIG. 25A illustrates another embodiment of a prosthetic heart valve 400. The valve 400 can be substantially similar to other prosthetic heart valves described above. For example, the valve 400 can be constructed the same as or similar to, and function the same as or similar to the valves 100 and 200 described above. The valve 400 includes an outer frame assembly (not shown) and an inner valve assembly (a portion of which is shown in FIGS. 25A-26) coupled to the outer frame assembly. The inner valve assembly includes an inner frame 450 (a portion of which is shown in FIGS. 25A-26). Some details regarding the valve 400 are not described below. It should be understood that for features and functions not specifically discussed, those features and functions can be the same as or similar to the valve 100 or the valve 200. For example, the valve 400 can also include leaflets (not shown) such as leaflets 270 described above.



FIG. 25A shows a portion of an inner frame 450 of the valve 400 in an expanded configuration and FIG. 26 is an opened and flattened view of the inner frame 450 in an unexpanded configuration. As discussed above for valves 100 and 200, the inner frame 450 of valve 400 can be formed with a shape-memory material and have a biased expanded configuration. For example, the inner frame of the valve 400 can be formed from a laser-cut tube of Nitinol®. Further, the inner frame 450 can be divided into four portions, corresponding to functionally different portions of the inner frame 450 in final form: atrial portion, body portion, strut portion, and tether clamp or connecting portion. A portion of the body portion 442, the strut portion 443, and the tether clamp or connecting portion 444 are shown in FIG. 25A.


In this embodiment, the strut portion 443 can include, for example, six struts 453, such as struts 453A and 453B shown in FIGS. 25A and 25B. As described above for valve 100, the struts 453 can extend to form the tether connecting portion 444, as described in more detail below. The strut portion 443 can also include openings through which connecting members (such as suture filaments and/or wires) can be passed to couple the struts 453 (and the inner frame) to other structures (e.g., to the outer frame assembly), as described previously for valves 100 and 200 above. While FIGS. 25A-26 show the strut portion 443 to include six struts 453 (three pairs of struts 453A and 453B), other embodiments may include fewer or more struts 453.


In this embodiment, two struts 453 (i.e., a strut 453A and a strut 453B) of the six struts 453 can come together to form struts 448 of the tether connecting portion 444. Said another way, a first strut portion 453A and a second strut portion 453B can come together to form a third strut portion 448. For example, as shown in FIG. 25B, two struts 453A and 453B come together to form a strut 448A. Thus, with six struts 453 of the strut portion 443 there are three struts 448 of the tether connecting portion 444. The struts 448 of the tether connecting portion 444 can define openings 451 (see, e.g., FIGS. 25A and 25B) that can be used to secure a tether 436 (shown in FIG. 26) to the inner frame 450 with a suture(s) as described in more detail below.


The combination of two or more struts (e.g., 453A and 453B) to form a tether connecting strut 448 can result in increased wall thickness of the tether connecting struts 448. For example, a wall thickness or width “w” of the portion of the struts 448 alongside the openings 451 (as shown in FIG. 25B) can be increased (when compared to, for example, the wall thickness around the openings in connecting portion 244 of valve 200 in FIG. 6), which can lead to increased tensile capacity of the combined tether connecting portion 444 if the profile/diameter of the connecting portion 444 remains substantially the same as in the valve 200. This increased tensile capacity can provide increased structural integrity of the tether connecting portion 444 and the inner frame 450. In some embodiments, the tensile capacity can be maintained (when compared to the valve 200), while at the same time reducing the profile/diameter of the connecting portion 444 (relative to the valve 200). For example, as shown in FIG. 26, the inner frame 450 does not include “micro-Vs” as described for inner frame 250, which can allow for a reduced profile, or alternatively, the ability to increase the width “w” and increase tensile strength while maintaining the same profile.


As described above for valve 100, the two (or more) struts (e.g. 453A and 453B, shown in FIGS. 25A and 25B) combining to form a single tether connecting strut 448, can be combined and formed integrally or be fused in a preformed manner (as shown in FIGS. 25A and 25B) or can be formed as separate components and coupled together to form a single strut 448 of the tether connecting portion 444.



FIGS. 27-29 illustrate the inner frame 450 of the prosthetic valve 400 coupled at the tether connecting portion 444 to one end of the tether 436 with one or more suture strands 435 (also referred to as “sutures”) to compressively clamp or grip over the end of the tether 436, thereby attaching the tether 436 to the inner frame 450 and the valve 400. For example, the sutures 435 are threaded through openings 451 defined in the connecting portion 444 and wrapped around portions of the tether connecting portion 444 and a portion of the tether 436 disposed within the interior region 456 (see, e.g., FIG. 25A) defined collectively by the struts 453/448 of the connecting portion 444.


In some embodiments, the strut portion of the inner frame of a prosthetic valve can include a positive engagement feature to aid with positioning of the prosthetic heart valve. More specifically, as described above the prosthetic valve can include an engagement feature configured to matingly engage an engagement feature of a positioning device, such as positioning device 190 described above. Another embodiment of an inner frame 550 of a heart valve 500 is shown in FIGS. 30-33. FIG. 30 illustrates a portion of the inner frame 550 in an expanded configuration and coupled to an end of a tether 536, and FIG. 31 is an opened and flattened view of the inner frame 550 in an unexpanded configuration. The prosthetic heart valve 500 can be constructed the same as or similar to, and function the same as or similar to, for example, valves 100, 200, and/or 400 described above. For example, the valve 500 can include an outer frame assembly (not shown) and an inner valve assembly coupled to the outer frame assembly. The inner valve assembly of the valve 500 can include the inner frame 550 which includes an atrial portion (not shown), a body portion 542, a strut portion 543 and a tether clamp or connecting portion 544, as described above for valves 100, 200 and 400, and inner frames 150, 250 and 450.


As shown in FIGS. 30-33, the inner frame 550 of the valve 500 is coupled to the tether 536 with sutures 535 at the tether connecting portion 544. As described above, a pair of struts 553 of the strut portion 543 can combine together or converge into a single strut 548 of the tether connecting portion 544 that can be used to compressively clamp around the tether 536 to couple the tether 536 to the inner frame 550. In this embodiment, the inner frame 550 includes an engagement feature 522 provided by a strut 548 of the tether connecting portion 544, which can matingly engage a corresponding engagement portion of a positioning device (not shown) (e.g., positioning device 190). More specifically, one of the struts 548 is longer (e.g., extends further proximally when implanted within a heart) than the remaining struts 548. The engagement feature 522 can be used to engage with a corresponding opening in a positioning device (not shown), which can be used to radially position the inner frame 550 (and the valve 500).


The positioning device, as described above, can define a lumen through which the tether 536 can be received therethrough, and the positioning device can be inserted through the apex of the heart and moved distally to engage with the valve 500 via the engagement feature 522. For example, during deployment of the valve 500 and when the valve 500 is disposed at least partially within, for example, the atrium of the heart, the positioning device can be inserted through the apex of the heart and a distal end portion of the positioning device can engage with the connecting portion 544 of the valve 500. Upon engagement, the transapical positioning device can be used to radially position the valve 500 within the heart by applying torque to turn or rotate the valve 500 about a longitudinal axis of the tether 536.


While FIGS. 30-33 illustrate an embodiment in which one strut 548 of the tether connecting portion 544 is longer and provides the engagement feature 522, in other embodiments, more than one strut 548 can provide or form the engagement feature 522. Further, although FIGS. 30-33 show the engagement feature 522 to be formed by providing a longer strut 548, in other embodiments an inner frame can include an engagement feature in which one or more struts are reduced in length at the tether connecting portion 544 such that they form a slot or an aperture. Such an aperture could be coupled with a positioning device that has a counter engagement feature in the form of an elongated structure or protrusion to mate with the aperture.


While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above


Where schematics and/or embodiments described above indicate certain components arranged in certain orientations or positions, the arrangement of components may be modified. While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components, and/or features of the different embodiments described.


In addition, the systems and methods described herein can also be adapted for use with a prosthetic tricuspid valve. For example, in such a case, a procedural catheter can be inserted into the right ventricle of the heart, and the delivery sheath delivered to the right atrium of the heart either directly (transatrial), or via the jugular or femoral vein.

Claims
  • 1. A prosthetic heart valve, comprising: an outer frame;an inner frame coupled to the outer frame, the inner frame including a tether coupling portion disposed at a proximal end portion of the prosthetic heart valve; andan anchoring tether coupled to the tether coupling portion of the inner frame with at least one suture, the anchoring tether configured to be secured to a wall of a heart a patient to secure a position of the prosthetic heart valve within the heart of the patient,wherein the tether coupling portion of the inner frame includes a plurality of struts, each of the plurality of struts including a first portion, a second portion, and a third portion, the first portion and the second portion converging into the third portion, the third portion defining at least one opening, the at least one suture being received through the at least one opening and wrapped around at least a portion of the tether coupling portion and a portion of the anchoring tether to secure the anchoring tether to the tether connecting portion.
  • 2. The prosthetic heart valve of claim 1, wherein the tether coupling portion defines an interior region, a distal end portion of the anchoring tether disposed within the interior region.
  • 3. The prosthetic heart valve of claim 1, wherein the plurality of struts collectively define an interior region, a distal end portion of the anchoring tether disposed within the interior region.
  • 4. The prosthetic heart valve of claim 1, wherein the tether coupling portion includes a first engagement feature configured to matingly and releasably engage a second engagement feature of a positioning device, the positioning device configured to help position the prosthetic heart valve in the heart of the patient.
  • 5. The prosthetic heart valve of claim 4, wherein the first engagement feature includes a first strut from the plurality of struts being longer than the remaining struts from the plurality of struts, the first strut configured to be matingly received within an opening defined by the positioning device to releasably couple the inner frame to the positioning device.
  • 6. The prosthetic heart valve of claim 1, wherein the anchoring tether is formed with a flexible braid.
  • 7. The prosthetic heart valve of claim 1, wherein the first portion, the second portion and the third portion of the plurality of struts are formed integrally.
  • 8. A kit, comprising: a prosthetic heart valve including an outer frame, an inner frame coupled to the outer frame, and an anchoring tether coupled to the inner frame,the inner frame including a tether coupling portion disposed at a proximal end portion of the prosthetic heart valve, the anchoring tether coupled to the tether coupling portion of the inner frame with at least one suture, the anchoring tether configured to be secured to a wall of a heart of a patient to secure a position of the prosthetic heart valve within the heart of the patient, wherein the tether coupling portion of the inner frame includes a plurality of struts, each of the plurality of struts including a first portion, a second portion, and a third portion, the first portion and the second portion converging into the third portion, the third portion defining at least one opening, the at least one suture being received through the at least one opening and wrapped around at least a portion of the tether coupling portion and a portion of the anchoring tether to secure the anchoring tether to the tether connecting portion; anda positioning device configured to engage the tether coupling portion of the inner frame and used to help position the prosthetic heart valve within the heart of the patient.
  • 9. The kit of claim 8, wherein the tether coupling portion includes a first engagement feature configured to be matingly coupled to a second engagement feature of positioning device.
  • 10. The kit of claim 9, wherein the first engagement feature includes a first strut from the plurality of struts being longer than the remaining struts from the plurality of struts, the first strut configured to be matingly received within a slot defined by the positioning device to releasably couple the inner frame to the positioning device.
  • 11. The kit of claim 8, wherein the tether coupling portion defines an interior region, a distal end portion of the anchoring tether disposed within the interior region.
  • 12. The kit of claim 8, wherein the plurality of struts collectively define an interior region, a distal end portion of the anchoring tether disposed within the interior region.
  • 13. The kit of claim 8, wherein the anchoring tether is formed with a flexible braid.
  • 14. The kit of claim 8, wherein the first portion, the second portion and the third portion of the plurality of struts are formed integrally.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/US2018/047768 filed Aug. 23, 2018, published in English, which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/550,967, entitled “Prosthetic Heart Valves with Tether Coupling Features,” filed Aug. 28, 2017, the entire disclosures of which are incorporated herein by reference in their entireties.

PCT Information
Filing Document Filing Date Country Kind
PCT/US2018/047768 8/23/2018 WO 00
Publishing Document Publishing Date Country Kind
WO2019/046099 3/7/2019 WO A
US Referenced Citations (772)
Number Name Date Kind
2697008 Ross Dec 1954 A
3409013 Berry Nov 1968 A
3472230 Fogarty et al. Oct 1969 A
3476101 Ross Nov 1969 A
3548417 Kischer Dec 1970 A
3587115 Shiley Jun 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3714671 Edwards et al. Feb 1973 A
3755823 Hancock Sep 1973 A
3976079 Samuels et al. Aug 1976 A
4003382 Dyke Jan 1977 A
4035849 Angell et al. Jul 1977 A
4056854 Boretos et al. Nov 1977 A
4073438 Meyer Feb 1978 A
4106129 Carpentier et al. Aug 1978 A
4222126 Boretos et al. Sep 1980 A
4265694 Boretos et al. May 1981 A
4297749 Davis et al. Nov 1981 A
4339831 Johnson Jul 1982 A
4343048 Ross et al. Aug 1982 A
4345340 Rosen Aug 1982 A
4373216 Klawitter Feb 1983 A
4406022 Roy Sep 1983 A
4470157 Love Sep 1984 A
4490859 Black et al. Jan 1985 A
4535483 Klawitter et al. Aug 1985 A
4574803 Storz Mar 1986 A
4585705 Broderick et al. Apr 1986 A
4592340 Boyles Jun 1986 A
4605407 Black et al. Aug 1986 A
4612011 Kautzky Sep 1986 A
4626255 Reichart et al. Dec 1986 A
4638886 Marietta Jan 1987 A
4643732 Pietsch et al. Feb 1987 A
4655771 Wallsten Apr 1987 A
4692164 Dzemeshkevich et al. Sep 1987 A
4733665 Palmaz Mar 1988 A
4759758 Gabbay Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4787899 Lazarus Nov 1988 A
4787901 Baykut Nov 1988 A
4796629 Grayzel Jan 1989 A
4824180 Levrai Apr 1989 A
4829990 Thuroff et al. May 1989 A
4830117 Capasso May 1989 A
4851001 Taheri Jul 1989 A
4856516 Hillstead Aug 1989 A
4878495 Grayzel Nov 1989 A
4878906 Lindemann et al. Nov 1989 A
4883458 Shiber Nov 1989 A
4922905 Strecker May 1990 A
4923013 De Gennaro May 1990 A
4960424 Grooters Oct 1990 A
4966604 Reiss Oct 1990 A
4979939 Shiber Dec 1990 A
4986830 Owens et al. Jan 1991 A
4994077 Dobben Feb 1991 A
4996873 Takeuchi Mar 1991 A
5007896 Shiber Apr 1991 A
5026366 Leckrone Jun 1991 A
5032128 Alonso Jul 1991 A
5035706 Giantureo et al. Jul 1991 A
5037434 Lane Aug 1991 A
5047041 Samuels Sep 1991 A
5059177 Towne et al. Oct 1991 A
5064435 Porter Nov 1991 A
5080668 Bolz et al. Jan 1992 A
5085635 Cragg Feb 1992 A
5089015 Ross Feb 1992 A
5152771 Sabbaghian et al. Oct 1992 A
5163953 Vince Nov 1992 A
5167628 Boyles Dec 1992 A
5192297 Hull Mar 1993 A
5201880 Wright et al. Apr 1993 A
5266073 Wall Nov 1993 A
5282847 Trescony et al. Feb 1994 A
5295958 Shturman Mar 1994 A
5306296 Wright et al. Apr 1994 A
5332402 Teitelbaum Jul 1994 A
5336616 Livesey et al. Aug 1994 A
5344442 Deac Sep 1994 A
5360444 Kusuhara Nov 1994 A
5364407 Poll Nov 1994 A
5370685 Stevens Dec 1994 A
5397351 Pavcnik et al. Mar 1995 A
5411055 Kane May 1995 A
5411552 Andersen et al. May 1995 A
5415667 Frater May 1995 A
5443446 Shturman Aug 1995 A
5480424 Cox Jan 1996 A
5500014 Quijano et al. Mar 1996 A
5545209 Roberts et al. Aug 1996 A
5545214 Stevens Aug 1996 A
5549665 Vesely et al. Aug 1996 A
5554184 Machiraju Sep 1996 A
5554185 Block et al. Sep 1996 A
5571175 Vanney et al. Nov 1996 A
5591185 Kilmer et al. Jan 1997 A
5607462 Imran Mar 1997 A
5607464 Trescony et al. Mar 1997 A
5609626 Quijano et al. Mar 1997 A
5639274 Fischell et al. Jun 1997 A
5662704 Gross Sep 1997 A
5665115 Cragg Sep 1997 A
5674279 Wright et al. Oct 1997 A
5697905 d'Ambrosio Dec 1997 A
5702368 Stevens et al. Dec 1997 A
5716417 Girard et al. Feb 1998 A
5728068 Leone et al. Mar 1998 A
5728151 Garrison et al. Mar 1998 A
5735842 Krueger et al. Apr 1998 A
5741333 Frid Apr 1998 A
5749890 Shaknovich May 1998 A
5756476 Epstein et al. May 1998 A
5769812 Stevens et al. Jun 1998 A
5792179 Sideris Aug 1998 A
5800508 Goicoechea et al. Sep 1998 A
5833673 Ockuly et al. Nov 1998 A
5840081 Andersen et al. Nov 1998 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5855602 Angell Jan 1999 A
5904697 Gifford, III et al. May 1999 A
5925063 Khosravi Jul 1999 A
5957949 Leonhardt et al. Sep 1999 A
5968052 Sullivan, III et al. Oct 1999 A
5968068 Dehdashtian et al. Oct 1999 A
5972030 Garrison et al. Oct 1999 A
5993481 Marcade et al. Nov 1999 A
6027525 Suh et al. Feb 2000 A
6042607 Williamson, IV et al. Mar 2000 A
6045497 Schweich, Jr. et al. Apr 2000 A
6063112 Sgro May 2000 A
6077214 Mortier et al. Jun 2000 A
6099508 Bousquet Aug 2000 A
6132473 Williams et al. Oct 2000 A
6168614 Andersen et al. Jan 2001 B1
6171335 Wheatley et al. Jan 2001 B1
6174327 Mertens et al. Jan 2001 B1
6183411 Mortier et al. Feb 2001 B1
6210408 Chandrasekaran et al. Apr 2001 B1
6217585 Houser et al. Apr 2001 B1
6221091 Khosravi Apr 2001 B1
6231602 Carpentier et al. May 2001 B1
6245102 Jayaraman Jun 2001 B1
6260552 Mortier et al. Jul 2001 B1
6261222 Schweich, Jr. et al. Jul 2001 B1
6264602 Mortier et al. Jul 2001 B1
6287339 Vazquez et al. Sep 2001 B1
6299637 Shaolian et al. Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6312465 Griffin et al. Nov 2001 B1
6332893 Mortier et al. Dec 2001 B1
6350277 Kocur Feb 2002 B1
6358277 Duran Mar 2002 B1
6371983 Lane Apr 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6402679 Mortier et al. Jun 2002 B1
6402680 Mortier et al. Jun 2002 B2
6402781 Langberg et al. Jun 2002 B1
6406420 McCarthy et al. Jun 2002 B1
6425916 Garrison et al. Jul 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6454799 Schreck Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6461382 Cao Oct 2002 B1
6468660 Ogle et al. Oct 2002 B2
6482228 Norred Nov 2002 B1
6488704 Connelly et al. Dec 2002 B1
6537198 Vidlund et al. Mar 2003 B1
6540782 Snyders Apr 2003 B1
6569196 Vesely May 2003 B1
6575252 Reed Jun 2003 B2
6582462 Andersen et al. Jun 2003 B1
6605112 Moll et al. Aug 2003 B1
6616684 Vidlund et al. Sep 2003 B1
6622730 Ekvall et al. Sep 2003 B2
6629534 St. Goar et al. Oct 2003 B1
6629921 Schweich, Jr. et al. Oct 2003 B1
6648077 Hoffman Nov 2003 B2
6648921 Anderson et al. Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6669724 Park et al. Dec 2003 B2
6706065 Langberg et al. Mar 2004 B2
6709456 Langberg et al. Mar 2004 B2
6723038 Schroeder et al. Apr 2004 B1
6726715 Sutherland Apr 2004 B2
6730118 Spenser et al. May 2004 B2
6733525 Yang et al. May 2004 B2
6740105 Yodfat et al. May 2004 B2
6746401 Panescu Jun 2004 B2
6746471 Mortier et al. Jun 2004 B2
6752813 Goldfarb et al. Jun 2004 B2
6764510 Vidlund et al. Jul 2004 B2
6797002 Spence et al. Sep 2004 B2
6810882 Langberg et al. Nov 2004 B2
6830584 Seguin Dec 2004 B1
6854668 Wancho et al. Feb 2005 B2
6855144 Lesh Feb 2005 B2
6858001 Aboul-Hosn Feb 2005 B1
6890353 Cohn et al. May 2005 B2
6893460 Spenser et al. May 2005 B2
6896690 Lambrecht et al. May 2005 B1
6908424 Mortier et al. Jun 2005 B2
6908481 Cribier Jun 2005 B2
6936067 Buchanan Aug 2005 B2
6945996 Sedransk Sep 2005 B2
6955175 Stevens et al. Oct 2005 B2
6974476 McGuckin, Jr. et al. Dec 2005 B2
6976543 Fischer Dec 2005 B1
6997950 Chawla Feb 2006 B2
7018406 Seguin et al. Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7044905 Vidlund et al. May 2006 B2
7060021 Wilk Jun 2006 B1
7077862 Vidlund et al. Jul 2006 B2
7087064 Hyde Aug 2006 B1
7100614 Stevens et al. Sep 2006 B2
7101395 Tremulis et al. Sep 2006 B2
7108717 Freidberg Sep 2006 B2
7112219 Vidlund et al. Sep 2006 B2
7115141 Menz et al. Oct 2006 B2
7141064 Scott et al. Nov 2006 B2
7175656 Khairkhahan Feb 2007 B2
7198646 Figulla et al. Apr 2007 B2
7201772 Schwammenthal et al. Apr 2007 B2
7247134 Vidlund et al. Jul 2007 B2
7252682 Seguin Aug 2007 B2
7267686 DiMatteo et al. Sep 2007 B2
7275604 Wall Oct 2007 B1
7276078 Spenser et al. Oct 2007 B2
7276084 Yang et al. Oct 2007 B2
7316706 Bloom et al. Jan 2008 B2
7318278 Zhang et al. Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329278 Seguin et al. Feb 2008 B2
7331991 Kheradvar et al. Feb 2008 B2
7335213 Hyde et al. Feb 2008 B1
7374571 Pease et al. May 2008 B2
7377941 Rhee et al. May 2008 B2
7381210 Zarbatany et al. Jun 2008 B2
7381218 Schreck Jun 2008 B2
7393360 Spenser et al. Jul 2008 B2
7404824 Webler et al. Jul 2008 B1
7416554 Lam et al. Aug 2008 B2
7422072 Dade Sep 2008 B2
7429269 Schwammenthal et al. Sep 2008 B2
7442204 Schwammenthal et al. Oct 2008 B2
7445631 Salahieh et al. Nov 2008 B2
7462191 Spenser et al. Dec 2008 B2
7470285 Nugent et al. Dec 2008 B2
7500989 Solem et al. Mar 2009 B2
7503931 Kowalsky et al. Mar 2009 B2
7510572 Gabbay Mar 2009 B2
7510575 Spenser et al. Mar 2009 B2
7513908 Lattouf Apr 2009 B2
7524330 Berreklouw Apr 2009 B2
7527647 Spence May 2009 B2
7534260 Lattouf May 2009 B2
7556646 Yang et al. Jul 2009 B2
7579381 Dove Aug 2009 B2
7585321 Cribier Sep 2009 B2
7591847 Navia et al. Sep 2009 B2
7618446 Andersen et al. Nov 2009 B2
7618447 Case et al. Nov 2009 B2
7621948 Herrmann et al. Nov 2009 B2
7632304 Park Dec 2009 B2
7632308 Loulmet Dec 2009 B2
7635386 Gammie Dec 2009 B1
7674222 Nikolic et al. Mar 2010 B2
7674286 Alfieri et al. Mar 2010 B2
7695510 Bloom et al. Apr 2010 B2
7708775 Rowe et al. May 2010 B2
7748389 Salahieh et al. Jul 2010 B2
7766961 Patel et al. Aug 2010 B2
7789909 Andersen et al. Sep 2010 B2
7803168 Gifford et al. Sep 2010 B2
7803184 McGuckin, Jr. et al. Sep 2010 B2
7803185 Gabbay Sep 2010 B2
7806928 Rowe et al. Oct 2010 B2
7837727 Goetz et al. Nov 2010 B2
7854762 Speziali et al. Dec 2010 B2
7892281 Seguin et al. Feb 2011 B2
7896915 Guyenot et al. Mar 2011 B2
7901454 Kapadia et al. Mar 2011 B2
7927370 Webler et al. Apr 2011 B2
7931630 Nishtala et al. Apr 2011 B2
7942928 Webler et al. May 2011 B2
7955247 Levine et al. Jun 2011 B2
7955385 Crittenden Jun 2011 B2
7972378 Tabor et al. Jul 2011 B2
7988727 Santamore et al. Aug 2011 B2
7993394 Hariton et al. Aug 2011 B2
8007992 Tian et al. Aug 2011 B2
8029556 Rowe Oct 2011 B2
8043368 Crabtree Oct 2011 B2
8052749 Salahieh et al. Nov 2011 B2
8052750 Tuval et al. Nov 2011 B2
8052751 Aklog et al. Nov 2011 B2
8062355 Figulla et al. Nov 2011 B2
8062359 Marquez et al. Nov 2011 B2
8070802 Lamphere et al. Dec 2011 B2
8109996 Stacchino et al. Feb 2012 B2
8142495 Hasenkam et al. Mar 2012 B2
8152821 Gambale et al. Apr 2012 B2
8157810 Case et al. Apr 2012 B2
8167932 Bourang et al. May 2012 B2
8167934 Styrc et al. May 2012 B2
8187299 Goldfarb et al. May 2012 B2
8206439 Gomez Duran Jun 2012 B2
8216301 Bonhoeffer et al. Jul 2012 B2
8226711 Mortier et al. Jul 2012 B2
8236045 Benichou et al. Aug 2012 B2
8241274 Keogh et al. Aug 2012 B2
8252051 Chau et al. Aug 2012 B2
8303653 Bonhoeffer et al. Nov 2012 B2
8308796 Lashinski et al. Nov 2012 B2
8323334 Deem et al. Dec 2012 B2
8353955 Styrc et al. Jan 2013 B2
RE44075 Williamson et al. Mar 2013 E
8449599 Chau et al. May 2013 B2
8454656 Tuval Jun 2013 B2
8470028 Thornton et al. Jun 2013 B2
8480730 Maurer et al. Jul 2013 B2
8486138 Vesely Jul 2013 B2
8506623 Wilson et al. Aug 2013 B2
8506624 Vidlund et al. Aug 2013 B2
8578705 Sindano et al. Nov 2013 B2
8579913 Nielsen Nov 2013 B2
8591573 Barone Nov 2013 B2
8591576 Hasenkam et al. Nov 2013 B2
8597347 Maurer et al. Dec 2013 B2
8685086 Navia et al. Apr 2014 B2
8790394 Miller et al. Jul 2014 B2
8845717 Khairkhahan et al. Sep 2014 B2
8888843 Khairkhahan et al. Nov 2014 B2
8900214 Nance et al. Dec 2014 B2
8900295 Migliazza et al. Dec 2014 B2
8926696 Cabiri et al. Jan 2015 B2
8932342 McHugo et al. Jan 2015 B2
8932348 Solem et al. Jan 2015 B2
8945208 Jimenez et al. Feb 2015 B2
8956407 Macoviak et al. Feb 2015 B2
8979922 Jayasinghe et al. Mar 2015 B2
8986376 Solem Mar 2015 B2
9011522 Annest Apr 2015 B2
9023099 Duffy et al. May 2015 B2
9034032 McLean et al. May 2015 B2
9034033 McLean et al. May 2015 B2
9039757 McLean et al. May 2015 B2
9039759 Alkhatib et al. May 2015 B2
9078645 Conklin et al. Jul 2015 B2
9078749 Lutter et al. Jul 2015 B2
9084676 Chau et al. Jul 2015 B2
9095433 Lutter et al. Aug 2015 B2
9125742 Yoganathan et al. Sep 2015 B2
9149357 Seguin Oct 2015 B2
9161837 Kapadia Oct 2015 B2
9168137 Subramanian et al. Oct 2015 B2
9232995 Kovalsky et al. Jan 2016 B2
9232998 Wilson et al. Jan 2016 B2
9232999 Maurer et al. Jan 2016 B2
9241702 Maisano et al. Jan 2016 B2
9254192 Lutter et al. Feb 2016 B2
9265608 Miller et al. Feb 2016 B2
9289295 Aklog et al. Mar 2016 B2
9289297 Wilson et al. Mar 2016 B2
9345573 Nyuli et al. May 2016 B2
9480557 Pellegrini et al. Nov 2016 B2
9480559 Vidlund et al. Nov 2016 B2
9526611 Tegels et al. Dec 2016 B2
9597181 Christianson et al. Mar 2017 B2
9675454 Vidlund et al. Jun 2017 B2
9730792 Lutter et al. Aug 2017 B2
9827092 Vidlund et al. Nov 2017 B2
9833315 Vidlund et al. Dec 2017 B2
9867700 Bakis et al. Jan 2018 B2
9883941 Hastings et al. Feb 2018 B2
9895221 Vidlund Feb 2018 B2
9986993 Vidlund et al. Jun 2018 B2
20010018611 Solem et al. Aug 2001 A1
20010021872 Bailey et al. Sep 2001 A1
20010025171 Mortier et al. Sep 2001 A1
20020010427 Scarfone et al. Jan 2002 A1
20020116054 Lundell et al. Aug 2002 A1
20020139056 Finnell Oct 2002 A1
20020151961 Lashinski et al. Oct 2002 A1
20020161377 Rabkin Oct 2002 A1
20020173842 Buchanan Nov 2002 A1
20020183827 Derus et al. Dec 2002 A1
20030010509 Hoffman Jan 2003 A1
20030036698 Kohler et al. Feb 2003 A1
20030050694 Yang et al. Mar 2003 A1
20030078652 Sutherland Apr 2003 A1
20030100939 Yodfat et al. May 2003 A1
20030105519 Fasol et al. Jun 2003 A1
20030105520 Alferness et al. Jun 2003 A1
20030120340 Liska et al. Jun 2003 A1
20030130731 Vidlund et al. Jul 2003 A1
20030149476 Damm et al. Aug 2003 A1
20030212454 Scott et al. Nov 2003 A1
20040039436 Spenser et al. Feb 2004 A1
20040049266 Anduiza et al. Mar 2004 A1
20040064014 Melvin et al. Apr 2004 A1
20040092858 Wilson et al. May 2004 A1
20040093075 Kuehne May 2004 A1
20040097865 Anderson et al. May 2004 A1
20040127983 Mortier et al. Jul 2004 A1
20040133263 Dusbabek et al. Jul 2004 A1
20040147958 Lam et al. Jul 2004 A1
20040152947 Schroeder et al. Aug 2004 A1
20040162610 Liska et al. Aug 2004 A1
20040163828 Silverstein et al. Aug 2004 A1
20040181239 Dorn et al. Sep 2004 A1
20040186565 Schreck Sep 2004 A1
20040186566 Hindrichs et al. Sep 2004 A1
20040260317 Bloom et al. Dec 2004 A1
20040260389 Case et al. Dec 2004 A1
20050004652 van der Burg et al. Jan 2005 A1
20050004666 Alfieri et al. Jan 2005 A1
20050075727 Wheatley Apr 2005 A1
20050080402 Santamore et al. Apr 2005 A1
20050085900 Case et al. Apr 2005 A1
20050096498 Houser et al. May 2005 A1
20050107661 Lau et al. May 2005 A1
20050113798 Slater et al. May 2005 A1
20050113810 Houser et al. May 2005 A1
20050113811 Houser et al. May 2005 A1
20050119519 Girard et al. Jun 2005 A9
20050121206 Dolan Jun 2005 A1
20050125012 Houser et al. Jun 2005 A1
20050137686 Salahieh et al. Jun 2005 A1
20050137688 Salahieh et al. Jun 2005 A1
20050137695 Salahieh et al. Jun 2005 A1
20050137698 Salahieh et al. Jun 2005 A1
20050148815 Mortier et al. Jul 2005 A1
20050177180 Kaganov et al. Aug 2005 A1
20050197695 Stacchino et al. Sep 2005 A1
20050203614 Forster et al. Sep 2005 A1
20050203615 Forster et al. Sep 2005 A1
20050203617 Forster et al. Sep 2005 A1
20050234546 Nugent et al. Oct 2005 A1
20050240200 Bergheim Oct 2005 A1
20050251209 Saadat et al. Nov 2005 A1
20050256567 Lim et al. Nov 2005 A1
20050283231 Haug et al. Dec 2005 A1
20050288766 Plain et al. Dec 2005 A1
20060004442 Spenser et al. Jan 2006 A1
20060025784 Starksen et al. Feb 2006 A1
20060025857 Bergheim et al. Feb 2006 A1
20060030885 Hyde Feb 2006 A1
20060042803 Gallaher Mar 2006 A1
20060047338 Jenson et al. Mar 2006 A1
20060052868 Mortier et al. Mar 2006 A1
20060058872 Salahieh et al. Mar 2006 A1
20060094983 Burbank et al. May 2006 A1
20060129025 Levine et al. Jun 2006 A1
20060142784 Kontos Jun 2006 A1
20060161040 McCarthy et al. Jul 2006 A1
20060161249 Realyvasquez et al. Jul 2006 A1
20060167541 Lattouf Jul 2006 A1
20060195134 Crittenden Aug 2006 A1
20060195183 Navia et al. Aug 2006 A1
20060229708 Powell et al. Oct 2006 A1
20060229719 Marquez et al. Oct 2006 A1
20060241745 Solem Oct 2006 A1
20060247491 Vidlund et al. Nov 2006 A1
20060252984 Rahdert et al. Nov 2006 A1
20060259135 Navia et al. Nov 2006 A1
20060259136 Nguyen et al. Nov 2006 A1
20060259137 Artof et al. Nov 2006 A1
20060276874 Wilson et al. Dec 2006 A1
20060282161 Huynh et al. Dec 2006 A1
20060287716 Banbury et al. Dec 2006 A1
20060287717 Rowe et al. Dec 2006 A1
20060287719 Rowe et al. Dec 2006 A1
20070005131 Taylor Jan 2007 A1
20070005231 Seguchi Jan 2007 A1
20070010877 Salahieh et al. Jan 2007 A1
20070016286 Herrmann et al. Jan 2007 A1
20070016288 Gurskis et al. Jan 2007 A1
20070027535 Purdy et al. Feb 2007 A1
20070038291 Case et al. Feb 2007 A1
20070050020 Spence Mar 2007 A1
20070061010 Hauser et al. Mar 2007 A1
20070066863 Rafiee et al. Mar 2007 A1
20070073387 Forster et al. Mar 2007 A1
20070078297 Rafiee et al. Apr 2007 A1
20070083076 Lichtenstein Apr 2007 A1
20070083259 Bloom et al. Apr 2007 A1
20070093890 Eliasen et al. Apr 2007 A1
20070100439 Cangialosi et al. May 2007 A1
20070112422 Dehdashtian May 2007 A1
20070112425 Schaller et al. May 2007 A1
20070118151 Davidson May 2007 A1
20070118154 Crabtree May 2007 A1
20070118210 Pinchuk May 2007 A1
20070118213 Loulmet May 2007 A1
20070142906 Figulla et al. Jun 2007 A1
20070161846 Nikolic et al. Jul 2007 A1
20070162048 Quinn et al. Jul 2007 A1
20070162103 Case et al. Jul 2007 A1
20070168024 Khairkhahan Jul 2007 A1
20070185565 Schwammenthal et al. Aug 2007 A1
20070185571 Kapadia et al. Aug 2007 A1
20070203575 Forster et al. Aug 2007 A1
20070213813 Von Segesser et al. Sep 2007 A1
20070215362 Rodgers Sep 2007 A1
20070221388 Johnson Sep 2007 A1
20070233239 Navia et al. Oct 2007 A1
20070239265 Birdsall Oct 2007 A1
20070256843 Pahila Nov 2007 A1
20070265658 Nelson et al. Nov 2007 A1
20070267202 Mariller Nov 2007 A1
20070270932 Headley et al. Nov 2007 A1
20070270943 Solem et al. Nov 2007 A1
20070293944 Spenser et al. Dec 2007 A1
20080009940 Cribier Jan 2008 A1
20080033543 Gurskis et al. Feb 2008 A1
20080065011 Marchand et al. Mar 2008 A1
20080071361 Tuval et al. Mar 2008 A1
20080071362 Tuval et al. Mar 2008 A1
20080071363 Tuval et al. Mar 2008 A1
20080071366 Tuval et al. Mar 2008 A1
20080071368 Tuval et al. Mar 2008 A1
20080071369 Tuval et al. Mar 2008 A1
20080082163 Woo Apr 2008 A1
20080082166 Styrc et al. Apr 2008 A1
20080091264 Machold et al. Apr 2008 A1
20080114442 Mitchell et al. May 2008 A1
20080125861 Webler et al. May 2008 A1
20080147179 Cai et al. Jun 2008 A1
20080154355 Benichou et al. Jun 2008 A1
20080154356 Obermiller et al. Jun 2008 A1
20080161911 Revuelta et al. Jul 2008 A1
20080172035 Starksen et al. Jul 2008 A1
20080177381 Navia et al. Jul 2008 A1
20080183203 Fitzgerald et al. Jul 2008 A1
20080183273 Mesana et al. Jul 2008 A1
20080188928 Salahieh et al. Aug 2008 A1
20080208328 Antocci et al. Aug 2008 A1
20080208332 Lamphere et al. Aug 2008 A1
20080221672 Lamphere et al. Sep 2008 A1
20080243150 Starksen et al. Oct 2008 A1
20080243245 Thambar et al. Oct 2008 A1
20080255660 Guyenot et al. Oct 2008 A1
20080255661 Straubinger et al. Oct 2008 A1
20080281411 Berreklouw Nov 2008 A1
20080288060 Kaye et al. Nov 2008 A1
20080293996 Evans et al. Nov 2008 A1
20090005863 Goetz et al. Jan 2009 A1
20090048668 Wilson et al. Feb 2009 A1
20090054968 Bonhoeffer et al. Feb 2009 A1
20090054974 McGuckin, Jr. et al. Feb 2009 A1
20090062908 Bonhoeffer et al. Mar 2009 A1
20090076598 Salahieh et al. Mar 2009 A1
20090082619 De Marchena Mar 2009 A1
20090088836 Bishop et al. Apr 2009 A1
20090099410 De Marchena Apr 2009 A1
20090112309 Jaramillo et al. Apr 2009 A1
20090131849 Maurer et al. May 2009 A1
20090132035 Roth et al. May 2009 A1
20090137861 Goldberg et al. May 2009 A1
20090138079 Tuval et al. May 2009 A1
20090157175 Benichou Jun 2009 A1
20090164005 Dove et al. Jun 2009 A1
20090171432 Von Segesser et al. Jul 2009 A1
20090171447 Von Segesser et al. Jul 2009 A1
20090171456 Kveen et al. Jul 2009 A1
20090177266 Powell et al. Jul 2009 A1
20090192601 Rafiee et al. Jul 2009 A1
20090210052 Forster et al. Aug 2009 A1
20090216322 Le et al. Aug 2009 A1
20090222076 Figulla et al. Sep 2009 A1
20090224529 Gill Sep 2009 A1
20090234318 Loulmet et al. Sep 2009 A1
20090234435 Johnson et al. Sep 2009 A1
20090234443 Ottma et al. Sep 2009 A1
20090240320 Tuval et al. Sep 2009 A1
20090248149 Gabbay Oct 2009 A1
20090276040 Rowe et al. Nov 2009 A1
20090281619 Le et al. Nov 2009 A1
20090287299 Tabor et al. Nov 2009 A1
20090292262 Adams et al. Nov 2009 A1
20090319037 Rowe et al. Dec 2009 A1
20090326575 Galdonik et al. Dec 2009 A1
20100016958 St. Goar et al. Jan 2010 A1
20100021382 Dorshow et al. Jan 2010 A1
20100023117 Yoganathan et al. Jan 2010 A1
20100036479 Hill et al. Feb 2010 A1
20100049313 Alon et al. Feb 2010 A1
20100082094 Quadri et al. Apr 2010 A1
20100161041 Maisano et al. Jun 2010 A1
20100168839 Braido et al. Jul 2010 A1
20100179641 Ryan et al. Jul 2010 A1
20100185277 Braido et al. Jul 2010 A1
20100185278 Schankereli Jul 2010 A1
20100191326 Alkhatib Jul 2010 A1
20100192402 Yamaguchi et al. Aug 2010 A1
20100204781 Alkhatib Aug 2010 A1
20100210899 Schankereli Aug 2010 A1
20100217382 Chau et al. Aug 2010 A1
20100249489 Jarvik Sep 2010 A1
20100249923 Alkhatib et al. Sep 2010 A1
20100280604 Zipory et al. Nov 2010 A1
20100286768 Alkhatib Nov 2010 A1
20100298755 McNamara et al. Nov 2010 A1
20100298931 Quadri et al. Nov 2010 A1
20110004296 Lutter et al. Jan 2011 A1
20110015616 Straubinger et al. Jan 2011 A1
20110015728 Jimenez et al. Jan 2011 A1
20110015729 Jimenez et al. Jan 2011 A1
20110029072 Gabbay Feb 2011 A1
20110066231 Cartledge et al. Mar 2011 A1
20110066233 Thornton et al. Mar 2011 A1
20110112632 Chau et al. May 2011 A1
20110137397 Chau et al. Jun 2011 A1
20110137408 Bergheim Jun 2011 A1
20110224655 Asirvatham et al. Sep 2011 A1
20110224678 Gabbay Sep 2011 A1
20110224728 Martin et al. Sep 2011 A1
20110224784 Quinn Sep 2011 A1
20110245911 Quill et al. Oct 2011 A1
20110251682 Murray, III et al. Oct 2011 A1
20110264191 Rothstein Oct 2011 A1
20110264206 Tabor Oct 2011 A1
20110288637 De Marchena Nov 2011 A1
20110319988 Schankereli et al. Dec 2011 A1
20110319989 Lane et al. Dec 2011 A1
20120010694 Lutter et al. Jan 2012 A1
20120016468 Robin et al. Jan 2012 A1
20120022640 Gross et al. Jan 2012 A1
20120035703 Lutter et al. Feb 2012 A1
20120035713 Lutter et al. Feb 2012 A1
20120035722 Tuval Feb 2012 A1
20120053686 McNamara et al. Mar 2012 A1
20120059487 Cunanan et al. Mar 2012 A1
20120089171 Hastings et al. Apr 2012 A1
20120101571 Thambar et al. Apr 2012 A1
20120101572 Kovalsky et al. Apr 2012 A1
20120116351 Chomas et al. May 2012 A1
20120123529 Levi et al. May 2012 A1
20120158129 Duffy et al. Jun 2012 A1
20120165930 Gifford, III et al. Jun 2012 A1
20120179244 Schankereli et al. Jul 2012 A1
20120203336 Annest Aug 2012 A1
20120215303 Quadri et al. Aug 2012 A1
20120226348 Lane et al. Sep 2012 A1
20120283824 Lutter et al. Nov 2012 A1
20120289945 Segermark Nov 2012 A1
20130030522 Rowe et al. Jan 2013 A1
20130053950 Rowe et al. Feb 2013 A1
20130066341 Ketai et al. Mar 2013 A1
20130079873 Migliazza et al. Mar 2013 A1
20130131788 Quadri et al. May 2013 A1
20130172978 Vidlund et al. Jul 2013 A1
20130184811 Rowe et al. Jul 2013 A1
20130190860 Sundt, III Jul 2013 A1
20130190861 Chau et al. Jul 2013 A1
20130197622 Mitra et al. Aug 2013 A1
20130226288 Goldwasser et al. Aug 2013 A1
20130231735 Deem et al. Sep 2013 A1
20130274874 Hammer Oct 2013 A1
20130282101 Eidenschink et al. Oct 2013 A1
20130310928 Morriss et al. Nov 2013 A1
20130317603 McLean et al. Nov 2013 A1
20130325041 Annest et al. Dec 2013 A1
20130325110 Khalil et al. Dec 2013 A1
20130338752 Geusen et al. Dec 2013 A1
20140046433 Kovalsky Feb 2014 A1
20140081323 Hawkins Mar 2014 A1
20140094918 Vishnubholta et al. Apr 2014 A1
20140142691 Pouletty May 2014 A1
20140163668 Rafiee Jun 2014 A1
20140194981 Menk et al. Jul 2014 A1
20140194983 Kovalsky et al. Jul 2014 A1
20140214159 Vidlund et al. Jul 2014 A1
20140222142 Kovalsky et al. Aug 2014 A1
20140243966 Garde et al. Aug 2014 A1
20140249621 Eidenschink Sep 2014 A1
20140277419 Garde et al. Sep 2014 A1
20140296969 Tegels et al. Oct 2014 A1
20140296970 Ekvall et al. Oct 2014 A1
20140296971 Tegels et al. Oct 2014 A1
20140296972 Tegels et al. Oct 2014 A1
20140296975 Tegels et al. Oct 2014 A1
20140303718 Tegels et al. Oct 2014 A1
20140309732 Solem Oct 2014 A1
20140316516 Vidlund et al. Oct 2014 A1
20140324160 Benichou et al. Oct 2014 A1
20140324161 Tegels et al. Oct 2014 A1
20140324164 Gross et al. Oct 2014 A1
20140331475 Duffy et al. Nov 2014 A1
20140358224 Tegels et al. Dec 2014 A1
20140364942 Straubinger et al. Dec 2014 A1
20140364944 Lutter et al. Dec 2014 A1
20140379076 Vidlund et al. Dec 2014 A1
20150005874 Vidlund et al. Jan 2015 A1
20150011821 Gorman et al. Jan 2015 A1
20150025553 Del Nido et al. Jan 2015 A1
20150057705 Vidlund Feb 2015 A1
20150073542 Heldman Mar 2015 A1
20150073545 Braido Mar 2015 A1
20150094802 Buchbinder et al. Apr 2015 A1
20150105856 Rowe et al. Apr 2015 A1
20150119936 Gilmore et al. Apr 2015 A1
20150119978 Tegels et al. Apr 2015 A1
20150127093 Hosmer et al. May 2015 A1
20150127096 Rowe et al. May 2015 A1
20150134050 Solem et al. May 2015 A1
20150142100 Morriss et al. May 2015 A1
20150142101 Coleman et al. May 2015 A1
20150142103 Mdlund May 2015 A1
20150142104 Braido May 2015 A1
20150173897 Raanani et al. Jun 2015 A1
20150196393 Vidlund et al. Jul 2015 A1
20150196688 James Jul 2015 A1
20150202044 Chau et al. Jul 2015 A1
20150216653 Freudenthal Aug 2015 A1
20150216660 Pintor Aug 2015 A1
20150223820 Olson Aug 2015 A1
20150223934 Vidlund et al. Aug 2015 A1
20150238312 Lashinski Aug 2015 A1
20150238729 Jenson et al. Aug 2015 A1
20150272731 Racchini et al. Oct 2015 A1
20150305860 Wang et al. Oct 2015 A1
20150305864 Quadri et al. Oct 2015 A1
20150305868 Lutter et al. Oct 2015 A1
20150327995 Morin et al. Nov 2015 A1
20150328001 McLean Nov 2015 A1
20150335424 McLean Nov 2015 A1
20150335429 Morriss et al. Nov 2015 A1
20150342717 O'Donnell et al. Dec 2015 A1
20150351903 Morriss et al. Dec 2015 A1
20150351906 Hammer et al. Dec 2015 A1
20160000562 Siegel Jan 2016 A1
20160008131 Christianson Jan 2016 A1
20160067042 Murad et al. Mar 2016 A1
20160074160 Christianson et al. Mar 2016 A1
20160106537 Christianson Apr 2016 A1
20160113764 Sheahan Apr 2016 A1
20160143736 Vidlund May 2016 A1
20160151155 Lutter et al. Jun 2016 A1
20160206280 Vidlund et al. Jul 2016 A1
20160242902 Morriss Aug 2016 A1
20160262879 Meiri et al. Sep 2016 A1
20160262881 Schankereli et al. Sep 2016 A1
20160278955 Liu et al. Sep 2016 A1
20160317290 Chau Nov 2016 A1
20160324635 Vidlund et al. Nov 2016 A1
20160346086 Solem Dec 2016 A1
20160367365 Conklin Dec 2016 A1
20160367367 Maisano et al. Dec 2016 A1
20160367368 Vidlund et al. Dec 2016 A1
20170079790 Vidlund et al. Mar 2017 A1
20170100248 Tegels et al. Apr 2017 A1
20170128208 Christianson et al. May 2017 A1
20170181854 Christianson et al. Jun 2017 A1
20170252153 Chau et al. Sep 2017 A1
20170266001 Vidlund et al. Sep 2017 A1
20170281343 Christianson et al. Oct 2017 A1
20170312076 Lutter et al. Nov 2017 A1
20170312077 Vidlund et al. Nov 2017 A1
20170319333 Tegels et al. Nov 2017 A1
20180028314 Ekvall et al. Feb 2018 A1
20180078368 Vidlund et al. Mar 2018 A1
20180078370 Kovalsky et al. Mar 2018 A1
20180147055 Vidlund et al. May 2018 A1
20180193138 Vidlund Jul 2018 A1
20180263618 Vidlund et al. Sep 2018 A1
Foreign Referenced Citations (132)
Number Date Country
2002212418 Mar 2006 AU
1486161 Mar 2004 CN
1961845 May 2007 CN
2902226 May 2007 CN
101146484 Mar 2008 CN
101180010 May 2008 CN
101984938 Mar 2011 CN
102869317 Jan 2013 CN
102869318 Jan 2013 CN
102869321 Jan 2013 CN
103220993 Jul 2013 CN
102639179 Oct 2014 CN
2246526 Mar 1973 DE
19532846 Mar 1997 DE
19546692 Jun 1997 DE
19857887 Jul 2000 DE
19907646 Aug 2000 DE
10049812 Apr 2002 DE
10049813 Apr 2002 DE
10049815 Apr 2002 DE
102006052564 Dec 2007 DE
102006052710 May 2008 DE
102007043830 Apr 2009 DE
102007043831 Apr 2009 DE
0103546 Mar 1984 EP
1057460 Dec 2000 EP
1088529 Apr 2001 EP
1469797 Nov 2005 EP
2111800 Oct 2009 EP
2193762 Jun 2010 EP
2278944 Feb 2011 EP
2747707 Jul 2014 EP
2918248 Sep 2015 EP
2788217 Jul 2000 FR
2815844 May 2002 FR
2003505146 Feb 2003 JP
2005515836 Jun 2005 JP
2008541863 Nov 2008 JP
2009514628 Apr 2009 JP
2009519783 May 2009 JP
2013512765 Apr 2013 JP
1017275 Aug 2002 NL
1271508 Nov 1986 SU
9217118 Oct 1992 WO
9301768 Feb 1993 WO
9829057 Jul 1998 WO
9940964 Aug 1999 WO
9947075 Sep 1999 WO
2000018333 Apr 2000 WO
2000030550 Jun 2000 WO
200041652 Jul 2000 WO
200047139 Aug 2000 WO
2001035878 May 2001 WO
2001049213 Jul 2001 WO
2001054624 Aug 2001 WO
2001054625 Aug 2001 WO
2001056512 Aug 2001 WO
2001061289 Aug 2001 WO
200176510 Oct 2001 WO
2001082840 Nov 2001 WO
2002004757 Jan 2002 WO
2002022054 Mar 2002 WO
2002028321 Apr 2002 WO
2002036048 May 2002 WO
2002041789 May 2002 WO
2002043620 Jun 2002 WO
2002049540 Jun 2002 WO
2002076348 Oct 2002 WO
2003003943 Jan 2003 WO
2003030776 Apr 2003 WO
2003047468 Jun 2003 WO
2003049619 Jun 2003 WO
2004019825 Mar 2004 WO
2005102181 Nov 2005 WO
2006014233 Feb 2006 WO
2006034008 Mar 2006 WO
2006064490 Jun 2006 WO
2006070372 Jul 2006 WO
2006105009 Oct 2006 WO
2006113906 Oct 2006 WO
2006127756 Nov 2006 WO
2007081412 Jul 2007 WO
2007100408 Sep 2007 WO
2008005405 Jan 2008 WO
2008035337 Mar 2008 WO
2008091515 Jul 2008 WO
2008125906 Oct 2008 WO
2008147964 Dec 2008 WO
2009024859 Feb 2009 WO
2009026563 Feb 2009 WO
2009045338 Apr 2009 WO
2009132187 Oct 2009 WO
2010090878 Aug 2010 WO
2010098857 Sep 2010 WO
2010121076 Oct 2010 WO
2011017440 Feb 2011 WO
2011022658 Feb 2011 WO
2011069048 Jun 2011 WO
2011072084 Jun 2011 WO
2011106735 Sep 2011 WO
2011109813 Sep 2011 WO
2011159342 Dec 2011 WO
2011163275 Dec 2011 WO
2012027487 Mar 2012 WO
2012036742 Mar 2012 WO
2012095116 Jul 2012 WO
2012177942 Dec 2012 WO
2013028387 Feb 2013 WO
2013045262 Apr 2013 WO
2013059747 Apr 2013 WO
2013096411 Jun 2013 WO
2013175468 Nov 2013 WO
2014121280 Aug 2014 WO
2014144937 Sep 2014 WO
2014162306 Oct 2014 WO
2014189974 Nov 2014 WO
2015051430 Apr 2015 WO
2015058039 Apr 2015 WO
2015063580 May 2015 WO
2015065646 May 2015 WO
2015120122 Aug 2015 WO
2015138306 Sep 2015 WO
2015173609 Nov 2015 WO
2016112085 Jul 2016 WO
2016126942 Aug 2016 WO
2016168609 Oct 2016 WO
2016196933 Dec 2016 WO
2017096157 Jun 2017 WO
2017132008 Aug 2017 WO
2017218375 Dec 2017 WO
2018005779 Jan 2018 WO
2018013515 Jan 2018 WO
Non-Patent Literature Citations (62)
Entry
US 9,155,620 B2, 10/2015, Gross et al. (withdrawn)
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, ButtenNorths 1986.
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, Mar. 20, 1983, pp. 111-150, American Chemical Society.
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/˜database/MEMS/sma.html>, Feb. 5, 2016, 3 pages.
Examination Report No. 1 for Australian Application No. 2014274056, dated Mar. 6, 2018, 4 pages.
Examination Report No. 2 for Australian Application No. 2014274056, dated May 9, 2018, 2 pages.
Second Office Action for Chinese Application No. 201480037269.5, dated Nov. 6, 2017, 6 pages.
Third Office Action for Chinese Application No. 201480037269.5, dated Jun. 19, 2018, 8 pages.
Examination Report for European Application No. 14734333.9, dated Oct. 20, 2016, 6 pages.
Notice of Reasons for Rejection for Japanese Application No. 2016-517032, dated Feb. 13, 2018, 5 pages.
Extended European Search Report for European Application No. 18160595.7, dated Sep. 14, 2018, 7 pages.
Office Action for U.S. Appl. No. 14/950,656, dated Apr. 22, 2016, 5 pages.
International Search Report and Written Opinion for PCT/US2018/047768, dated Nov. 28, 2018.
U.S. Pat. No. 9,155,620, Oct. 2015, Gross et al. (withdrawn).
International Search Report and Written Opinion for International Application No. PCT/US2014/040188, dated Nov. 17, 2014, 12 pages.
Invitation to Pay Additional Fees and Partial International Search Report for International Application No. PCT/US2014/040188, dated Sep. 8, 2014, 5 pages.
Office Action for Chinese Application No. 201480037269.5, dated Dec. 23, 2016.
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenos's,” British Heart Journal, Jan. 1987, vol. 57. No. 1, pp. 51-53.
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 1989, 3:305-311.
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6):1310-1314.
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346.
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2): 102-106.
Benchimol, A. et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977, 273(1):55-62.
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves: An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365.
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration in Dilated Hearts,” Interactive Cardiovascular and Thoracic Surgery, 2005, 4:475-477.
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages.
Choo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsava,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415.
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012.
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670.
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996, 3 pages.
G. M. Bernacca, et al., “Polyurethane Heart Valves: Fatigue Failure, Calcification, and Polyurethane Structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, Issue 3, vol. 34, pp. 371-379.
Gray, H., The Aorta, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://www.bartleby.com/107/142.html>, Dec. 10, 2012, 5 pages.
Gray, H., The Heart, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://education.yahoo.com/reference/gray/subjects/subject/138>, Aug. 10, 2012, 9 pages.
Greenhalgh, E. S., “Design and characterization of a biomimetic prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages.
H. R. Andersen et al., “Transluminal Implantation of Artificial Heart Valves: Description of a New Expandable Aortic Valve and Initial Results with Implantation by Catheter Technique in Closed Chest Pigs,” European Heart Journal, 1992, Issue 5, vol. 13, pp. 704-708.
Inoue, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402.
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150.
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-ar-teries-gets-a-faili . . . ,>, published Jan. 3, 1991,retrieved from the Internet on Feb. 5, 2016, 3 pages.
L. L. Knudsen et al., “Catheter-Implanted Prosthetic Heart Valves. Transluminal Catheter Implantation of a New Expandable Artificial Heart Valve in the Descending Thoracic Aorta in Isolated Vessels and Closed Chest Pigs,” International Journal ofArtificial Organs, 1993, Issue 5, vol. 16, pp. 253-262.
Lawrence, D. D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 1987, 163:357-360.
Lozonschi, L., et al. “Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, 140(2):422-426 (Aug. 2010) published online Mar. 12, 2010, 1 page.
Lutter, Georg, et al., Mitral valved stent implantation, European Journal of Cardio-Thoracic Surgery, 2010, vol. 38, pp. 350-355.
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2): 194-198.
Moazami, N. et al., “Transluminal aortic valve placement: A feasibility study with a newly designed collapsible aortic valve,” ASAIO Journal, Sep./Oct. 1996,42(5):M381-M385.
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Symposium: Small Animal Proceedings, 2011, pp. 311-312.
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154.
Porstmann, W. et al., “Der Verschluß des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203.
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966, 196( 11 ): 173-174.
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367.
Reul, H. et al., “The Geomety of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191.
Robert C. Ashton Jr., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and in Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, Issue/vol. 112, pp. 979-983.
Rosch, J. et al., “The Birth, Eady Years and Future of Interventional Radiology,” J Vase Interv Radiol., Jul. 2003, 4:841-853.
Ross, D. N., “Aortic Valve Surgery,” Guys Hospital, London, 1968, pp. 192-197.
Rousseau, E. P. M. et al., “A Mechanical Analysis of the Closed Hancock Heart Valve Prosthesis,” Journal of Biomechanics, 1998, 21(7):545-562.
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309.
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538.
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989.
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815.
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440.
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187.
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, pp. 227-230.
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850.
Related Publications (1)
Number Date Country
20200205968 A1 Jul 2020 US
Provisional Applications (1)
Number Date Country
62550967 Aug 2017 US