Embodiments are described herein that relate to devices and methods for use in the delivery and deployment of prosthetic heart valves, and particularly to devices and methods for prosthetic heart valves having a tether securement portion to secure an anchoring tether to the prosthetic heart valve.
Prosthetic heart valves can pose particular challenges for delivery and deployment within a heart. Valvular heart disease, and specifically, aortic and mitral valve disease is a significant health issue in the United States (US); annually approximately 90,000 valve replacements are conducted in the US. Traditional valve replacement surgery involving the orthotopic replacement of a heart valve is considered an “open heart” surgical procedure. Briefly, the procedure necessitates surgical opening of the thorax, the initiation of extra-corporeal circulation with a heart-lung machine, stopping and opening the heart, excision and replacement of the diseased valve, and re-starting of the heart. While valve replacement surgery typically carries a 1-4% mortality risk in otherwise healthy persons, a significantly higher morbidity is associated to the procedure largely due to the necessity for extra-corporeal circulation. Further, open heart surgery is often poorly tolerated in elderly patients. Thus elimination of the extra-corporeal component of the procedure could result in reduction in morbidities and cost of valve replacement therapies could be significantly reduced.
While replacement of the aortic valve in a transcatheter manner is the subject of intense investigation, lesser attention has been focused on the mitral valve. This is in part reflective of the greater level of complexity associated to the native mitral valve apparatus, and thus, a greater level of difficulty with regards to inserting and anchoring the replacement prosthesis. A need exists for delivery devices and methods for transcatheter mitral valve replacements.
Some known delivery methods include delivering a prosthetic mitral valve through an apical puncture site. In such a procedure, the valve is placed in a compressed configuration within a lumen of a delivery catheter of, for example, 34-36 Fr (i.e. an outer diameter of about 11-12 mm). Delivery of a prosthetic valve to the atrium of the heart can be accomplished, for example, via a transfemoral approach, transatrially directly into the left atrium of the heart or via a jugular approach. After the prosthetic heart valve has been deployed, various known anchoring techniques have been used. For example, some prosthetic heart valves are anchored within the heart using anchoring mechanisms attached to the valve, such as barbs, or other features that can engage surrounding tissue in the heart and maintain the prosthetic valve in a desired position within the heart. Some known anchoring techniques include the use of an anchoring tether that is attached to the valve and anchored to a location on the heart such as an interior or exterior wall of the heart.
A need exists for improved techniques for securing an anchoring tether to a prosthetic heart valve that can provide for a secure attachment of the anchoring tether to the valve and also provide for maintaining the prosthetic heart valve in a desired position in the heart during normal heart functioning. A need also exists for devices and methods for aiding in the delivery and positioning of a prosthetic heart valve within a heart
Apparatus and methods are described herein for various embodiments of a prosthetic heart valve that have a tether securement feature that can be used to secure an anchoring tether to the prosthetic heart valve such that the tether can maintain the prosthetic heart valve in a desired position within the heart under high tensile forces applied to the tether during functioning of the heart. In some embodiments the tether securement feature can also include an engagement member that can be used to help position the prosthetic heart valve within a heart. Such an engagement member can be matingly engaged by a positioning device that can be used to help in radial positioning of the prosthetic heart valve during delivery and deployment of the prosthetic heart valve.
Apparatus and methods are described herein for prosthetic heart valves, such as prosthetic mitral valves, that can include a tether securement or coupling portion that can be used to secure an anchoring tether to the prosthetic heart valve. As described herein, in some embodiments, a prosthetic heart valve includes an outer frame and an inner frame coupled to the outer frame. The inner frame can include a tether coupling portion disposed at a proximal end portion of the prosthetic heart valve. The prosthetic heart valve can be formed with, for example, a shape-memory material and the anchoring tether can be, for example, formed with a braided filament. In some embodiments, the anchoring tether can be coupled to the tether coupling portion of the valve with a compressive force. In some embodiments, one or more sutures can be used to secure the tether coupling portion to the anchoring tether. In some embodiments, the tether coupling portion can include an engagement feature that can be matingly and releasably engaged by an engagement portion of a positioning device that can be used to help position the prosthetic heart valve in a desired location within the heart.
In some embodiments, a prosthetic heart valve includes an outer frame and an inner frame coupled to the outer frame. The inner frame includes a tether coupling portion disposed at a proximal end portion of the prosthetic heart valve. An anchoring tether is coupled to the tether coupling portion of the inner frame with at least one suture. The anchoring tether is configured to be secured to a wall of a heart of a patient to secure a position of the prosthetic heart valve within the heart of the patient.
In some embodiments, a kit includes a prosthetic heart valve and a positioning device. The prosthetic valve includes an outer frame, an inner frame coupled to the outer frame, and an anchoring tether coupled to the inner frame. The inner frame includes a tether coupling portion disposed at a proximal end portion of the prosthetic heart valve. The anchoring tether is coupled to the tether coupling portion of the inner frame with at least one suture and is configured to be secured to a wall of a heart of a patient to secure a position of the prosthetic heart valve within the heart of the patient. The positioning device is configured to engage the tether coupling portion of the inner frame and to be used to help position the prosthetic heart valve within the heart of the patient.
A prosthetic heart valve can be delivered to a heart of patient using a variety of different delivery approaches for delivering a prosthetic heart valve (e.g., prosthetic mitral valve). For example, the prosthetic heart valves described herein can be delivered using a transfemoral delivery approach as described in PCT International Application No. PCT/US15/14572 (referred to herein as the '572 PCT Application) and International Application No. PCT International Application No. PCT/US2016/012305 (referred to herein as “the '305 PCT Application”) each of the disclosures of which is incorporated by reference herein in its entirety, or via a transatrial approach or a transjugular approach such as described in U.S. Patent Application Pub. No. 2017/0079790 (the '290 publication), the disclosure of which is incorporated herein by reference in its entirety. The prosthetic valves described herein can also be delivered apically if desired.
In one example, where the prosthetic heart valve is a prosthetic mitral valve, the valve is placed within a lumen of a delivery sheath in a collapsed configuration. A distal end portion of a delivery sheath can be disposed within the left atrium of the heart, and the prosthetic valve can be moved out of the lumen of the delivery sheath and allowed to move to a biased expanded configuration. The prosthetic mitral valve can then be positioned within a mitral annulus of the heart. As described herein, in some embodiments, the tether coupling portion of the valve can include an engagement portion that can be matingly engaged by a positioning device. The positioning device can be inserted through an opening in the apex portion of the heart and moved into engagement with the engagement portion of the valve. The positioning device can then be used to help position the valve within, for example, the mitral annulus of the heart.
The valve 100 includes an outer frame assembly having an outer frame 120 and an inner valve assembly having an inner frame 150. Each of the outer frame 120 and the inner frame 150 can be formed as a tubular structure as described in more detail below with reference to
The outer frame 120 is configured to have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed or constrained) and, when released, return to its original (expanded or undeformed) shape. For example, the outer frame can be formed of materials, such as metals or plastics, which have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used. The inner frame can be formed from a laser-cut tube of Nitinol®. The inner frame 150 can also have a biased expanded or undeformed shape and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original (expanded or undeformed) shape. Further details regarding the inner frame and the outer frame are described below with respect to valve 200 and
As shown in more detail with respect to inner frame 250 (see, e.g.,
The strut portion 143 of the inner frame 150 can include a suitable number of individual struts which connect the body portion 142 to the tether connecting portion 144. For example,
The strut portion 143 of inner frame 150 can include struts (not shown in
The tether connecting portion or the coupling portion 144 (also referred to as first end portion of inner frame 150) can be configured to be radially collapsible by application of a compressive force as described in more detail below with reference to valve 200 and inner frame 250. Thus, tether connecting portion 144 can be configured to compressively clamp or grip one end of a tether 136 (e.g. braided filament line), either connecting directly onto the tether 136 or onto an intermediate structure, such as a polymer or metal piece that is in turn firmly fixed to the tether 136 (not shown). The tether connecting portion 144 can also include openings (not shown in
As described above, in some embodiments, the strut portion 143 can include, for example, six struts each extending to form six struts of the tether connecting portion 144. In other embodiments, the strut portion 143 can include a different number of struts and/or can include a different configuration and formation of struts as described in more detail below.
For example, in some embodiments, the valve 100 can include a strut portion 143 that includes six struts, with every two struts of the six struts coming together or being fused into a single strut of the tether connecting portion 144. In other words, the strut portion 143 includes three pairs of struts and the tether connecting portion 144 includes three struts. Each of the three struts of the tether connecting portion 144 can define openings for insertion of sutures for fastening the tether 136 to the tether connecting portion 144. The combining of a pair of struts from the strut portion 143 to form a single strut of the tether connecting portion 144 can provide increased wall thickness at the end portion of the tether connecting portion 144, providing a robust tether connecting portion 144 with high tensile capacity to hold the tether 136 when sutured in.
In some embodiments six struts may be combined to form three pairs of combined or fused tether struts with openings provided for sutures and/or wires. In other embodiments, only a subset of pairs of struts may come together while others remain singly extended to the tether connecting portion 144. For example, one or two pairs may come together while the remaining two or more struts are singly extending to the tether connecting portion.
Additionally, the pairs of struts that are joined to form the strut of the tether connecting portion may either be pre-formed in the joined or fused state or formed as separate struts and coupled together with a suitable fastening mechanism to form a single tether connecting portion strut. The struts of the strut portion can be, for example, releasably or fixedly coupled together to form the combined strut of the tether connecting portion. The struts of the strut portion may also be configured to be separate until sutured together at the time of being coupled to the tether 136.
The tether connecting portion 144 can also include an engagement feature 122 that can be matingly engaged with or releasably coupled to a corresponding engagement feature 123 on the positioning device 190 as shown in
The illustrations in
As shown, outer frame assembly 210 includes an outer frame 220, covered on all or a portion of its outer face with an outer covering 230, and covered on all or a portion of its inner face by an inner covering 232. Outer frame 220 can provide several functions for prosthetic heart valve 200, including serving as the primary structure, as an anchoring mechanism and/or an attachment point for a separate anchoring mechanism to anchor the valve to the native heart valve apparatus, a support to carry inner valve assembly 240, and/or a seal to inhibit paravalvular leakage between prosthetic heart valve 200 and the native heart valve apparatus.
Outer frame 220 has a biased expanded configuration and can be manipulated and/or deformed (e.g., compressed and/or constrained) and, when released, return to its original unconstrained shape. To achieve this, outer frame 220 can be formed of materials, such as metals or plastics that have shape memory properties. With regards to metals, Nitinol® has been found to be especially useful since it can be processed to be austenitic, martensitic or super elastic. Other shape memory alloys, such as Cu—Zn—Al—Ni alloys, and Cu—Al—Ni alloys, may also be used.
As best shown in
Inner valve assembly 240 includes an inner frame 250, an outer covering (not shown), and leaflets 270. As shown, the inner valve assembly 240 includes an upper portion having a periphery formed with multiple arches. The inner frame 250 includes six axial posts or frame members that support the outer covering of the inner valve assembly and leaflets 270. Leaflets 270 are attached along three of the posts, shown as commissure posts 252 (best illustrated in
Although inner valve assembly 240 is shown as having three leaflets, in other embodiments, an inner valve assembly can include any suitable number of leaflets. The leaflets 270 are movable between an open configuration and a closed configuration in which the leaflets 270 coapt, or meet in a sealing abutment.
Outer covering 230 of the outer frame assembly 210 and inner covering 232 of outer frame assembly 210, and the outer covering of the inner valve assembly 240 and leaflets 270 of the inner valve assembly 240 may be formed of any suitable material, or combination of materials, such as those discussed above. In this embodiment, the inner covering 232 of the outer frame assembly 210, the outer covering of the inner valve assembly 240, and the leaflets 270 of the inner valve assembly 240 are formed, at least in part, of porcine pericardium. Moreover, in this embodiment, the outer covering 230 of the outer frame assembly 210 is formed, at least in part, of polyester.
Inner frame 250 is shown in more detail in
In this embodiment, inner frame 250 is formed from a laser-cut tube of Nitinol®. Inner frame 250 is illustrated in
Tether connecting portion 244 (also referred to as first end portion of inner frame) includes longitudinal extensions of the struts, connected circumferentially by pairs of opposed, slightly V-shaped connecting members (or “micro-Vs”). Tether connecting portion 244 is configured to be radially collapsed by application of a compressive force, which causes the micro-Vs to become more deeply V-shaped, with the vertices moving closer together longitudinally and the open ends of the V shapes moving closer together circumferentially. Thus, tether connecting portion 244 can be configured to compressively clamp or grip one end of a tether, either connecting directly onto a tether line (e.g. braided filament line) or onto an intermediate structure, such as a polymer or metal piece that is in turn firmly fixed to the tether line.
In contrast to tether connecting portion 244, atrial portion 247 (also referred to as “inner frame free end portion”) and body portion 242 are configured to be expanded radially. Strut portion 243 forms a longitudinal connection and radial transition between the expanded body portion and the compressed tether connecting portion 244. Body portion 242 provides an inner frame coupling portion 245 that includes six longitudinal posts, such as post 242A. The inner frame coupling portion 245 can be used to attach leaflets 270 to inner frame 240, and/or can be used to attach inner assembly 240 to outer assembly 210, such as by connecting inner frame 250 to outer frame 220. In the illustrated embodiment, the posts include openings through which connecting members (such as suture filaments and/or wires) can be passed to couple the posts to other structures.
Inner frame 250 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and bottom view in
Outer frame 220 of valve 200 is shown in more detail in
Outer frame 220 is shown in a fully deformed, i.e. the final, deployed configuration, in side view and top view in
Outer frame 220 and inner frame 250 are shown coupled together in
As shown in
As the valve 300 exits the lumen of the delivery sheath 326, the outer frame assembly 310 exits first in its inverted configuration as shown in the progression of
In this embodiment, the strut portion 443 can include, for example, six struts 453, such as struts 453A and 453B shown in
In this embodiment, two struts 453 (i.e., a strut 453A and a strut 453B) of the six struts 453 can come together to form struts 448 of the tether connecting portion 444. Said another way, a first strut portion 453A and a second strut portion 453B can come together to form a third strut portion 448. For example, as shown in
The combination of two or more struts (e.g., 453A and 453B) to form a tether connecting strut 448 can result in increased wall thickness of the tether connecting struts 448. For example, a wall thickness or width “w” of the portion of the struts 448 alongside the openings 451 (as shown in
As described above for valve 100, the two (or more) struts (e.g. 453A and 453B, shown in
In some embodiments, the strut portion of the inner frame of a prosthetic valve can include a positive engagement feature to aid with positioning of the prosthetic heart valve. More specifically, as described above the prosthetic valve can include an engagement feature configured to matingly engage an engagement feature of a positioning device, such as positioning device 190 described above. Another embodiment of an inner frame 550 of a heart valve 500 is shown in
As shown in
The positioning device, as described above, can define a lumen through which the tether 536 can be received therethrough, and the positioning device can be inserted through the apex of the heart and moved distally to engage with the valve 500 via the engagement feature 522. For example, during deployment of the valve 500 and when the valve 500 is disposed at least partially within, for example, the atrium of the heart, the positioning device can be inserted through the apex of the heart and a distal end portion of the positioning device can engage with the connecting portion 544 of the valve 500. Upon engagement, the transapical positioning device can be used to radially position the valve 500 within the heart by applying torque to turn or rotate the valve 500 about a longitudinal axis of the tether 536.
While
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. Where methods described above indicate certain events occurring in certain order, the ordering of certain events may be modified. Additionally, certain of the events may be performed concurrently in a parallel process when possible, as well as performed sequentially as described above
Where schematics and/or embodiments described above indicate certain components arranged in certain orientations or positions, the arrangement of components may be modified. While the embodiments have been particularly shown and described, it will be understood that various changes in form and details may be made. Any portion of the apparatus and/or methods described herein may be combined in any combination, except mutually exclusive combinations. The embodiments described herein can include various combinations and/or sub-combinations of the functions, components, and/or features of the different embodiments described.
In addition, the systems and methods described herein can also be adapted for use with a prosthetic tricuspid valve. For example, in such a case, a procedural catheter can be inserted into the right ventricle of the heart, and the delivery sheath delivered to the right atrium of the heart either directly (transatrial), or via the jugular or femoral vein.
This application is a national phase entry under 35 U.S.C. § 371 of International Application No. PCT/US2018/047768 filed Aug. 23, 2018, published in English, which claims priority to and the benefit of U.S. Provisional Patent Application No. 62/550,967, entitled “Prosthetic Heart Valves with Tether Coupling Features,” filed Aug. 28, 2017, the entire disclosures of which are incorporated herein by reference in their entireties.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/047768 | 8/23/2018 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2019/046099 | 3/7/2019 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2697008 | Ross | Dec 1954 | A |
3409013 | Berry | Nov 1968 | A |
3472230 | Fogarty et al. | Oct 1969 | A |
3476101 | Ross | Nov 1969 | A |
3548417 | Kischer | Dec 1970 | A |
3587115 | Shiley | Jun 1971 | A |
3657744 | Ersek | Apr 1972 | A |
3671979 | Moulopoulos | Jun 1972 | A |
3714671 | Edwards et al. | Feb 1973 | A |
3755823 | Hancock | Sep 1973 | A |
3976079 | Samuels et al. | Aug 1976 | A |
4003382 | Dyke | Jan 1977 | A |
4035849 | Angell et al. | Jul 1977 | A |
4056854 | Boretos et al. | Nov 1977 | A |
4073438 | Meyer | Feb 1978 | A |
4106129 | Carpentier et al. | Aug 1978 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4265694 | Boretos et al. | May 1981 | A |
4297749 | Davis et al. | Nov 1981 | A |
4339831 | Johnson | Jul 1982 | A |
4343048 | Ross et al. | Aug 1982 | A |
4345340 | Rosen | Aug 1982 | A |
4373216 | Klawitter | Feb 1983 | A |
4406022 | Roy | Sep 1983 | A |
4470157 | Love | Sep 1984 | A |
4490859 | Black et al. | Jan 1985 | A |
4535483 | Klawitter et al. | Aug 1985 | A |
4574803 | Storz | Mar 1986 | A |
4585705 | Broderick et al. | Apr 1986 | A |
4592340 | Boyles | Jun 1986 | A |
4605407 | Black et al. | Aug 1986 | A |
4612011 | Kautzky | Sep 1986 | A |
4626255 | Reichart et al. | Dec 1986 | A |
4638886 | Marietta | Jan 1987 | A |
4643732 | Pietsch et al. | Feb 1987 | A |
4655771 | Wallsten | Apr 1987 | A |
4692164 | Dzemeshkevich et al. | Sep 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4759758 | Gabbay | Jul 1988 | A |
4762128 | Rosenbluth | Aug 1988 | A |
4777951 | Cribier et al. | Oct 1988 | A |
4787899 | Lazarus | Nov 1988 | A |
4787901 | Baykut | Nov 1988 | A |
4796629 | Grayzel | Jan 1989 | A |
4824180 | Levrai | Apr 1989 | A |
4829990 | Thuroff et al. | May 1989 | A |
4830117 | Capasso | May 1989 | A |
4851001 | Taheri | Jul 1989 | A |
4856516 | Hillstead | Aug 1989 | A |
4878495 | Grayzel | Nov 1989 | A |
4878906 | Lindemann et al. | Nov 1989 | A |
4883458 | Shiber | Nov 1989 | A |
4922905 | Strecker | May 1990 | A |
4923013 | De Gennaro | May 1990 | A |
4960424 | Grooters | Oct 1990 | A |
4966604 | Reiss | Oct 1990 | A |
4979939 | Shiber | Dec 1990 | A |
4986830 | Owens et al. | Jan 1991 | A |
4994077 | Dobben | Feb 1991 | A |
4996873 | Takeuchi | Mar 1991 | A |
5007896 | Shiber | Apr 1991 | A |
5026366 | Leckrone | Jun 1991 | A |
5032128 | Alonso | Jul 1991 | A |
5035706 | Giantureo et al. | Jul 1991 | A |
5037434 | Lane | Aug 1991 | A |
5047041 | Samuels | Sep 1991 | A |
5059177 | Towne et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5080668 | Bolz et al. | Jan 1992 | A |
5085635 | Cragg | Feb 1992 | A |
5089015 | Ross | Feb 1992 | A |
5152771 | Sabbaghian et al. | Oct 1992 | A |
5163953 | Vince | Nov 1992 | A |
5167628 | Boyles | Dec 1992 | A |
5192297 | Hull | Mar 1993 | A |
5201880 | Wright et al. | Apr 1993 | A |
5266073 | Wall | Nov 1993 | A |
5282847 | Trescony et al. | Feb 1994 | A |
5295958 | Shturman | Mar 1994 | A |
5306296 | Wright et al. | Apr 1994 | A |
5332402 | Teitelbaum | Jul 1994 | A |
5336616 | Livesey et al. | Aug 1994 | A |
5344442 | Deac | Sep 1994 | A |
5360444 | Kusuhara | Nov 1994 | A |
5364407 | Poll | Nov 1994 | A |
5370685 | Stevens | Dec 1994 | A |
5397351 | Pavcnik et al. | Mar 1995 | A |
5411055 | Kane | May 1995 | A |
5411552 | Andersen et al. | May 1995 | A |
5415667 | Frater | May 1995 | A |
5443446 | Shturman | Aug 1995 | A |
5480424 | Cox | Jan 1996 | A |
5500014 | Quijano et al. | Mar 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5545214 | Stevens | Aug 1996 | A |
5549665 | Vesely et al. | Aug 1996 | A |
5554184 | Machiraju | Sep 1996 | A |
5554185 | Block et al. | Sep 1996 | A |
5571175 | Vanney et al. | Nov 1996 | A |
5591185 | Kilmer et al. | Jan 1997 | A |
5607462 | Imran | Mar 1997 | A |
5607464 | Trescony et al. | Mar 1997 | A |
5609626 | Quijano et al. | Mar 1997 | A |
5639274 | Fischell et al. | Jun 1997 | A |
5662704 | Gross | Sep 1997 | A |
5665115 | Cragg | Sep 1997 | A |
5674279 | Wright et al. | Oct 1997 | A |
5697905 | d'Ambrosio | Dec 1997 | A |
5702368 | Stevens et al. | Dec 1997 | A |
5716417 | Girard et al. | Feb 1998 | A |
5728068 | Leone et al. | Mar 1998 | A |
5728151 | Garrison et al. | Mar 1998 | A |
5735842 | Krueger et al. | Apr 1998 | A |
5741333 | Frid | Apr 1998 | A |
5749890 | Shaknovich | May 1998 | A |
5756476 | Epstein et al. | May 1998 | A |
5769812 | Stevens et al. | Jun 1998 | A |
5792179 | Sideris | Aug 1998 | A |
5800508 | Goicoechea et al. | Sep 1998 | A |
5833673 | Ockuly et al. | Nov 1998 | A |
5840081 | Andersen et al. | Nov 1998 | A |
5855597 | Jayaraman | Jan 1999 | A |
5855601 | Bessler et al. | Jan 1999 | A |
5855602 | Angell | Jan 1999 | A |
5904697 | Gifford, III et al. | May 1999 | A |
5925063 | Khosravi | Jul 1999 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
5968052 | Sullivan, III et al. | Oct 1999 | A |
5968068 | Dehdashtian et al. | Oct 1999 | A |
5972030 | Garrison et al. | Oct 1999 | A |
5993481 | Marcade et al. | Nov 1999 | A |
6027525 | Suh et al. | Feb 2000 | A |
6042607 | Williamson, IV et al. | Mar 2000 | A |
6045497 | Schweich, Jr. et al. | Apr 2000 | A |
6063112 | Sgro | May 2000 | A |
6077214 | Mortier et al. | Jun 2000 | A |
6099508 | Bousquet | Aug 2000 | A |
6132473 | Williams et al. | Oct 2000 | A |
6168614 | Andersen et al. | Jan 2001 | B1 |
6171335 | Wheatley et al. | Jan 2001 | B1 |
6174327 | Mertens et al. | Jan 2001 | B1 |
6183411 | Mortier et al. | Feb 2001 | B1 |
6210408 | Chandrasekaran et al. | Apr 2001 | B1 |
6217585 | Houser et al. | Apr 2001 | B1 |
6221091 | Khosravi | Apr 2001 | B1 |
6231602 | Carpentier et al. | May 2001 | B1 |
6245102 | Jayaraman | Jun 2001 | B1 |
6260552 | Mortier et al. | Jul 2001 | B1 |
6261222 | Schweich, Jr. et al. | Jul 2001 | B1 |
6264602 | Mortier et al. | Jul 2001 | B1 |
6287339 | Vazquez et al. | Sep 2001 | B1 |
6299637 | Shaolian et al. | Oct 2001 | B1 |
6302906 | Goicoechea et al. | Oct 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6332893 | Mortier et al. | Dec 2001 | B1 |
6350277 | Kocur | Feb 2002 | B1 |
6358277 | Duran | Mar 2002 | B1 |
6371983 | Lane | Apr 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6402679 | Mortier et al. | Jun 2002 | B1 |
6402680 | Mortier et al. | Jun 2002 | B2 |
6402781 | Langberg et al. | Jun 2002 | B1 |
6406420 | McCarthy et al. | Jun 2002 | B1 |
6425916 | Garrison et al. | Jul 2002 | B1 |
6440164 | DiMatteo et al. | Aug 2002 | B1 |
6454799 | Schreck | Sep 2002 | B1 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6461382 | Cao | Oct 2002 | B1 |
6468660 | Ogle et al. | Oct 2002 | B2 |
6482228 | Norred | Nov 2002 | B1 |
6488704 | Connelly et al. | Dec 2002 | B1 |
6537198 | Vidlund et al. | Mar 2003 | B1 |
6540782 | Snyders | Apr 2003 | B1 |
6569196 | Vesely | May 2003 | B1 |
6575252 | Reed | Jun 2003 | B2 |
6582462 | Andersen et al. | Jun 2003 | B1 |
6605112 | Moll et al. | Aug 2003 | B1 |
6616684 | Vidlund et al. | Sep 2003 | B1 |
6622730 | Ekvall et al. | Sep 2003 | B2 |
6629534 | St. Goar et al. | Oct 2003 | B1 |
6629921 | Schweich, Jr. et al. | Oct 2003 | B1 |
6648077 | Hoffman | Nov 2003 | B2 |
6648921 | Anderson et al. | Nov 2003 | B2 |
6652578 | Bailey et al. | Nov 2003 | B2 |
6669724 | Park et al. | Dec 2003 | B2 |
6706065 | Langberg et al. | Mar 2004 | B2 |
6709456 | Langberg et al. | Mar 2004 | B2 |
6723038 | Schroeder et al. | Apr 2004 | B1 |
6726715 | Sutherland | Apr 2004 | B2 |
6730118 | Spenser et al. | May 2004 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6740105 | Yodfat et al. | May 2004 | B2 |
6746401 | Panescu | Jun 2004 | B2 |
6746471 | Mortier et al. | Jun 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6764510 | Vidlund et al. | Jul 2004 | B2 |
6797002 | Spence et al. | Sep 2004 | B2 |
6810882 | Langberg et al. | Nov 2004 | B2 |
6830584 | Seguin | Dec 2004 | B1 |
6854668 | Wancho et al. | Feb 2005 | B2 |
6855144 | Lesh | Feb 2005 | B2 |
6858001 | Aboul-Hosn | Feb 2005 | B1 |
6890353 | Cohn et al. | May 2005 | B2 |
6893460 | Spenser et al. | May 2005 | B2 |
6896690 | Lambrecht et al. | May 2005 | B1 |
6908424 | Mortier et al. | Jun 2005 | B2 |
6908481 | Cribier | Jun 2005 | B2 |
6936067 | Buchanan | Aug 2005 | B2 |
6945996 | Sedransk | Sep 2005 | B2 |
6955175 | Stevens et al. | Oct 2005 | B2 |
6974476 | McGuckin, Jr. et al. | Dec 2005 | B2 |
6976543 | Fischer | Dec 2005 | B1 |
6997950 | Chawla | Feb 2006 | B2 |
7018406 | Seguin et al. | Mar 2006 | B2 |
7018408 | Bailey et al. | Mar 2006 | B2 |
7044905 | Vidlund et al. | May 2006 | B2 |
7060021 | Wilk | Jun 2006 | B1 |
7077862 | Vidlund et al. | Jul 2006 | B2 |
7087064 | Hyde | Aug 2006 | B1 |
7100614 | Stevens et al. | Sep 2006 | B2 |
7101395 | Tremulis et al. | Sep 2006 | B2 |
7108717 | Freidberg | Sep 2006 | B2 |
7112219 | Vidlund et al. | Sep 2006 | B2 |
7115141 | Menz et al. | Oct 2006 | B2 |
7141064 | Scott et al. | Nov 2006 | B2 |
7175656 | Khairkhahan | Feb 2007 | B2 |
7198646 | Figulla et al. | Apr 2007 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7247134 | Vidlund et al. | Jul 2007 | B2 |
7252682 | Seguin | Aug 2007 | B2 |
7267686 | DiMatteo et al. | Sep 2007 | B2 |
7275604 | Wall | Oct 2007 | B1 |
7276078 | Spenser et al. | Oct 2007 | B2 |
7276084 | Yang et al. | Oct 2007 | B2 |
7316706 | Bloom et al. | Jan 2008 | B2 |
7318278 | Zhang et al. | Jan 2008 | B2 |
7326236 | Andreas et al. | Feb 2008 | B2 |
7329278 | Seguin et al. | Feb 2008 | B2 |
7331991 | Kheradvar et al. | Feb 2008 | B2 |
7335213 | Hyde et al. | Feb 2008 | B1 |
7374571 | Pease et al. | May 2008 | B2 |
7377941 | Rhee et al. | May 2008 | B2 |
7381210 | Zarbatany et al. | Jun 2008 | B2 |
7381218 | Schreck | Jun 2008 | B2 |
7393360 | Spenser et al. | Jul 2008 | B2 |
7404824 | Webler et al. | Jul 2008 | B1 |
7416554 | Lam et al. | Aug 2008 | B2 |
7422072 | Dade | Sep 2008 | B2 |
7429269 | Schwammenthal et al. | Sep 2008 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7445631 | Salahieh et al. | Nov 2008 | B2 |
7462191 | Spenser et al. | Dec 2008 | B2 |
7470285 | Nugent et al. | Dec 2008 | B2 |
7500989 | Solem et al. | Mar 2009 | B2 |
7503931 | Kowalsky et al. | Mar 2009 | B2 |
7510572 | Gabbay | Mar 2009 | B2 |
7510575 | Spenser et al. | Mar 2009 | B2 |
7513908 | Lattouf | Apr 2009 | B2 |
7524330 | Berreklouw | Apr 2009 | B2 |
7527647 | Spence | May 2009 | B2 |
7534260 | Lattouf | May 2009 | B2 |
7556646 | Yang et al. | Jul 2009 | B2 |
7579381 | Dove | Aug 2009 | B2 |
7585321 | Cribier | Sep 2009 | B2 |
7591847 | Navia et al. | Sep 2009 | B2 |
7618446 | Andersen et al. | Nov 2009 | B2 |
7618447 | Case et al. | Nov 2009 | B2 |
7621948 | Herrmann et al. | Nov 2009 | B2 |
7632304 | Park | Dec 2009 | B2 |
7632308 | Loulmet | Dec 2009 | B2 |
7635386 | Gammie | Dec 2009 | B1 |
7674222 | Nikolic et al. | Mar 2010 | B2 |
7674286 | Alfieri et al. | Mar 2010 | B2 |
7695510 | Bloom et al. | Apr 2010 | B2 |
7708775 | Rowe et al. | May 2010 | B2 |
7748389 | Salahieh et al. | Jul 2010 | B2 |
7766961 | Patel et al. | Aug 2010 | B2 |
7789909 | Andersen et al. | Sep 2010 | B2 |
7803168 | Gifford et al. | Sep 2010 | B2 |
7803184 | McGuckin, Jr. et al. | Sep 2010 | B2 |
7803185 | Gabbay | Sep 2010 | B2 |
7806928 | Rowe et al. | Oct 2010 | B2 |
7837727 | Goetz et al. | Nov 2010 | B2 |
7854762 | Speziali et al. | Dec 2010 | B2 |
7892281 | Seguin et al. | Feb 2011 | B2 |
7896915 | Guyenot et al. | Mar 2011 | B2 |
7901454 | Kapadia et al. | Mar 2011 | B2 |
7927370 | Webler et al. | Apr 2011 | B2 |
7931630 | Nishtala et al. | Apr 2011 | B2 |
7942928 | Webler et al. | May 2011 | B2 |
7955247 | Levine et al. | Jun 2011 | B2 |
7955385 | Crittenden | Jun 2011 | B2 |
7972378 | Tabor et al. | Jul 2011 | B2 |
7988727 | Santamore et al. | Aug 2011 | B2 |
7993394 | Hariton et al. | Aug 2011 | B2 |
8007992 | Tian et al. | Aug 2011 | B2 |
8029556 | Rowe | Oct 2011 | B2 |
8043368 | Crabtree | Oct 2011 | B2 |
8052749 | Salahieh et al. | Nov 2011 | B2 |
8052750 | Tuval et al. | Nov 2011 | B2 |
8052751 | Aklog et al. | Nov 2011 | B2 |
8062355 | Figulla et al. | Nov 2011 | B2 |
8062359 | Marquez et al. | Nov 2011 | B2 |
8070802 | Lamphere et al. | Dec 2011 | B2 |
8109996 | Stacchino et al. | Feb 2012 | B2 |
8142495 | Hasenkam et al. | Mar 2012 | B2 |
8152821 | Gambale et al. | Apr 2012 | B2 |
8157810 | Case et al. | Apr 2012 | B2 |
8167932 | Bourang et al. | May 2012 | B2 |
8167934 | Styrc et al. | May 2012 | B2 |
8187299 | Goldfarb et al. | May 2012 | B2 |
8206439 | Gomez Duran | Jun 2012 | B2 |
8216301 | Bonhoeffer et al. | Jul 2012 | B2 |
8226711 | Mortier et al. | Jul 2012 | B2 |
8236045 | Benichou et al. | Aug 2012 | B2 |
8241274 | Keogh et al. | Aug 2012 | B2 |
8252051 | Chau et al. | Aug 2012 | B2 |
8303653 | Bonhoeffer et al. | Nov 2012 | B2 |
8308796 | Lashinski et al. | Nov 2012 | B2 |
8323334 | Deem et al. | Dec 2012 | B2 |
8353955 | Styrc et al. | Jan 2013 | B2 |
RE44075 | Williamson et al. | Mar 2013 | E |
8449599 | Chau et al. | May 2013 | B2 |
8454656 | Tuval | Jun 2013 | B2 |
8470028 | Thornton et al. | Jun 2013 | B2 |
8480730 | Maurer et al. | Jul 2013 | B2 |
8486138 | Vesely | Jul 2013 | B2 |
8506623 | Wilson et al. | Aug 2013 | B2 |
8506624 | Vidlund et al. | Aug 2013 | B2 |
8578705 | Sindano et al. | Nov 2013 | B2 |
8579913 | Nielsen | Nov 2013 | B2 |
8591573 | Barone | Nov 2013 | B2 |
8591576 | Hasenkam et al. | Nov 2013 | B2 |
8597347 | Maurer et al. | Dec 2013 | B2 |
8685086 | Navia et al. | Apr 2014 | B2 |
8790394 | Miller et al. | Jul 2014 | B2 |
8845717 | Khairkhahan et al. | Sep 2014 | B2 |
8888843 | Khairkhahan et al. | Nov 2014 | B2 |
8900214 | Nance et al. | Dec 2014 | B2 |
8900295 | Migliazza et al. | Dec 2014 | B2 |
8926696 | Cabiri et al. | Jan 2015 | B2 |
8932342 | McHugo et al. | Jan 2015 | B2 |
8932348 | Solem et al. | Jan 2015 | B2 |
8945208 | Jimenez et al. | Feb 2015 | B2 |
8956407 | Macoviak et al. | Feb 2015 | B2 |
8979922 | Jayasinghe et al. | Mar 2015 | B2 |
8986376 | Solem | Mar 2015 | B2 |
9011522 | Annest | Apr 2015 | B2 |
9023099 | Duffy et al. | May 2015 | B2 |
9034032 | McLean et al. | May 2015 | B2 |
9034033 | McLean et al. | May 2015 | B2 |
9039757 | McLean et al. | May 2015 | B2 |
9039759 | Alkhatib et al. | May 2015 | B2 |
9078645 | Conklin et al. | Jul 2015 | B2 |
9078749 | Lutter et al. | Jul 2015 | B2 |
9084676 | Chau et al. | Jul 2015 | B2 |
9095433 | Lutter et al. | Aug 2015 | B2 |
9125742 | Yoganathan et al. | Sep 2015 | B2 |
9149357 | Seguin | Oct 2015 | B2 |
9161837 | Kapadia | Oct 2015 | B2 |
9168137 | Subramanian et al. | Oct 2015 | B2 |
9232995 | Kovalsky et al. | Jan 2016 | B2 |
9232998 | Wilson et al. | Jan 2016 | B2 |
9232999 | Maurer et al. | Jan 2016 | B2 |
9241702 | Maisano et al. | Jan 2016 | B2 |
9254192 | Lutter et al. | Feb 2016 | B2 |
9265608 | Miller et al. | Feb 2016 | B2 |
9289295 | Aklog et al. | Mar 2016 | B2 |
9289297 | Wilson et al. | Mar 2016 | B2 |
9345573 | Nyuli et al. | May 2016 | B2 |
9480557 | Pellegrini et al. | Nov 2016 | B2 |
9480559 | Vidlund et al. | Nov 2016 | B2 |
9526611 | Tegels et al. | Dec 2016 | B2 |
9597181 | Christianson et al. | Mar 2017 | B2 |
9675454 | Vidlund et al. | Jun 2017 | B2 |
9730792 | Lutter et al. | Aug 2017 | B2 |
9827092 | Vidlund et al. | Nov 2017 | B2 |
9833315 | Vidlund et al. | Dec 2017 | B2 |
9867700 | Bakis et al. | Jan 2018 | B2 |
9883941 | Hastings et al. | Feb 2018 | B2 |
9895221 | Vidlund | Feb 2018 | B2 |
9986993 | Vidlund et al. | Jun 2018 | B2 |
20010018611 | Solem et al. | Aug 2001 | A1 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20010025171 | Mortier et al. | Sep 2001 | A1 |
20020010427 | Scarfone et al. | Jan 2002 | A1 |
20020116054 | Lundell et al. | Aug 2002 | A1 |
20020139056 | Finnell | Oct 2002 | A1 |
20020151961 | Lashinski et al. | Oct 2002 | A1 |
20020161377 | Rabkin | Oct 2002 | A1 |
20020173842 | Buchanan | Nov 2002 | A1 |
20020183827 | Derus et al. | Dec 2002 | A1 |
20030010509 | Hoffman | Jan 2003 | A1 |
20030036698 | Kohler et al. | Feb 2003 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20030078652 | Sutherland | Apr 2003 | A1 |
20030100939 | Yodfat et al. | May 2003 | A1 |
20030105519 | Fasol et al. | Jun 2003 | A1 |
20030105520 | Alferness et al. | Jun 2003 | A1 |
20030120340 | Liska et al. | Jun 2003 | A1 |
20030130731 | Vidlund et al. | Jul 2003 | A1 |
20030149476 | Damm et al. | Aug 2003 | A1 |
20030212454 | Scott et al. | Nov 2003 | A1 |
20040039436 | Spenser et al. | Feb 2004 | A1 |
20040049266 | Anduiza et al. | Mar 2004 | A1 |
20040064014 | Melvin et al. | Apr 2004 | A1 |
20040092858 | Wilson et al. | May 2004 | A1 |
20040093075 | Kuehne | May 2004 | A1 |
20040097865 | Anderson et al. | May 2004 | A1 |
20040127983 | Mortier et al. | Jul 2004 | A1 |
20040133263 | Dusbabek et al. | Jul 2004 | A1 |
20040147958 | Lam et al. | Jul 2004 | A1 |
20040152947 | Schroeder et al. | Aug 2004 | A1 |
20040162610 | Liska et al. | Aug 2004 | A1 |
20040163828 | Silverstein et al. | Aug 2004 | A1 |
20040181239 | Dorn et al. | Sep 2004 | A1 |
20040186565 | Schreck | Sep 2004 | A1 |
20040186566 | Hindrichs et al. | Sep 2004 | A1 |
20040260317 | Bloom et al. | Dec 2004 | A1 |
20040260389 | Case et al. | Dec 2004 | A1 |
20050004652 | van der Burg et al. | Jan 2005 | A1 |
20050004666 | Alfieri et al. | Jan 2005 | A1 |
20050075727 | Wheatley | Apr 2005 | A1 |
20050080402 | Santamore et al. | Apr 2005 | A1 |
20050085900 | Case et al. | Apr 2005 | A1 |
20050096498 | Houser et al. | May 2005 | A1 |
20050107661 | Lau et al. | May 2005 | A1 |
20050113798 | Slater et al. | May 2005 | A1 |
20050113810 | Houser et al. | May 2005 | A1 |
20050113811 | Houser et al. | May 2005 | A1 |
20050119519 | Girard et al. | Jun 2005 | A9 |
20050121206 | Dolan | Jun 2005 | A1 |
20050125012 | Houser et al. | Jun 2005 | A1 |
20050137686 | Salahieh et al. | Jun 2005 | A1 |
20050137688 | Salahieh et al. | Jun 2005 | A1 |
20050137695 | Salahieh et al. | Jun 2005 | A1 |
20050137698 | Salahieh et al. | Jun 2005 | A1 |
20050148815 | Mortier et al. | Jul 2005 | A1 |
20050177180 | Kaganov et al. | Aug 2005 | A1 |
20050197695 | Stacchino et al. | Sep 2005 | A1 |
20050203614 | Forster et al. | Sep 2005 | A1 |
20050203615 | Forster et al. | Sep 2005 | A1 |
20050203617 | Forster et al. | Sep 2005 | A1 |
20050234546 | Nugent et al. | Oct 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20050251209 | Saadat et al. | Nov 2005 | A1 |
20050256567 | Lim et al. | Nov 2005 | A1 |
20050283231 | Haug et al. | Dec 2005 | A1 |
20050288766 | Plain et al. | Dec 2005 | A1 |
20060004442 | Spenser et al. | Jan 2006 | A1 |
20060025784 | Starksen et al. | Feb 2006 | A1 |
20060025857 | Bergheim et al. | Feb 2006 | A1 |
20060030885 | Hyde | Feb 2006 | A1 |
20060042803 | Gallaher | Mar 2006 | A1 |
20060047338 | Jenson et al. | Mar 2006 | A1 |
20060052868 | Mortier et al. | Mar 2006 | A1 |
20060058872 | Salahieh et al. | Mar 2006 | A1 |
20060094983 | Burbank et al. | May 2006 | A1 |
20060129025 | Levine et al. | Jun 2006 | A1 |
20060142784 | Kontos | Jun 2006 | A1 |
20060161040 | McCarthy et al. | Jul 2006 | A1 |
20060161249 | Realyvasquez et al. | Jul 2006 | A1 |
20060167541 | Lattouf | Jul 2006 | A1 |
20060195134 | Crittenden | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060229719 | Marquez et al. | Oct 2006 | A1 |
20060241745 | Solem | Oct 2006 | A1 |
20060247491 | Vidlund et al. | Nov 2006 | A1 |
20060252984 | Rahdert et al. | Nov 2006 | A1 |
20060259135 | Navia et al. | Nov 2006 | A1 |
20060259136 | Nguyen et al. | Nov 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20060276874 | Wilson et al. | Dec 2006 | A1 |
20060282161 | Huynh et al. | Dec 2006 | A1 |
20060287716 | Banbury et al. | Dec 2006 | A1 |
20060287717 | Rowe et al. | Dec 2006 | A1 |
20060287719 | Rowe et al. | Dec 2006 | A1 |
20070005131 | Taylor | Jan 2007 | A1 |
20070005231 | Seguchi | Jan 2007 | A1 |
20070010877 | Salahieh et al. | Jan 2007 | A1 |
20070016286 | Herrmann et al. | Jan 2007 | A1 |
20070016288 | Gurskis et al. | Jan 2007 | A1 |
20070027535 | Purdy et al. | Feb 2007 | A1 |
20070038291 | Case et al. | Feb 2007 | A1 |
20070050020 | Spence | Mar 2007 | A1 |
20070061010 | Hauser et al. | Mar 2007 | A1 |
20070066863 | Rafiee et al. | Mar 2007 | A1 |
20070073387 | Forster et al. | Mar 2007 | A1 |
20070078297 | Rafiee et al. | Apr 2007 | A1 |
20070083076 | Lichtenstein | Apr 2007 | A1 |
20070083259 | Bloom et al. | Apr 2007 | A1 |
20070093890 | Eliasen et al. | Apr 2007 | A1 |
20070100439 | Cangialosi et al. | May 2007 | A1 |
20070112422 | Dehdashtian | May 2007 | A1 |
20070112425 | Schaller et al. | May 2007 | A1 |
20070118151 | Davidson | May 2007 | A1 |
20070118154 | Crabtree | May 2007 | A1 |
20070118210 | Pinchuk | May 2007 | A1 |
20070118213 | Loulmet | May 2007 | A1 |
20070142906 | Figulla et al. | Jun 2007 | A1 |
20070161846 | Nikolic et al. | Jul 2007 | A1 |
20070162048 | Quinn et al. | Jul 2007 | A1 |
20070162103 | Case et al. | Jul 2007 | A1 |
20070168024 | Khairkhahan | Jul 2007 | A1 |
20070185565 | Schwammenthal et al. | Aug 2007 | A1 |
20070185571 | Kapadia et al. | Aug 2007 | A1 |
20070203575 | Forster et al. | Aug 2007 | A1 |
20070213813 | Von Segesser et al. | Sep 2007 | A1 |
20070215362 | Rodgers | Sep 2007 | A1 |
20070221388 | Johnson | Sep 2007 | A1 |
20070233239 | Navia et al. | Oct 2007 | A1 |
20070239265 | Birdsall | Oct 2007 | A1 |
20070256843 | Pahila | Nov 2007 | A1 |
20070265658 | Nelson et al. | Nov 2007 | A1 |
20070267202 | Mariller | Nov 2007 | A1 |
20070270932 | Headley et al. | Nov 2007 | A1 |
20070270943 | Solem et al. | Nov 2007 | A1 |
20070293944 | Spenser et al. | Dec 2007 | A1 |
20080009940 | Cribier | Jan 2008 | A1 |
20080033543 | Gurskis et al. | Feb 2008 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080071361 | Tuval et al. | Mar 2008 | A1 |
20080071362 | Tuval et al. | Mar 2008 | A1 |
20080071363 | Tuval et al. | Mar 2008 | A1 |
20080071366 | Tuval et al. | Mar 2008 | A1 |
20080071368 | Tuval et al. | Mar 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082163 | Woo | Apr 2008 | A1 |
20080082166 | Styrc et al. | Apr 2008 | A1 |
20080091264 | Machold et al. | Apr 2008 | A1 |
20080114442 | Mitchell et al. | May 2008 | A1 |
20080125861 | Webler et al. | May 2008 | A1 |
20080147179 | Cai et al. | Jun 2008 | A1 |
20080154355 | Benichou et al. | Jun 2008 | A1 |
20080154356 | Obermiller et al. | Jun 2008 | A1 |
20080161911 | Revuelta et al. | Jul 2008 | A1 |
20080172035 | Starksen et al. | Jul 2008 | A1 |
20080177381 | Navia et al. | Jul 2008 | A1 |
20080183203 | Fitzgerald et al. | Jul 2008 | A1 |
20080183273 | Mesana et al. | Jul 2008 | A1 |
20080188928 | Salahieh et al. | Aug 2008 | A1 |
20080208328 | Antocci et al. | Aug 2008 | A1 |
20080208332 | Lamphere et al. | Aug 2008 | A1 |
20080221672 | Lamphere et al. | Sep 2008 | A1 |
20080243150 | Starksen et al. | Oct 2008 | A1 |
20080243245 | Thambar et al. | Oct 2008 | A1 |
20080255660 | Guyenot et al. | Oct 2008 | A1 |
20080255661 | Straubinger et al. | Oct 2008 | A1 |
20080281411 | Berreklouw | Nov 2008 | A1 |
20080288060 | Kaye et al. | Nov 2008 | A1 |
20080293996 | Evans et al. | Nov 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090048668 | Wilson et al. | Feb 2009 | A1 |
20090054968 | Bonhoeffer et al. | Feb 2009 | A1 |
20090054974 | McGuckin, Jr. et al. | Feb 2009 | A1 |
20090062908 | Bonhoeffer et al. | Mar 2009 | A1 |
20090076598 | Salahieh et al. | Mar 2009 | A1 |
20090082619 | De Marchena | Mar 2009 | A1 |
20090088836 | Bishop et al. | Apr 2009 | A1 |
20090099410 | De Marchena | Apr 2009 | A1 |
20090112309 | Jaramillo et al. | Apr 2009 | A1 |
20090131849 | Maurer et al. | May 2009 | A1 |
20090132035 | Roth et al. | May 2009 | A1 |
20090137861 | Goldberg et al. | May 2009 | A1 |
20090138079 | Tuval et al. | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090164005 | Dove et al. | Jun 2009 | A1 |
20090171432 | Von Segesser et al. | Jul 2009 | A1 |
20090171447 | Von Segesser et al. | Jul 2009 | A1 |
20090171456 | Kveen et al. | Jul 2009 | A1 |
20090177266 | Powell et al. | Jul 2009 | A1 |
20090192601 | Rafiee et al. | Jul 2009 | A1 |
20090210052 | Forster et al. | Aug 2009 | A1 |
20090216322 | Le et al. | Aug 2009 | A1 |
20090222076 | Figulla et al. | Sep 2009 | A1 |
20090224529 | Gill | Sep 2009 | A1 |
20090234318 | Loulmet et al. | Sep 2009 | A1 |
20090234435 | Johnson et al. | Sep 2009 | A1 |
20090234443 | Ottma et al. | Sep 2009 | A1 |
20090240320 | Tuval et al. | Sep 2009 | A1 |
20090248149 | Gabbay | Oct 2009 | A1 |
20090276040 | Rowe et al. | Nov 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20090287299 | Tabor et al. | Nov 2009 | A1 |
20090292262 | Adams et al. | Nov 2009 | A1 |
20090319037 | Rowe et al. | Dec 2009 | A1 |
20090326575 | Galdonik et al. | Dec 2009 | A1 |
20100016958 | St. Goar et al. | Jan 2010 | A1 |
20100021382 | Dorshow et al. | Jan 2010 | A1 |
20100023117 | Yoganathan et al. | Jan 2010 | A1 |
20100036479 | Hill et al. | Feb 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100082094 | Quadri et al. | Apr 2010 | A1 |
20100161041 | Maisano et al. | Jun 2010 | A1 |
20100168839 | Braido et al. | Jul 2010 | A1 |
20100179641 | Ryan et al. | Jul 2010 | A1 |
20100185277 | Braido et al. | Jul 2010 | A1 |
20100185278 | Schankereli | Jul 2010 | A1 |
20100191326 | Alkhatib | Jul 2010 | A1 |
20100192402 | Yamaguchi et al. | Aug 2010 | A1 |
20100204781 | Alkhatib | Aug 2010 | A1 |
20100210899 | Schankereli | Aug 2010 | A1 |
20100217382 | Chau et al. | Aug 2010 | A1 |
20100249489 | Jarvik | Sep 2010 | A1 |
20100249923 | Alkhatib et al. | Sep 2010 | A1 |
20100280604 | Zipory et al. | Nov 2010 | A1 |
20100286768 | Alkhatib | Nov 2010 | A1 |
20100298755 | McNamara et al. | Nov 2010 | A1 |
20100298931 | Quadri et al. | Nov 2010 | A1 |
20110004296 | Lutter et al. | Jan 2011 | A1 |
20110015616 | Straubinger et al. | Jan 2011 | A1 |
20110015728 | Jimenez et al. | Jan 2011 | A1 |
20110015729 | Jimenez et al. | Jan 2011 | A1 |
20110029072 | Gabbay | Feb 2011 | A1 |
20110066231 | Cartledge et al. | Mar 2011 | A1 |
20110066233 | Thornton et al. | Mar 2011 | A1 |
20110112632 | Chau et al. | May 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110137408 | Bergheim | Jun 2011 | A1 |
20110224655 | Asirvatham et al. | Sep 2011 | A1 |
20110224678 | Gabbay | Sep 2011 | A1 |
20110224728 | Martin et al. | Sep 2011 | A1 |
20110224784 | Quinn | Sep 2011 | A1 |
20110245911 | Quill et al. | Oct 2011 | A1 |
20110251682 | Murray, III et al. | Oct 2011 | A1 |
20110264191 | Rothstein | Oct 2011 | A1 |
20110264206 | Tabor | Oct 2011 | A1 |
20110288637 | De Marchena | Nov 2011 | A1 |
20110319988 | Schankereli et al. | Dec 2011 | A1 |
20110319989 | Lane et al. | Dec 2011 | A1 |
20120010694 | Lutter et al. | Jan 2012 | A1 |
20120016468 | Robin et al. | Jan 2012 | A1 |
20120022640 | Gross et al. | Jan 2012 | A1 |
20120035703 | Lutter et al. | Feb 2012 | A1 |
20120035713 | Lutter et al. | Feb 2012 | A1 |
20120035722 | Tuval | Feb 2012 | A1 |
20120053686 | McNamara et al. | Mar 2012 | A1 |
20120059487 | Cunanan et al. | Mar 2012 | A1 |
20120089171 | Hastings et al. | Apr 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120101572 | Kovalsky et al. | Apr 2012 | A1 |
20120116351 | Chomas et al. | May 2012 | A1 |
20120123529 | Levi et al. | May 2012 | A1 |
20120158129 | Duffy et al. | Jun 2012 | A1 |
20120165930 | Gifford, III et al. | Jun 2012 | A1 |
20120179244 | Schankereli et al. | Jul 2012 | A1 |
20120203336 | Annest | Aug 2012 | A1 |
20120215303 | Quadri et al. | Aug 2012 | A1 |
20120226348 | Lane et al. | Sep 2012 | A1 |
20120283824 | Lutter et al. | Nov 2012 | A1 |
20120289945 | Segermark | Nov 2012 | A1 |
20130030522 | Rowe et al. | Jan 2013 | A1 |
20130053950 | Rowe et al. | Feb 2013 | A1 |
20130066341 | Ketai et al. | Mar 2013 | A1 |
20130079873 | Migliazza et al. | Mar 2013 | A1 |
20130131788 | Quadri et al. | May 2013 | A1 |
20130172978 | Vidlund et al. | Jul 2013 | A1 |
20130184811 | Rowe et al. | Jul 2013 | A1 |
20130190860 | Sundt, III | Jul 2013 | A1 |
20130190861 | Chau et al. | Jul 2013 | A1 |
20130197622 | Mitra et al. | Aug 2013 | A1 |
20130226288 | Goldwasser et al. | Aug 2013 | A1 |
20130231735 | Deem et al. | Sep 2013 | A1 |
20130274874 | Hammer | Oct 2013 | A1 |
20130282101 | Eidenschink et al. | Oct 2013 | A1 |
20130310928 | Morriss et al. | Nov 2013 | A1 |
20130317603 | McLean et al. | Nov 2013 | A1 |
20130325041 | Annest et al. | Dec 2013 | A1 |
20130325110 | Khalil et al. | Dec 2013 | A1 |
20130338752 | Geusen et al. | Dec 2013 | A1 |
20140046433 | Kovalsky | Feb 2014 | A1 |
20140081323 | Hawkins | Mar 2014 | A1 |
20140094918 | Vishnubholta et al. | Apr 2014 | A1 |
20140142691 | Pouletty | May 2014 | A1 |
20140163668 | Rafiee | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140194983 | Kovalsky et al. | Jul 2014 | A1 |
20140214159 | Vidlund et al. | Jul 2014 | A1 |
20140222142 | Kovalsky et al. | Aug 2014 | A1 |
20140243966 | Garde et al. | Aug 2014 | A1 |
20140249621 | Eidenschink | Sep 2014 | A1 |
20140277419 | Garde et al. | Sep 2014 | A1 |
20140296969 | Tegels et al. | Oct 2014 | A1 |
20140296970 | Ekvall et al. | Oct 2014 | A1 |
20140296971 | Tegels et al. | Oct 2014 | A1 |
20140296972 | Tegels et al. | Oct 2014 | A1 |
20140296975 | Tegels et al. | Oct 2014 | A1 |
20140303718 | Tegels et al. | Oct 2014 | A1 |
20140309732 | Solem | Oct 2014 | A1 |
20140316516 | Vidlund et al. | Oct 2014 | A1 |
20140324160 | Benichou et al. | Oct 2014 | A1 |
20140324161 | Tegels et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140331475 | Duffy et al. | Nov 2014 | A1 |
20140358224 | Tegels et al. | Dec 2014 | A1 |
20140364942 | Straubinger et al. | Dec 2014 | A1 |
20140364944 | Lutter et al. | Dec 2014 | A1 |
20140379076 | Vidlund et al. | Dec 2014 | A1 |
20150005874 | Vidlund et al. | Jan 2015 | A1 |
20150011821 | Gorman et al. | Jan 2015 | A1 |
20150025553 | Del Nido et al. | Jan 2015 | A1 |
20150057705 | Vidlund | Feb 2015 | A1 |
20150073542 | Heldman | Mar 2015 | A1 |
20150073545 | Braido | Mar 2015 | A1 |
20150094802 | Buchbinder et al. | Apr 2015 | A1 |
20150105856 | Rowe et al. | Apr 2015 | A1 |
20150119936 | Gilmore et al. | Apr 2015 | A1 |
20150119978 | Tegels et al. | Apr 2015 | A1 |
20150127093 | Hosmer et al. | May 2015 | A1 |
20150127096 | Rowe et al. | May 2015 | A1 |
20150134050 | Solem et al. | May 2015 | A1 |
20150142100 | Morriss et al. | May 2015 | A1 |
20150142101 | Coleman et al. | May 2015 | A1 |
20150142103 | Mdlund | May 2015 | A1 |
20150142104 | Braido | May 2015 | A1 |
20150173897 | Raanani et al. | Jun 2015 | A1 |
20150196393 | Vidlund et al. | Jul 2015 | A1 |
20150196688 | James | Jul 2015 | A1 |
20150202044 | Chau et al. | Jul 2015 | A1 |
20150216653 | Freudenthal | Aug 2015 | A1 |
20150216660 | Pintor | Aug 2015 | A1 |
20150223820 | Olson | Aug 2015 | A1 |
20150223934 | Vidlund et al. | Aug 2015 | A1 |
20150238312 | Lashinski | Aug 2015 | A1 |
20150238729 | Jenson et al. | Aug 2015 | A1 |
20150272731 | Racchini et al. | Oct 2015 | A1 |
20150305860 | Wang et al. | Oct 2015 | A1 |
20150305864 | Quadri et al. | Oct 2015 | A1 |
20150305868 | Lutter et al. | Oct 2015 | A1 |
20150327995 | Morin et al. | Nov 2015 | A1 |
20150328001 | McLean | Nov 2015 | A1 |
20150335424 | McLean | Nov 2015 | A1 |
20150335429 | Morriss et al. | Nov 2015 | A1 |
20150342717 | O'Donnell et al. | Dec 2015 | A1 |
20150351903 | Morriss et al. | Dec 2015 | A1 |
20150351906 | Hammer et al. | Dec 2015 | A1 |
20160000562 | Siegel | Jan 2016 | A1 |
20160008131 | Christianson | Jan 2016 | A1 |
20160067042 | Murad et al. | Mar 2016 | A1 |
20160074160 | Christianson et al. | Mar 2016 | A1 |
20160106537 | Christianson | Apr 2016 | A1 |
20160113764 | Sheahan | Apr 2016 | A1 |
20160143736 | Vidlund | May 2016 | A1 |
20160151155 | Lutter et al. | Jun 2016 | A1 |
20160206280 | Vidlund et al. | Jul 2016 | A1 |
20160242902 | Morriss | Aug 2016 | A1 |
20160262879 | Meiri et al. | Sep 2016 | A1 |
20160262881 | Schankereli et al. | Sep 2016 | A1 |
20160278955 | Liu et al. | Sep 2016 | A1 |
20160317290 | Chau | Nov 2016 | A1 |
20160324635 | Vidlund et al. | Nov 2016 | A1 |
20160346086 | Solem | Dec 2016 | A1 |
20160367365 | Conklin | Dec 2016 | A1 |
20160367367 | Maisano et al. | Dec 2016 | A1 |
20160367368 | Vidlund et al. | Dec 2016 | A1 |
20170079790 | Vidlund et al. | Mar 2017 | A1 |
20170100248 | Tegels et al. | Apr 2017 | A1 |
20170128208 | Christianson et al. | May 2017 | A1 |
20170181854 | Christianson et al. | Jun 2017 | A1 |
20170252153 | Chau et al. | Sep 2017 | A1 |
20170266001 | Vidlund et al. | Sep 2017 | A1 |
20170281343 | Christianson et al. | Oct 2017 | A1 |
20170312076 | Lutter et al. | Nov 2017 | A1 |
20170312077 | Vidlund et al. | Nov 2017 | A1 |
20170319333 | Tegels et al. | Nov 2017 | A1 |
20180028314 | Ekvall et al. | Feb 2018 | A1 |
20180078368 | Vidlund et al. | Mar 2018 | A1 |
20180078370 | Kovalsky et al. | Mar 2018 | A1 |
20180147055 | Vidlund et al. | May 2018 | A1 |
20180193138 | Vidlund | Jul 2018 | A1 |
20180263618 | Vidlund et al. | Sep 2018 | A1 |
Number | Date | Country |
---|---|---|
2002212418 | Mar 2006 | AU |
1486161 | Mar 2004 | CN |
1961845 | May 2007 | CN |
2902226 | May 2007 | CN |
101146484 | Mar 2008 | CN |
101180010 | May 2008 | CN |
101984938 | Mar 2011 | CN |
102869317 | Jan 2013 | CN |
102869318 | Jan 2013 | CN |
102869321 | Jan 2013 | CN |
103220993 | Jul 2013 | CN |
102639179 | Oct 2014 | CN |
2246526 | Mar 1973 | DE |
19532846 | Mar 1997 | DE |
19546692 | Jun 1997 | DE |
19857887 | Jul 2000 | DE |
19907646 | Aug 2000 | DE |
10049812 | Apr 2002 | DE |
10049813 | Apr 2002 | DE |
10049815 | Apr 2002 | DE |
102006052564 | Dec 2007 | DE |
102006052710 | May 2008 | DE |
102007043830 | Apr 2009 | DE |
102007043831 | Apr 2009 | DE |
0103546 | Mar 1984 | EP |
1057460 | Dec 2000 | EP |
1088529 | Apr 2001 | EP |
1469797 | Nov 2005 | EP |
2111800 | Oct 2009 | EP |
2193762 | Jun 2010 | EP |
2278944 | Feb 2011 | EP |
2747707 | Jul 2014 | EP |
2918248 | Sep 2015 | EP |
2788217 | Jul 2000 | FR |
2815844 | May 2002 | FR |
2003505146 | Feb 2003 | JP |
2005515836 | Jun 2005 | JP |
2008541863 | Nov 2008 | JP |
2009514628 | Apr 2009 | JP |
2009519783 | May 2009 | JP |
2013512765 | Apr 2013 | JP |
1017275 | Aug 2002 | NL |
1271508 | Nov 1986 | SU |
9217118 | Oct 1992 | WO |
9301768 | Feb 1993 | WO |
9829057 | Jul 1998 | WO |
9940964 | Aug 1999 | WO |
9947075 | Sep 1999 | WO |
2000018333 | Apr 2000 | WO |
2000030550 | Jun 2000 | WO |
200041652 | Jul 2000 | WO |
200047139 | Aug 2000 | WO |
2001035878 | May 2001 | WO |
2001049213 | Jul 2001 | WO |
2001054624 | Aug 2001 | WO |
2001054625 | Aug 2001 | WO |
2001056512 | Aug 2001 | WO |
2001061289 | Aug 2001 | WO |
200176510 | Oct 2001 | WO |
2001082840 | Nov 2001 | WO |
2002004757 | Jan 2002 | WO |
2002022054 | Mar 2002 | WO |
2002028321 | Apr 2002 | WO |
2002036048 | May 2002 | WO |
2002041789 | May 2002 | WO |
2002043620 | Jun 2002 | WO |
2002049540 | Jun 2002 | WO |
2002076348 | Oct 2002 | WO |
2003003943 | Jan 2003 | WO |
2003030776 | Apr 2003 | WO |
2003047468 | Jun 2003 | WO |
2003049619 | Jun 2003 | WO |
2004019825 | Mar 2004 | WO |
2005102181 | Nov 2005 | WO |
2006014233 | Feb 2006 | WO |
2006034008 | Mar 2006 | WO |
2006064490 | Jun 2006 | WO |
2006070372 | Jul 2006 | WO |
2006105009 | Oct 2006 | WO |
2006113906 | Oct 2006 | WO |
2006127756 | Nov 2006 | WO |
2007081412 | Jul 2007 | WO |
2007100408 | Sep 2007 | WO |
2008005405 | Jan 2008 | WO |
2008035337 | Mar 2008 | WO |
2008091515 | Jul 2008 | WO |
2008125906 | Oct 2008 | WO |
2008147964 | Dec 2008 | WO |
2009024859 | Feb 2009 | WO |
2009026563 | Feb 2009 | WO |
2009045338 | Apr 2009 | WO |
2009132187 | Oct 2009 | WO |
2010090878 | Aug 2010 | WO |
2010098857 | Sep 2010 | WO |
2010121076 | Oct 2010 | WO |
2011017440 | Feb 2011 | WO |
2011022658 | Feb 2011 | WO |
2011069048 | Jun 2011 | WO |
2011072084 | Jun 2011 | WO |
2011106735 | Sep 2011 | WO |
2011109813 | Sep 2011 | WO |
2011159342 | Dec 2011 | WO |
2011163275 | Dec 2011 | WO |
2012027487 | Mar 2012 | WO |
2012036742 | Mar 2012 | WO |
2012095116 | Jul 2012 | WO |
2012177942 | Dec 2012 | WO |
2013028387 | Feb 2013 | WO |
2013045262 | Apr 2013 | WO |
2013059747 | Apr 2013 | WO |
2013096411 | Jun 2013 | WO |
2013175468 | Nov 2013 | WO |
2014121280 | Aug 2014 | WO |
2014144937 | Sep 2014 | WO |
2014162306 | Oct 2014 | WO |
2014189974 | Nov 2014 | WO |
2015051430 | Apr 2015 | WO |
2015058039 | Apr 2015 | WO |
2015063580 | May 2015 | WO |
2015065646 | May 2015 | WO |
2015120122 | Aug 2015 | WO |
2015138306 | Sep 2015 | WO |
2015173609 | Nov 2015 | WO |
2016112085 | Jul 2016 | WO |
2016126942 | Aug 2016 | WO |
2016168609 | Oct 2016 | WO |
2016196933 | Dec 2016 | WO |
2017096157 | Jun 2017 | WO |
2017132008 | Aug 2017 | WO |
2017218375 | Dec 2017 | WO |
2018005779 | Jan 2018 | WO |
2018013515 | Jan 2018 | WO |
Entry |
---|
US 9,155,620 B2, 10/2015, Gross et al. (withdrawn) |
Wheatley, M.D., David J., “Valve Prostheses,” Rob & Smith's Operative Surgery, Fourth Edition, pp. 415-424, ButtenNorths 1986. |
Yoganathan, A. P. et al., “The Current Status of Prosthetic Heart Valves,” In Polymetric Materials and Artificial Organs, Mar. 20, 1983, pp. 111-150, American Chemical Society. |
“Shape Memory Alloys,” Retrieved from the Internet: <http://webdocs.cs.ualberta.ca/˜database/MEMS/sma.html>, Feb. 5, 2016, 3 pages. |
Examination Report No. 1 for Australian Application No. 2014274056, dated Mar. 6, 2018, 4 pages. |
Examination Report No. 2 for Australian Application No. 2014274056, dated May 9, 2018, 2 pages. |
Second Office Action for Chinese Application No. 201480037269.5, dated Nov. 6, 2017, 6 pages. |
Third Office Action for Chinese Application No. 201480037269.5, dated Jun. 19, 2018, 8 pages. |
Examination Report for European Application No. 14734333.9, dated Oct. 20, 2016, 6 pages. |
Notice of Reasons for Rejection for Japanese Application No. 2016-517032, dated Feb. 13, 2018, 5 pages. |
Extended European Search Report for European Application No. 18160595.7, dated Sep. 14, 2018, 7 pages. |
Office Action for U.S. Appl. No. 14/950,656, dated Apr. 22, 2016, 5 pages. |
International Search Report and Written Opinion for PCT/US2018/047768, dated Nov. 28, 2018. |
U.S. Pat. No. 9,155,620, Oct. 2015, Gross et al. (withdrawn). |
International Search Report and Written Opinion for International Application No. PCT/US2014/040188, dated Nov. 17, 2014, 12 pages. |
Invitation to Pay Additional Fees and Partial International Search Report for International Application No. PCT/US2014/040188, dated Sep. 8, 2014, 5 pages. |
Office Action for Chinese Application No. 201480037269.5, dated Dec. 23, 2016. |
Al Zaibag, Muayed, et al., “Percutaneous Balloon Valvotomy in Tricuspid Stenos's,” British Heart Journal, Jan. 1987, vol. 57. No. 1, pp. 51-53. |
Al-Khaja, N. et al., “Eleven Years' Experience with Carpentier-Edwards Biological Valves in Relation to Survival and Complications,” European Journal of Cardiothoracic Surgery, Jun. 30, 1989, 3:305-311. |
Almagor, Y. et al., “Balloon Expandable Stent Implantation in Stenotic Right Heart Valved Conduits,” Journal of the American College of Cardiology, Nov. 1, 1990, 16(6):1310-1314. |
Andersen, H. R., “History of Percutaneous Aortic Valve Prosthesis,” Herz, Aug. 2009, 34(5):343-346. |
Andersen, H. R., “Transluminal catheter implanted prosthetic heart valves,” International Journal of Angiology, 1998, 7(2): 102-106. |
Benchimol, A. et al., “Simultaneous Left Ventricular Echocardiography and Aortic Blood Velocity During Rapid Right Ventricular Pacing in Man,” The American Journal of the Medical Sciences, Jan.-Feb. 1977, 273(1):55-62. |
Boudjemline, Y. et al., “Steps Toward the Percutaneous Replacement of Atrioventricular Valves: An Experimental Study,” Journal of the American College of Cardiology, Jul. 2005, 46(2):360-365. |
Buckberg, G. et al., “Restoring Papillary Muscle Dimensions During Restoration in Dilated Hearts,” Interactive Cardiovascular and Thoracic Surgery, 2005, 4:475-477. |
Chamberlain, G., “Ceramics Replace Body Parts,” Design News, Jun. 9, 1997, Issue 11, vol. 52, 5 pages. |
Choo, S. J. et al., “Aortic Root Geometry: Pattern of Differences Between Leaflets and Sinuses of Valsava,” The Journal of Heart Valve Disease, Jul. 1999, 8:407-415. |
Declaration of Malcolm J. R. Dalrymple-Hay, Nov. 9, 2012, pp. 1-11; with Curriculum Vitae, Oct. 4, 2012. |
Dotter, C. T. et al., “Transluminal Treatment of Arteriosclerotic Obstruction. Description of a New Technic and a Preliminary Report of its Application,” Circulation, Nov. 1964, 30:654-670. |
Drawbaugh, K., “Feature—Heart Surgeons Explore Minimally Invasive Methods,” Reuters Limited, Jul. 16, 1996, 3 pages. |
G. M. Bernacca, et al., “Polyurethane Heart Valves: Fatigue Failure, Calcification, and Polyurethane Structure,” Journal of Biomedical Materials Research, Mar. 5, 1997, Issue 3, vol. 34, pp. 371-379. |
Gray, H., The Aorta, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://www.bartleby.com/107/142.html>, Dec. 10, 2012, 5 pages. |
Gray, H., The Heart, Anatomy of the Human Body, 1918, Retrieved from the Internet <http://education.yahoo.com/reference/gray/subjects/subject/138>, Aug. 10, 2012, 9 pages. |
Greenhalgh, E. S., “Design and characterization of a biomimetic prosthetic aortic heart valve,” 1994, ProQuest Dissertations and Theses, Department of Fiber and Polymer Science, North Carolina State University at Raleigh, 159 pages. |
H. R. Andersen et al., “Transluminal Implantation of Artificial Heart Valves: Description of a New Expandable Aortic Valve and Initial Results with Implantation by Catheter Technique in Closed Chest Pigs,” European Heart Journal, 1992, Issue 5, vol. 13, pp. 704-708. |
Inoue, K. et al., “Clinical Application of Transvenous Mitral Commissurotomy by a New Balloon Catheter,” The Journal of Thoracic and Cardiovascular Surgery, 1984, 87:394-402. |
Jin, X. Y. et al., “Aortic Root Geometry and Stentless Porcine Valve Competence,” Seminars in Thoracic and Cardiovascular Surgery, Oct. 1999, 11(4):145-150. |
Kolata, G., “Device That Opens Clogged Arteries Gets a Failing Grade in a New Study,” New York Times [online], <http://www.nytimes.com/1991/01/03/health/device-that-opens-clogged-ar-teries-gets-a-faili . . . ,>, published Jan. 3, 1991,retrieved from the Internet on Feb. 5, 2016, 3 pages. |
L. L. Knudsen et al., “Catheter-Implanted Prosthetic Heart Valves. Transluminal Catheter Implantation of a New Expandable Artificial Heart Valve in the Descending Thoracic Aorta in Isolated Vessels and Closed Chest Pigs,” International Journal ofArtificial Organs, 1993, Issue 5, vol. 16, pp. 253-262. |
Lawrence, D. D., “Percutaneous Endovascular Graft: Experimental Evaluation,” Radiology, 1987, 163:357-360. |
Lozonschi, L., et al. “Transapical mitral valved stent implantation: A survival series in swine,” The Journal of Thoracic and Cardiovascular Surgery, 140(2):422-426 (Aug. 2010) published online Mar. 12, 2010, 1 page. |
Lutter, Georg, et al., Mitral valved stent implantation, European Journal of Cardio-Thoracic Surgery, 2010, vol. 38, pp. 350-355. |
Ma, L. et al., “Double-crowned valved stents for off-pump mitral valve replacement,” European Journal of Cardio-Thoracic Surgery, Aug. 2005, 28(2): 194-198. |
Moazami, N. et al., “Transluminal aortic valve placement: A feasibility study with a newly designed collapsible aortic valve,” ASAIO Journal, Sep./Oct. 1996,42(5):M381-M385. |
Orton, C., “Mitralseal: Hybrid Transcatheter Mitral Valve Replacement,” Symposium: Small Animal Proceedings, 2011, pp. 311-312. |
Pavcnik, M.D., Ph.D., Dusan, et al. “Development and Initial Experimental Evaluation of a Prosthetic Aortic Valve for Transcatheter Placement,” Cardiovascular Radiology 1992; 183:151-154. |
Porstmann, W. et al., “Der Verschluß des Ductus Arteriosus Persistens ohne Thorakotomie,” Thoraxchirurgie Vaskuläre Chirurgie, Band 15, Heft 2, Stuttgart, Apr. 1967, pp. 199-203. |
Rashkind, W. J., “Creation of an Atrial Septal Defect Without Thoracotomy,” The Journal of the American Medical Association, Jun. 13, 1966, 196( 11 ): 173-174. |
Rashkind, W. J., “Historical Aspects of Interventional Cardiology: Past, Present, Future,” Texas Heart Institute Journal, Dec. 1986, 13(4):363-367. |
Reul, H. et al., “The Geomety of the Aortic Root in Health, at Valve Disease and After Valve Replacement,” J. Biomechanics, 1990, 23(2):181-191. |
Robert C. Ashton Jr., “Development of an Intraluminal Device for the Treatment of Aortic Regurgitation: Prototype and in Vitro Testing System,” Journal of Thoracic and Cardiovascular Surgery, 1996, Issue/vol. 112, pp. 979-983. |
Rosch, J. et al., “The Birth, Eady Years and Future of Interventional Radiology,” J Vase Interv Radiol., Jul. 2003, 4:841-853. |
Ross, D. N., “Aortic Valve Surgery,” Guys Hospital, London, 1968, pp. 192-197. |
Rousseau, E. P. M. et al., “A Mechanical Analysis of the Closed Hancock Heart Valve Prosthesis,” Journal of Biomechanics, 1998, 21(7):545-562. |
Sabbah, A. N. et al., “Mechanical Factors in the Degeneration of Porcine Bioprosthetic Valves: An Overview,” Dec. 1989, Journal of Cardiac Surgery, 4(4):302-309. |
Selby, M.D., J. Bayne, “Experience with New Retrieval Forceps for Foreign Body Removal in the Vascular, Urinary, and Biliary Systems,” Radiology 1990; 176:535-538. |
Serruys, P.W., et al., “Stenting of Coronary Arteries. Are we the Sorcerer's Apprentice?,” European Heart Journal (1989) 10, 774-782, pp. 37-45, Jun. 13, 1989. |
Sigwart, U., “An Overview of Intravascular Stents: Old and New,” Chapter 48, Interventional Cardiology, 2nd Edition, W.B. Saunders Company, Philadelphia, PA, © 1994, 1990, pp. 803-815. |
Tofeig, M. et al., “Transcatheter Closure of a Mid-Muscular Ventricular Septal Defect with an Amplatzer VSD Occluder Device,” Heart, 1999, 81:438-440. |
Uchida, Barry T., et al., “Modifications of Gianturco Expandable Wire Stents,” AJR:150, May 1988, Dec. 3, 1987, pp. 1185-1187. |
Watt, A.H., et al. “Intravenous Adenosine in the Treatment of Supraventricular Tachycardia; a Dose-Ranging Study and Interaction with Dipyridamole,” British Journal of Clinical Pharmacology (1986), 21, pp. 227-230. |
Webb, J. G. et al., “Percutaneous Aortic Valve Implantation Retrograde from the Femoral Artery,” Circulation, 2006, 113:842-850. |
Number | Date | Country | |
---|---|---|---|
20200205968 A1 | Jul 2020 | US |
Number | Date | Country | |
---|---|---|---|
62550967 | Aug 2017 | US |