This invention relates generally to medical implants, and more particularly to prosthetic joints having conformal geometries and wear resistant properties.
Medical implants, such as knee, hip, and spine orthopedic replacement joints and other joints and implants have previously consisted primarily of a hard metal motion element that engages a polymer contact pad. This has usually been a high density high wear resistant polymer, for example Ultra-High Molecular Weight Polyethylene (UHMWPE), or other resilient material. The problem with this type of configuration is the polymer eventually begins to degrade due to the caustic nature of blood, the high impact load, and high number of load cycles. As the resilient member degrades, pieces of polymer may be liberated into the joint area, often causing accelerated wear, implant damage, and tissue inflammation and harm.
It is desirable to employ a design using a hard member on a hard member (e.g. metals or ceramics), thus eliminating the polymer. Such a design is expected to have a longer service life. Extended implant life is important as it is now often required to revise or replace implants. Implant replacement is undesirable from a cost, inconvenience, patient health, and resource consumption standpoint.
Implants using two hard elements of conventional design will be, however, subject to rapid wear. First, a joint having one hard, rigid element on another will not be perfectly shaped to a nominal geometry. Such imperfections will result in points of high stress, thus causing localized wear. Furthermore, two hard elements would lack the resilient nature of a natural joint. Natural cartilage has a definite resilient property, absorbing shock and distributing periodic elevated loads. This in turn extends the life of a natural joint and reduces stress on neighboring support bone and tissue. If two rigid members are used, this ability to absorb the shock of an active lifestyle could be diminished. The rigid members would transmit the excessive shock to the implant to bone interface. Some cyclical load in these areas stimulates bone growth and strength; however, excessive loads or shock stress or impulse loading the bone-to-implant interface will result in localized bone mass loss, inflammation, and reduced support.
These and other shortcomings of the prior art are addressed by the present invention, which provides a prosthetic joint having wear-resistant contacting surfaces with conformal properties.
According to one aspect of the invention, a prosthetic member includes: a cup with an outer surface that is bone-implantable, the cup including a first indexing feature; an insert disposed inside the cup, the insert comprising a rigid material and including a concave interior defining a nominal surface, the interior including a cantilevered flange defined by an undercut in the insert, the flange defining a wear-resistant first contact surface which protrudes inward relative to the nominal surface, the insert including a second indexing feature; wherein the first and second indexing features engage each other so as to retain the insert in a fixed angular orientation relative to the cup.
The invention may be best understood by reference to the following description taken in conjunction with the accompanying drawing figures in which:
The present invention provides a specialized implant contact interface (implant geometry). In this geometry, an implanted joint includes two typically hard (i.e. metal or ceramic) members; however, at least one of the members is formed such that it has the characteristics of a resilient member, such as: the ability to absorb an impact load; the ability to absorb high cycle loading; the ability to be self cleaning; and the ability to function as a hydrodynamic and/or hydrostatic bearing.
Generally, the contact resilient member is flexible enough to allow elastic deformation and avoid localized load increases, but not so flexible as to risk plastic deformation, cracking and failure. In particular, the resilient member is designed such that the stress levels therein will be below the high-cycle fatigue endurance limit. As an example, the resilient member might be only about 10% to about 20% as stiff as a comparable solid member. It is also possible to construct the resilient member geometry with a variable stiffness, i.e. having a low effective spring rate for small deflections and a higher rate as the deflections increase, to avoid failure under sudden heavy loads.
The Z7 region may be local to the contact member 34 or may be one of several. In any case, it may contain a means of providing fluid pressure to the internal contact cavity to produce a hydrostatic interface. A passive (powered by the regular motion of the patient) or active (powered by micro components and a dedicated subsystem) pumping means and optional filtration may be employed to provide the desired fluid interaction.
A hydrodynamic interface is desirable as, by definition, it means the contact member 34 is not actually touching the mating joint member. The lead-in and lead-out shapes Z1, Z2, Z5, Z6 are configured to generate a shear stress in the working fluid so as to create the fluid “wedge” of a hydrodynamic support.
The contact member 34 includes an osseointegration surface “S”, which is a surface designed to be infiltrated by bone growth to improve the connection between the implant and the bone. Osseointegration surfaces may be made from materials such as TRABECULAR METAL, textured metal, or sintered or extruded implant integration textures. TRABECULAR METAL is an open metal structure with a high porosity (e.g. about 80%) and is available from Zimmer, Inc., Warsaw, Ind. 46580 USA.
It may be desirable to create a return passage 62 from the seal void region 60 back into the internal zone 64 in order to stabilize the pressure between the two and to allow for retention of the internal zone fluid if desired. This is especially relevant when the hydrostatic configuration is considered.
The first member 102 includes a body 106 with a perimeter flange 116 extending in a generally radially outward direction at one end. Optionally, a disk-like base 108 may be disposed at the end of the body 106 opposite the flange 116, in which case a circumferential gap 111 will be defined between the base 106 and the flange 116. The first member 102 is constructed from a rigid material. As used here, the term “rigid” refers to a material which has a high stiffness or modulus of elasticity. Nonlimiting examples of rigid materials having appropriate stiffness for the purpose of the present invention include stainless steels, cobalt-chrome alloys, titanium, aluminum, and ceramics. By way of further example, materials such as polymers would generally not be considered “rigid” for the purposes of the present invention. Generally, a rigid material should have a modulus of elasticity of about 0.5×106 psi or greater. Collectively, one end of the body 106 and the flange 116 define a wear-resistant, concave first contact surface 118. As used herein, the term “wear-resistant” refers to a material which is resistant to surface material loss when placed under load. Generally the wear rate should be no more than about 0.5 μm (0.000020 in.) to about 1.0 μm (0.000040 in.) per million cycles when tested in accordance with ASTM Guide F2423. As a point of reference, it is noted that any of the natural joints in a human body can easily experience one million operating cycles per year. Nonlimiting examples of wear-resistant materials include solid metals and ceramics. Known coatings such as titanium nitride, chrome plating, carbon thin films, and/or diamond-like carbon coatings may be used as a face layer to impart wear resistance to the first contact surface 118. Optionally, the first contact surface 118 could comprise a substantially thicker face layer (not shown) of a wear-resistant material such as ultra-high molecular weight (UHMW) polyethylene.
The first contact surface 118 includes a protruding peripheral rim 120 (see
The annular configuration of first contact surface 118 with the protruding rim 120 results in a configuration which permits only pivoting and rotational motion, and is statically and dynamically determinate for the life of the joint 100. In contrast, prior art designs employing mating spherical shapes, even very accurate shapes, quickly reach a statically and dynamically indeterminate condition after use and wear. This condition accelerates wear, contributes to the fretting corrosion wear mechanism, and permits undesired lateral translation between the joint members.
The second member 104 is also made from a rigid material and has a wear-resistant, convex second contact surface 124. The first and second contact surfaces 118 and 124 bear directly against each other so as to transfer axial and lateral loads from one member to the other while allowing pivoting motion between the two members 102 and 104.
Nominally the first and second members 102 and 104 define a “ring” or “band” contact interface therebetween. In practice it is impossible to achieve surface profiles completely free of minor imperfections and variations. If the first and second members 102 and 104 were both completely rigid, this would cause high Hertzian contact stresses and rapid wear. Accordingly, an important feature of the illustrated joint 100 is that the flange 116 (and thus the first contact surface 118) of the first member 102 is conformable to the second contact surface 124 when the joint is placed under load.
The conformable nature of the flange 116 is explained in more detail with reference to
For comparative purposes,
To achieve this controlled deflection, the flange 116 is thin enough to permit bending under working loads, but not so thin as to allow material yield or fatigue cracking The deflection is opposed by the elasticity of the flange 116 in bending, as well as the hoop stresses in the flange 116. To achieve long life, the first member 102 is sized so that stresses in the flange 116 will be less than the endurance limit of the material, when a selected external load is applied. In this particular example, the joint 100 is intended for use between two spinal vertebrae, and the design average axial working load is in the range of about 0 N (0 lbs.) to about 1300 N (300 lbs.). These design working loads are derived from FDA-referenced ASTM and ISO standards for spinal disc prostheses. In this example, the thickness of the flange 116, at a root 126 where it joins the body 106 (see
The joint members may include multiple rims. For example,
If present, the circumferential gap between the flange and the base of the joint member may be filled with resilient nonmetallic material to provide damping and/or additional spring restoring force to the flange.
As discussed above, the joint may incorporate a wiper seal. For example,
The joint construction described above can be extended into a three-part configuration. For example,
The first member 602 is hollow and includes a disk-like base 606 and a cup 608, interconnected by a peripheral wall 610. An interior cavity 612 is defined between the base 606 and the cup 608. The cup 608 is constructed from a rigid material and defines a wear-resistant, concave first contact surface 614. The first contact surface 614 includes a protruding peripheral rim 616, and a recessed central portion 618, which may also be considered a “pocket” or a “relief”. The rim 616 may have a conical or curved cross-sectional shape. The interior cavity 612 may be filled with resilient nonmetallic material to provide damping and/or additional spring restoring force to the flange. Examples of suitable resilient materials include polymers, natural or synthetic rubbers, and the like.
The second member 604 is constructed from a rigid material and has a wear-resistant, convex second contact surface 620. The first and second contact surfaces 614 and 616 bear directly against each other so as to transfer axial and lateral loads from one member to the other while allowing pivoting motion between the two members 602 and 604.
As described above with reference to the prosthetic joint 100, the cup 606 of the first member 602 is thin enough to permit bending under working loads, but not so thin as to allow material yield or fatigue cracking. The first contact surface 614 is thus conformable to the second contact surface 620 when the prosthetic joint 600 is placed under external load.
An inverted configuration of hollow members is also possible. For example,
The second member 704 is hollow and includes a dome 714 connected to a peripheral wall 716. An interior cavity 718 is defined behind the dome 714. The dome 714 defines a wear-resistant, convex second contact surface 720, which is shaped and sized enough to permit bending under working loads, but not so as to allow material yield or fatigue cracking The second contact surface 720 is thus conformable to the first contact surface 708 when the prosthetic joint 700 is placed under external load.
The first and second contact surfaces 708 and 720 bear directly against each other so as to transfer axial and lateral loads from one member to the other while allowing pivoting motion between the two members 702 and 704.
Any of the contact surfaces described above may be provided with one or more grooves formed therein to facilitate flow of fluid or debris. For example,
The first member 1002 is constructed from a rigid material as described above. The first member 1002 is concave and may generally be thought of as a “cup”, although it need not have any particular degree of curvature. Its interior defines a nominal cup surface 1006 shown by the dashed line in
The interior also includes an annular second flange 1018 which is located at or near an outer peripheral edge 1020 of the first member 1002 and which extends in a generally axial direction relative to the axis A. The second flange 1018 is defined in part by an undercut groove 1022 formed in the first member 1002. The second flange 1018 includes a protruding second contact rim 1024. As used herein, the term “protruding” as applied to the second contact rim 1024 means that the second contact rim 1024 lies inside of the nominal cup surface 1006 when the joint 1000 is assembled. The second contact rim 1024 may have a curved or toroidal cross-sectional shape. Depending on the particular application, joint 1000 may include more than two flanges defining more than two contact rims.
In the illustrated example, the first member 1002 includes a face layer 1026 of a known coating such as titanium nitride, chrome plating, carbon thin films, and/or diamond-like carbon coatings, and/or a another substantially thicker wear-resistant material such as ultra-high molecular weight (UHMW) polyethylene. This face layer 1026 is used to impart wear resistance, as described above. The face layer 1026 may be extraordinarily thin. In this particular example, its as-applied thickness is about 0.0041 mm (0.00016 in.), or 160 millionths of an inch thick. The face layer 1026 is applied at a substantially uniform thickness over the surface profile which is defined by machined or formed features of the substrate. Alternatively, and especially if a much thicker face layer were used, the face layer could be profiled so as to define both the nominal cup surface 1006 and the first and second contact rims 1016 and 1024.
The second member 1004 is also made from a rigid material and has a wear-resistant, convex contact surface 1028. In the specific example illustrated, the second member 1004 includes a face layer 1030 of a known coating such as titanium nitride, chrome plating, carbon thin films, and/or diamond-like carbon coatings, and/or a another substantially thicker wear-resistant material such as ultra-high molecular weight (UHMW) polyethylene. This face layer 1030 is used to impart wear resistance, and may be quite thin, as described above. The first and second contact rims 1016 and 1024 bear directly against the contact surface 1028 so as to transfer axial and lateral loads from one member to the other while allowing pivoting motion between the two members 1002 and 1004.
The annular configuration of contact rims 1016 and 1024 results in a joint configuration which permits only pivoting and rotational motion, and is statically and dynamically determinate for the life of the joint 1000. In particular, the presence of the relatively widely-spaced contact rims 1016 and 1024, and the peripheral positioning of the second contact rim 1024 is highly effective in resisting any translation of the first and second members 1002 and 1004 lateral to the axis A.
Nominally the first and second contact rims 1016 and 1024 define two separate “ring” or “band” contact interfaces with the contact surface 1028 of the second member 1004. In practice it is impossible to achieve surface profiles completely free of minor imperfections and variations. If the first and second members 1002 and 1004 were both completely rigid, this would cause high Hertzian contact stresses (i.e. non-uniform contact) and rapid wear. Accordingly, an important feature of the illustrated joint 1000 is that the flanges 1008 and 1018 (and thus the contact rims 1016 and 1024) of the first member 1002 are conformable to the contact surface 1028 when the joint 1000 is placed under load. The flanges 1008 and 1018 can conform to the imperfect contact surface 1028 and deflect in an irregular shape. In other words, in addition to any uniform deflection which may be present, the deflected shape of the flanges 1008 and 1018 can include one or more specific locations or portions that are deflected towards or away from the nominal free shape to a greater or lesser degree than the remainder of the flanges 1008 and 1018. To achieve this controlled deflection, the flanges 1008 and 1018 are thin enough to permit bending under working loads, but not so thin as to allow material yield or fatigue cracking, or to exceed the endurance limit of the material. The deflection is opposed by the elasticity of the flanges 1008 and 1018 in bending, as well as the hoop stresses in the flanges 1008 and 1018.
The contact rims 1016 and 1024 are designed in conjunction with the contact surface 1028 to create a wear characteristic that is constantly diminishing (similar to an asymptotic characteristic). With reference to
The configuration of the flanges 1008 and 1018 are important in developing the constantly diminishing wear characteristics described above. In particular, the flanges 1008 and 1018 are sized and shaped so that deflections of the contact rims 1016 and 1024 under varying load are always essentially normal to their respective tangent points on the opposing contact surface 1028, as the joint 1000 is loaded and unloaded. This ensures that the position of each of the contact bands remains constant and that the contact bands remain substantially uniform around the entire periphery of the joint 1000.
An inverted configuration of the joint described above may be used. For example,
A For purposes of explanation and illustration the first member 1202 will be described relative to a “balanced centroidal axis”, labeled “N1” in
The first member 1202 is constructed from a rigid material and may generally be thought of as a “cup”, as described above. Its interior defines a nominal cup surface 1206. The interior includes a cantilevered first flange 1208, defined in part by an undercut groove 1212 formed in the first member 1202. Without regard to the exact direction that the flange 1208 extends, it may be considered to be cantilevered relative to the remainder of the first member 1202. In other words, when viewed in cross-section, it is a projecting structure, that is supported at one end and carries a load at the other end or along its length. A ramped surface 1214 forms a transition from the groove 1212 to the nominal cup surface 1206. The first flange 1208 includes a protruding first contact rim 1216. The first contact rim 1216 may have a straight, curved, or toroidal cross-sectional shape.
The first flange 1208 has an angular offset relative to the balanced centroidal axis N1. In other words, the first flange 1208 is asymmetric to the balanced centroidal axis N1. This is also referred to as a “non-axisymmetric” condition. In the particular example and view shown in
The interior also includes a cantilevered second flange 1218 which is defined in part by an undercut groove 1222 formed in the first member 1202. The second flange 1218 includes a protruding second contact rim 1224. The second contact rim 1224 may have a straight, curved, or toroidal cross-sectional shape.
The second member 1204 is also made from a rigid material and has a wear-resistant, convex contact surface 1228. The first and second contact rims 1216 and 1224 bear directly against the contact surface 1228 so as to transfer axial and lateral loads from one member to the other while allowing pivoting motion between the two members 1202 and 1204. The annular configuration of contact rims 1216 and 1224 results in a joint configuration which permits only pivoting and rotational motion, and is statically and dynamically determinate for the life of the joint 1200.
Nominally the first and second contact rims 1216 and 1224 define two separate “ring” or “band” contact interfaces with the contact surface 1228 of the second member 1204. The flanges 1208 and 1218 (and thus the contact rims 1216 and 1224) of the first member 1202 are conformable to the contact surface 1228 when the joint 1200 is placed under load. The flanges 1208 and 1218 can conform to the imperfect contact surface 1228 and deflect in an irregular shape, in the manner described above for the joint 1200.
The facing surfaces of either or both of the first and second members 1202 and 1204 may include a face layer of a known coating such as titanium nitride, chrome plating, carbon thin films, and/or diamond-like carbon coatings, and/or a another substantially thicker wear-resistant material such as ultra-high molecular weight (UHMW) polyethylene. This face layer is used to impart wear resistance, as described above.
Depending on the specific application, the second flange 1218 may have an angular offset like the first flange 1208. For example,
The flange of the joint members described above need not be circular, elliptical, or another symmetrical shape in plan view, and need not lie in a single plane. For example,
The first flange 1308 (and therefore the first contact rim 1316) have a “saddle” shape. In this particular example it has a racetrack shape in plan view, and the portions at the ends of the major axis of the racetrack shape are elevated (in the z-direction) relative to the remainder of the shape. The first contact rim 1316 is shaped so as to define a contact band in which some or all points on its surface lie on a sphere (or otherwise match the shape of the mating convex joint member described above). The second flange 1318 could have a similar saddle shape as well.
The prosthetic joints described herein may include one or more flanges with an open perimeter. For example,
A balanced centroidal axis “N2”, may be considered to pass through the first member 1402. This axis N2 is defined in the same manner as the balanced centroidal axis “N1” described above. The first member 1402 is constructed from a rigid material and may generally be thought of as a “cup”, as described above. Its interior defines a nominal cup surface 1406. The interior includes a cantilevered first flange 1408, defined in part by an undercut groove 1412 formed in the first member 1402. A ramped surface 1414 forms a transition from the groove 1412 to the nominal cup surface 1406. The first flange 1408 includes a protruding first contact rim 1416. The first contact rim 1416 may have a straight, curved, or toroidal cross-sectional shape.
The first flange 1408 has an angular offset relative to the balanced centroidal axis N2, in other words it is asymmetric relative to the balanced centroidal axis N2. The interior also includes a cantilevered second flange 1418 which is defined in part by an undercut groove 1422 formed in the first member 1402. The second flange 1418 includes a protruding second contact rim 1424. The second contact rim 1424 may have a straight, curved, or toroidal cross-sectional shape.
In the example shown in
The interior also includes a cantilevered third flange 1429 which is defined in part by an undercut groove 1430 formed in the first member 1402. The third flange 1418 includes a protruding third contact rim 1432. The third contact rim 1432 may have a straight, curved, or toroidal cross-sectional shape. As best seen in
The third flange 1429 could be symmetric or asymmetric relative to the balanced centroidal axis N2.
The second member 1402 is also made from a rigid material and has a wear-resistant, convex contact surface 1428. The first, second, and third contact rims 1416, 1424, and 1432, bear directly against the contact surface 1428 so as to transfer axial and lateral loads from one member to the other while allowing pivoting motion between the two members 1402 and 1404.
Nominally the first, second, and third contact rims 1416, 1424, and 1432 define three separate “ring” or “band” contact interfaces with the contact surface 1428 of the second member 1404. The flanges 1408, 1418, and 1429 (and thus the contact rims 1216, 1224, and 1432) of the first member 1402 are conformable to the contact surface 1428 when the joint 1400 is placed under load. The flanges 1408, 1418, and 1429 can conform to the imperfect contact surface 1428 and deflect in an irregular shape, in the manner described above for the joint 1000.
The facing surfaces of either or both of the first and second members 1402 and 1404 may include a face layer of a known coating such as titanium nitride, chrome plating, carbon thin films, and/or diamond-like carbon coatings, and/or a another substantially thicker wear-resistant material such as ultra-high molecular weight (UHMW) polyethylene. This face layer is used to impart wear resistance, as described above.
Any of the flanges may have an open perimeter. For example,
The member 1502 is constructed from a rigid material and generally has a concave “cup” shape as described above. It may also be bone-implantable as described above. Its interior defines a nominal cup surface 1506. The interior includes a cantilevered flange 1508, defined in part by an undercut groove 1512 formed in the first member 1502. A ramped surface 1514 forms a transition from the groove 1512 to the nominal cup surface 1506. The flange 1508 includes a protruding first contact rim 1516. The first contact rim 1516 may have a straight, curved, or toroidal cross-sectional shape. The flange 1508 may include an angular offset relative to a balanced centroidal of the joint member 1502, as described above.
A peripheral groove 1520 is formed in the nominal cup surface 1506. In the example shown in
The contact ring 1522 is made of a rigid material and has a wear-resistant surface, as those terms are described above. It is sized and shaped to achieve controlled elastic deflection, and to be conformable in the manner of the flanges described above. Its construction is thin enough to permit bending under working loads, but not so thin as to allow material yield or fatigue cracking. Deflection of the contact ring 1522 is opposed by the elasticity of the contact ring 1522 in bending, as well as the hoop stresses therein. To achieve long life, the contact ring 1522 is sized so that stresses therein will be less than the endurance limit of the material.
Various cross-sectional shapes may be used for the contact ring. For example,
Nominally the first and second contact rims 1516 and 1524 define two separate “ring” or “band” contact interfaces with the contact surface of the opposed convex member (not shown). The contact rims 1516 and 1524 are conformable to an opposed contact surface when the joint is placed under load.
Any of the joint members described above may include holes or apertures formed therein to reduce their weight, or to facilitate manufacture or installation. For example,
While the joint members have been illustrated above with monolithic construction, any of the joint members may be made from one or more components built up to form the whole. For example,
The member 1802 is constructed from a rigid material and generally has a concave “cup” shape as described above. It may also be bone-implantable as described above. It is made up from a shell 1804 with an interior surface 1806, and a liner 1808 which fits conformally against the interior surface 1806. The liner 1808 may be fixed or moveable relative to the shell 1804. An interior of the liner 1808 defines a nominal cup surface 1810. The liner 1808 includes a first peripheral ring 1812, defined as a generally “U”-shape formed in the liner 1808. The first peripheral ring 1812 includes a protruding first contact rim 1816. The first contact rim 1816 may have a straight, curved, or toroidal cross-sectional shape. The first peripheral ring 1812 may include an angular offset or asymmetric positioning relative to a balanced centroidal axis “N4” of the joint member 1802, as that concept is described above.
The liner 1808 also includes a second peripheral ring 1818, defined as a generally “U”-shape formed in the liner 1808. The second peripheral ring 1818 includes a protruding second contact rim 1820. The second contact rim 1820 may have a straight, curved, or toroidal cross-sectional shape. The second peripheral ring 1818 may include an angular offset relative to a balanced centroidal axis “N4” of the joint member 1802, as that concept is described above.
The liner 1808 is made of a rigid material and has a wear-resistant surface, as those terms are described above. The first and second peripheral rings 1812 and 1818 are sized and shaped to achieve controlled elastic deflection, and to be conformable in the manner of the flanges described above. Their construction is thin enough to permit bending under working loads, but not so thin as to allow material yield or fatigue cracking Deflection of the contact rings 1812 and 1818 are opposed by the elasticity of the rings in bending, as well as the hoop stresses therein. To achieve long life, the contact rings 1812 and 1818 are sized so that stresses therein will be less than the endurance limit of the material.
Nominally the first and second contact rims 1816 and 1820 define two separate “ring” or “band” contact interfaces with the contact surface of the opposed convex member (not shown). The contact rims 1816 and 1820 are conformable to the opposed contact surface when the joint is placed under load.
For purposes of explanation and illustration the joint member 1902 will be described relative to a “balanced centroidal axis”, labeled “N5” in
The joint member 1902 includes a cup 1904 and an insert 1906. The cup 1904 has interior and exterior surfaces 1908 and 1910, respectively. The exterior surface 1910 may be configured to be bone-implantable as described above. A peripheral rim 1912 extends around the open edge of the cup 1904. The peripheral rim 1912 includes a first indexing feature 1914 formed therein. In the particular example illustrated, the first indexing feature is a plurality of grooves or slots.
The insert 1906 is constructed from a rigid material and has a generally hemispherical shape. Its interior defines a nominal surface 1916. The interior is configured similar to that of the joint member 1202 described above and includes a cantilevered first flange 1918, defined in part by an undercut groove 1920 formed in the nominal surface 1916. The first flange 1918 has an angular offset relative to the balanced centroidal axis N5, and the first flange 1918 includes a protruding first contact rim 1922. The first contact rim 1922 may have a straight, curved, or toroidal cross-sectional shape.
The interior also includes a cantilevered second flange 1924 which is defined in part by an undercut groove 1926 formed in the nominal surface 1916. The second flange 1924 includes a protruding second contact rim 1928. The second contact rim 1928 may have a straight, curved, or toroidal cross-sectional shape. Depending on the specific application, the second flange 1924 may have an angular offset like the first flange 1918. The flanges 1918 and 1924 (and thus the contact rims 1922 and 1928) of the joint member 1902 are conformable to the contact surface of an opposed convex joint member when the joint is placed under load. The flanges 1918 and 1924 can conform to the imperfect contact surface and deflect in an irregular shape, in the manner described above for the joint 1000 described above. Contact between the contact rims and the contact surface of an opposed convex joint member permits transfer of axial and lateral loads from one member to the other while allowing pivoting motion between the two members.
A peripheral rim 1930 extends around the open edge of the insert 1906. The peripheral rim 1930 includes a second indexing feature 1932 formed therein. In the particular example illustrated, the second indexing feature 1932 is a plurality of tabs or ribs.
When the insert 1906 is assembled to the cup 1904, the first and second indexing features 1914 and 1932 engage each other and prevent relative rotation of the cup 1904 and the insert 1906 (i.e. retaining the insert 1906 in a fixed angular orientation relative to the cup 1904). The construction of the indexing features may be modified or inverted as needed to suit a particular application. For example, the peripheral rim 1930 of the insert 1906 may include slots or grooves while the peripheral rim 1912 of the cup 1904 could have tabs or ribs. The indexing features 1914 or 1932 may have a tapered or wedge shape to ensure that any clearance present between the two is taken up upon assembly of the cup 1904 to the insert 1906.
The joint member 1902 may be implanted by first placing the cup 1904 into a prepared bone surface (not shown), then selecting a specific orientation for the insert 1906. The insert 1906 is then placed into the cup 1904 in the selected orientation. The first and second indexing features 1914 and 1932 ensure that this orientation is maintained. Typically the cup 1904 would be placed using bone cement or a fastening process which must be completed in one step, or it would be difficult and/or undesirable to remove and replace the cup 1904. Because the cup 1904 and the insert 1906 are separate from each other, there is no need to maintain any particular rotational alignment of the cup 1904 about the axis N5 as it is placed, yet the insert 1906 can be clocked relative to the cup 1904 to place the flanges 1918 and 1924 in a precise orientation when finally assembled.
The insert 2006 is constructed from a rigid material and has a generally hemispherical shape. Its interior defines a nominal surface 2016. The interior is configured similar to that of the joint member 1202 described above and includes a cantilevered first flange 2018, defined in part by an undercut groove (not visible) formed in the nominal surface 2016. The first flange 2018 has an angular offset relative to a balanced centroidal axis N6 of the insert 2006, and the first flange 2018 includes a protruding first contact rim 2022. The first contact rim 2022 may have a straight, curved, or toroidal cross-sectional shape.
The interior also includes a cantilevered second flange 2024 which is defined in part by an undercut groove 2026 formed in the nominal surface 2016. The second flange 2024 includes a protruding second contact rim 2028. The second contact rim 2028 may have a straight, curved, or toroidal cross-sectional shape. Depending on the specific application, the second flange 2024 may have an angular offset like the first flange 2018. The flanges 2018 and 2024 (and thus the contact rims 2022 and 2028) of the joint member 2002 are conformable to the contact surface of an opposed convex joint member when the joint is placed under load. The flanges 2018 and 2024 can conform to the imperfect contact surface and deflect in an irregular shape, in the manner described above for the joint 1000 described above.
A second indexing feature 2032 is formed on the exterior of the insert 2006, adjacent its open edge. In the particular example illustrated, the second indexing feature 2032 is a plurality of axially-aligned ribs protruding radially outward. The ribs have a cross-sectional shape which is complementary to the grooves of the first indexing feature 2014.
The joint member 2002 may be implanted using the process described above for the joint member 1902. When the insert 2006 is assembled to the cup 2004, the first and second indexing features 2014 and 2032 engage each other and prevent relative rotation of the cup 2004 and the insert 2006. The construction of the indexing features may be modified or inverted as needed to suit a particular application. For example, the insert 2006 may include slots or grooves while the cup 2004 could have tabs or ribs. The indexing features 2014 or 2032 may have a tapered or wedge shape to ensure that any clearance present between the two is taken up upon assembly of the cup 2004 to the insert 2006.
For purposes of explanation and illustration the joint member 3002 will be described relative to a “balanced centroidal axis”, labeled “N7” in
The joint member 3002 includes a cup 3004 and an insert 3006. The cup 3004 has interior and exterior surfaces 3008 and 3010, respectively. The exterior surface 3010 may be configured to be bone-implantable as described above. The interior surface 3008 has an annular retention groove 3012 formed therein. The retention groove includes a side wall 3013 and an end wall 3015. The end wall 3015 may be angled, as shown in
The insert 3006 is constructed from a rigid material and has a generally hemispherical shape. Its interior defines a nominal surface 3016. The interior is configured similar to that of the joint member 1202 described above and includes a cantilevered first flange 3018, defined in part by an undercut groove 3020 formed in the nominal surface 3016. The first flange 3018 has an angular offset relative to the balanced centroidal axis N7, and the first flange 3018 includes a protruding first contact rim 3022. The first contact rim 3022 may have a straight, curved, or toroidal cross-sectional shape.
The interior also includes a cantilevered second flange 3024 which is defined in part by an undercut groove 3026 formed in the nominal surface 3016. The second flange 3024 includes a protruding second contact rim 3028. The second contact rim 3028 may have a straight, curved, or toroidal cross-sectional shape. Depending on the specific application, the second flange 3024 may have an angular offset like the first flange 3018. The flanges 3018 and 3024 (and thus the contact rims 3022 and 3028) of the joint member 3002 are conformable to the contact surface of an opposed convex joint member when the joint is placed under load. The flanges 3018 and 3024 can conform to the imperfect contact surface and deflect in an irregular shape, in the manner described above for the joint 1000 described above.
As best seen in
Referring to
For purposes of explanation and illustration the joint member 4002 will be described relative to a “balanced centroidal axis”, labeled “N8” in
The joint member 4002 includes a cup 4004 and an insert 4006. The cup 4004 has interior and exterior surfaces 4008 and 4010, respectively. The exterior surface 4010 may be configured to be bone-implantable as described above. The interior surface 4008 has a first detent element 4012 formed therein, in this particular example a concave groove. The first detent element 4012 could be a continuous annular groove, or it could comprise an annular array of individual recesses.
The insert 4006 is constructed from a rigid material and has a generally hemispherical shape. Its interior defines a nominal surface 4016. The interior is configured similar to that of the joint member 3002 described above and includes a cantilevered first flange 4018, defined in part by an undercut groove 4020 formed in the nominal surface 4016. The first flange 4018 has an angular offset relative to the balanced centroidal axis N8, and the first flange 4018 includes a protruding first contact rim 4022. The first contact rim 4022 may have a straight, curved, or toroidal cross-sectional shape.
The interior also includes a cantilevered second flange 4024 which is defined in part by an undercut groove 4026 formed in the nominal surface 4016. The second flange 4024 includes a protruding second contact rim 4028. The second contact rim 4028 may have a straight, curved, or toroidal cross-sectional shape. Depending on the specific application, the second flange 4024 may have an angular offset like the first flange 4018. The flanges 4018 and 4024 (and thus the contact rims 4022 and 4028) of the joint member 4002 are conformable to the contact surface of an opposed convex joint member when the joint is placed under load. The flanges 4018 and 4024 can conform to the imperfect contact surface and deflect in an irregular shape, in the manner described above for the joint 1000 described above.
A second detent feature 4030, in this particular example a convex rib, is formed on an outer surface 4032 of the insert 3006. The second detent feature 4030 could be a continuous protruding annular rib, or it could comprise an annular array of individual, dome-like protrusions. The second detent element 4030 is sized and shaped to fit into the first detent elements 4012 of the cup 4004. Cooperatively, the detent elements 4012 and 4030 function as a “detent” in the sense that, when the detent elements 4012 and 4030 are engaged with each other, they prevent relative movement of the cup 4004 and the insert 4006. The specific configuration of the detent elements 4012 and 4030 may be altered to suit a particular application, for example the shape, size, and number of the detent elements may be altered as needed. Furthermore the concave/convex relationship between the detent elements 4012 and 4030 may be reversed.
When the insert 4006 is assembled to the cup 4004, the second detent elements 4030 will engage the first detent element 4012, holding the insert 4006 securely engaged with the cup 4004. In cases where the first and second detent elements 4012 and 4030 each comprise a plurality of discrete members, the cooperating detent elements would also serve to positively index the relative angular orientation of the cup 4004 and the insert 4006, in the manner described above.
For purposes of explanation and illustration the joint member 5002 will be described relative to a “balanced centroidal axis”, labeled “N9” in
The joint member 5002 includes a cup 5004 and an insert 5006. The cup 5004 has interior and exterior surfaces 5008 and 5010, respectively. The exterior surface 5010 may be configured to be bone-implantable as described above.
The insert 5006 is constructed from a rigid material and has a generally hemispherical shape. Its interior defines a nominal surface 5016. The interior is configured similar to that of the joint member 1202 described above and includes a cantilevered first flange 5018, defined in part by an undercut groove 5020 formed in the nominal surface 5016. The first flange 5018 has an angular offset relative to the balanced centroidal axis N9, and the first flange 5018 includes a protruding first contact rim 5022. The first contact rim 5022 may have a straight, curved, or toroidal cross-sectional shape.
The interior also includes a cantilevered second flange 5024 which is defined in part by an undercut groove 5026 formed in the nominal surface 5016. The second flange 5024 includes a protruding second contact rim 5028. The second contact rim 5028 may have a straight, curved, or toroidal cross-sectional shape. Depending on the specific application, the second flange 5024 may have an angular offset like the first flange 5018. The flanges 5018 and 5024 (and thus the contact rims 5022 and 5028) of the joint member 5002 are conformable to the contact surface of an opposed convex joint member when the joint is placed under load. The flanges 5018 and 5024 can conform to the imperfect contact surface and deflect in an irregular shape, in the manner described above for the joint 1000 described above.
A compliant spacer 5030 is disposed between the cup 5004 and the insert 5006. The spacer 5030 is constructed from a material that is sufficiently “soft” to deform compliantly when the insert 5006 is installed in the cup 5004. Nonlimiting examples of suitable materials for the spacer 5030 include polymers and elastomeric materials. The spacer 5030 is fixed relative to the insert 5006. One function of the spacer 5030 is to compliantly support the insert 5006 inside the cup 5004. It is possible that the cup 5004 can be implanted so that its interior surface 5008 is distorted from a nominal shape. Rigid installation of the insert 5006 directly against the cup 5004 could in turn cause excessive distortion of the insert 5006. In such situations the compliant nature of the spacer 5006 allows the insert 5006 to remain in a nominal shape.
It is also possible for the spacer 5030 to provide overload protection to the joint member 5002. Specifically, when the joint member 5002 is subjected to a load beyond the normal working range of the flanges 5018 and 5024, the convex joint member will tend to “bottom out” against the insert 5006, resulting in metal-to-metal contact with high local contact stresses. In such situations, the compliant nature of the spacer 5030 allows it to compress under loading and permit the insert 5006 to move towards the cup 5004, relieving the high contact stresses. The spacer 5030 will return to its original shape and dimensions when the loading is removed.
For purposes of explanation and illustration the joint member 6002 will be described relative to a “balanced centroidal axis”, labeled “N10” in
The joint member 6002 includes a cup 6004 and an insert 6006. The cup 6004 has interior and exterior surfaces 6008 and 6010, respectively. The exterior surface 6010 may be configured to be bone-implantable as described above. First and second annular spacer grooves 6012 and 6014 are formed in the interior surface 6008. Each spacer groove 6012 and 6014 has a generally “T”-shaped cross-sectional shape.
The insert 6006 is constructed from a rigid material and has a generally hemispherical shape. Its interior defines a nominal surface 6016. The interior is configured similar to that of the joint member 1202 described above and includes a cantilevered first flange 6018, defined in part by an undercut groove 6020 formed in the nominal surface 6016. The first flange 6018 has an angular offset relative to the balanced centroidal axis N10, and the first flange 6018 includes a protruding first contact rim 6022. The first contact rim 6022 may have a straight, curved, or toroidal cross-sectional shape.
The interior also includes a cantilevered second flange 6024 which is defined in part by an undercut groove 6026 formed in the nominal surface 6016. The second flange 6024 includes a protruding second contact rim 6028. The second contact rim 6028 may have a straight, curved, or toroidal cross-sectional shape. Depending on the specific application, the second flange 6024 may have an angular offset like the first flange 6018. The flanges 6018 and 6024 (and thus the contact rims 6022 and 6028) of the joint member 6002 are conformable to the contact surface of an opposed convex joint member when the joint is placed under load. The flanges 6018 and 6024 can conform to the imperfect contact surface and deflect in an irregular shape, in the manner described above for the joint 1000 described above.
A resilient first spacer ring 6030 is disposed between the cup 6004 and the insert 6006. The first spacer ring 6030 has a cross-sectional shape generally referred to as a “hat” section with laterally-extending flanges 6032. The flanges 6032 are received in the T-shaped first spacer groove 6012. A second spacer ring 6034 of identical configuration to the first spacer ring 6030 is received in the second spacer groove 6014. The first and second spacer rings 6030 and 6034 are configured so as to resiliently (or elastically) deflect under loading and permit the insert 6006 to move towards the cup 6004, then return to its original shape and dimensions when the loading is removed. Nonlimiting examples of suitable materials for the spacer rings 6030 include metal alloys, polymers and elastomeric materials.
A resilient first spacer ring 7030 is disposed between the cup 7004 and the insert 7006. The first spacer ring 7030 has a closed-loop cross-sectional shape (e.g. circular, oval, or elliptical). A second spacer ring 7034 of identical configuration to the first spacer ring 7030 is received in the second spacer groove 7014. The first and second spacer rings 7030 and 7034 are configured so as to resiliently (or elastically) deflect under loading and permit the insert 7006 to move towards the cup 7004, then return to its original shape and dimensions when the loading is removed. Nonlimiting examples of suitable materials for the spacer rings 7030 and 7034 include metal alloys, polymers and elastomeric materials.
For purposes of explanation and illustration the joint member 8002 will be described relative to a “balanced centroidal axis”, labeled “N11” in
The joint member 8002 includes a cup 8004 and an insert 8006. The cup 8004 has interior and exterior surfaces 8008 and 8010, respectively. The exterior surface 8010 may be configured to be bone-implantable as described above. A peripheral rim 8012 extends around the open edge of the cup 8004. The rim 8012 is shaped so as to define an annular, L-shaped interior corner or “step” 8014.
The insert 8006 is constructed from a rigid material and has a generally hemispherical shape. Its interior defines a nominal surface 8016. The interior is configured similar to that of the joint member 1202 described above and includes a cantilevered first flange 8018, defined in part by an undercut groove 8020 formed in the nominal surface 8016. The first flange 8018 has an angular offset relative to the balanced centroidal axis N11, and the first flange 8018 includes a protruding first contact rim 8022. The first contact rim 8022 may have a straight, curved, or toroidal cross-sectional shape.
The interior also includes a cantilevered second flange 8024 which is defined in part by an undercut groove 8026 formed in the nominal surface 8016. The second flange 8024 includes a protruding second contact rim 8028. The second contact rim 8028 may have a straight, curved, or toroidal cross-sectional shape. Depending on the specific application, the second flange 8024 may have an angular offset like the first flange 8018. The flanges 8018 and 8024 (and thus the contact rims 8022 and 8028) of the joint member 8002 are conformable to the contact surface of an opposed convex joint member when the joint is placed under load. The flanges 8018 and 8024 can conform to the imperfect contact surface and deflect in an irregular shape, in the manner described above for the joint 1000 described above.
An annular lip 8030 extends radially outward from the open edge of the insert 8006. The lip 8030 is received in the step 8014 of the cup 8004. The dimensions of the cup 8004 and the insert 8006, and the position of the step 8014 and the lip 8030 are selected such that, when the lip 8030 and the step 8014 are in contact, a definite clearance 8032 is present between the cup 8004 and the insert 8006.
This clearance allows the insert 8006 to resiliently deflect under loading and move towards the cup 8004, then return to its original shape and dimensions when the loading is removed. If desired, the clearance 8032 could be filled with a polymer or elastomeric material to tailor the deflection properties of the joint member 8002 and provide damping between the insert 8006 and the cup 8004.
The features described above (that is, the indexing feature, the retention feature, or the resilient spacer) may be incorporated individually into a prosthetic joint member, or they may be applied to a joint member in any combination. For example,
As noted above, known coatings such as titanium nitride, chrome plating, carbon thin films, and/or diamond-like carbon coatings may be used to impart wear resistance or augment the wear resistance of any of the contact surfaces and/or contact rims described above. To the same end, it may be desirable to surface treat either or both interfaces of any of the above-described implants or joints with a laser, shot peen, burnishing, or water shock process, to impart residual compressive stresses and reduce wear. The benefit could be as much from surface annealing and microstructure and microfracture elimination as smoothing itself.
The foregoing has described prosthetic joints with wear-resistant properties and conformal geometries. While specific embodiments of the present invention have been described, it will be apparent to those skilled in the art that various modifications thereto can be made without departing from the spirit and scope of the invention. Accordingly, the foregoing description of the preferred embodiment of the invention and the best mode for practicing the invention are provided for the purpose of illustration only and not for the purpose of limitation.
This application is a Continuation-in-Part of application Ser. No. 13/311,119, filed Dec. 5, 2011, currently pending, which is a Continuation of application Ser. No. 13/073,963, filed Mar. 28, 2011, now U.S. Pat. No. 8,070,823, which is a Continuation-in-Part of application Ser. No. 12/826,620, filed Jun. 29, 2010, Now U.S. Pat. No. 7,914,580, which is a Continuation-in-Part of application Ser. No. 12/714,288, filed Feb. 26, 2010, now U.S. Pat. No. 7,905,919, which is a Continuation-in-Part of application Ser. No. 11/936,601, filed Nov. 7, 2007, currently pending, which claims the benefit of Provisional Patent Application 60/864,667, filed Nov. 7, 2006.
Number | Name | Date | Kind |
---|---|---|---|
3521302 | Muller | Jul 1970 | A |
3723995 | Baumann | Apr 1973 | A |
3744061 | Frost | Jul 1973 | A |
3842442 | Kolbel | Oct 1974 | A |
3945739 | Abe | Mar 1976 | A |
4031570 | Frey | Jun 1977 | A |
4044403 | D'Errico | Aug 1977 | A |
4123806 | Amstutz et al. | Nov 1978 | A |
4126924 | Akins et al. | Nov 1978 | A |
4159544 | Termanini | Jul 1979 | A |
4224696 | Murray et al. | Sep 1980 | A |
4309778 | Buechel et al. | Jan 1982 | A |
4437193 | Oh | Mar 1984 | A |
4550450 | Kinnett | Nov 1985 | A |
4568348 | Johnson et al. | Feb 1986 | A |
4662891 | Noiles | May 1987 | A |
4673408 | Grobbelaar | Jun 1987 | A |
4676798 | Noiles | Jun 1987 | A |
4718911 | Kenna | Jan 1988 | A |
4759766 | Buettner Janz et al. | Jul 1988 | A |
4795469 | Oh | Jan 1989 | A |
4813961 | Sostegni | Mar 1989 | A |
4878918 | Tari et al. | Nov 1989 | A |
4904106 | Love | Feb 1990 | A |
4955919 | Pappas et al. | Sep 1990 | A |
4964865 | Burkhead et al. | Oct 1990 | A |
4997432 | Keller | Mar 1991 | A |
5061288 | Berggren et al. | Oct 1991 | A |
5062853 | Forte | Nov 1991 | A |
5080675 | Lawes et al. | Jan 1992 | A |
5080678 | Spotorno et al. | Jan 1992 | A |
5092898 | Bekki et al. | Mar 1992 | A |
5095898 | Don Michael | Mar 1992 | A |
5116375 | Hofmann | May 1992 | A |
5116376 | May | May 1992 | A |
5133769 | Wagner et al. | Jul 1992 | A |
5181926 | Koch et al. | Jan 1993 | A |
5197987 | Koch et al. | Mar 1993 | A |
5358530 | Hodorek | Oct 1994 | A |
5405394 | Davidson | Apr 1995 | A |
5413604 | Hodge | May 1995 | A |
5458650 | Carret et al. | Oct 1995 | A |
5462362 | Yuhta et al. | Oct 1995 | A |
5480442 | Bertagnoli | Jan 1996 | A |
5480446 | Goodfellow et al. | Jan 1996 | A |
5480448 | Mikhail | Jan 1996 | A |
5507816 | Bullivant | Apr 1996 | A |
5549693 | Roux et al. | Aug 1996 | A |
5549695 | Spotorno et al. | Aug 1996 | A |
5549697 | Caldarise | Aug 1996 | A |
5549699 | MacMahon et al. | Aug 1996 | A |
5549700 | Graham et al. | Aug 1996 | A |
5593445 | Waits | Jan 1997 | A |
5609645 | Vinciguerra | Mar 1997 | A |
5641323 | Caldarise | Jun 1997 | A |
5674296 | Bryan et al. | Oct 1997 | A |
5676701 | Yuan et al. | Oct 1997 | A |
5676704 | Ries et al. | Oct 1997 | A |
5702456 | Pienkowski | Dec 1997 | A |
5702470 | Menon | Dec 1997 | A |
5702478 | Tornier | Dec 1997 | A |
5725584 | Walker et al. | Mar 1998 | A |
5766260 | Whiteside | Jun 1998 | A |
5782927 | Klawitter et al. | Jul 1998 | A |
5800555 | Gray et al. | Sep 1998 | A |
5824101 | Pappas | Oct 1998 | A |
5871542 | Goodfellow et al. | Feb 1999 | A |
5871546 | Colleran et al. | Feb 1999 | A |
5879404 | Bateman et al. | Mar 1999 | A |
5879406 | Lilley | Mar 1999 | A |
5879407 | Waggener | Mar 1999 | A |
5893889 | Harrington | Apr 1999 | A |
5916269 | Serbousek et al. | Jun 1999 | A |
5935174 | Dye | Aug 1999 | A |
5935175 | Ostiguy, Jr. et al. | Aug 1999 | A |
5938702 | Lopez et al. | Aug 1999 | A |
5957979 | Beckman et al. | Sep 1999 | A |
5989293 | Cook et al. | Nov 1999 | A |
5989294 | Marlow | Nov 1999 | A |
5997579 | Albretsson et al. | Dec 1999 | A |
6013103 | Kaufman et al. | Jan 2000 | A |
6042293 | Maughan | Mar 2000 | A |
6059830 | Lippencott, III et al. | May 2000 | A |
6080195 | Colleran et al. | Jun 2000 | A |
6096083 | Keller et al. | Aug 2000 | A |
6126695 | Semlitsch | Oct 2000 | A |
6129765 | Lopez et al. | Oct 2000 | A |
6146421 | Gordon et al. | Nov 2000 | A |
6152961 | Ostiguy, Jr. et al. | Nov 2000 | A |
6162252 | Kuras et al. | Dec 2000 | A |
6162256 | Ostiguy, Jr. et al. | Dec 2000 | A |
6179874 | Cauthen | Jan 2001 | B1 |
6190415 | Cooke et al. | Feb 2001 | B1 |
6203576 | Afriat et al. | Mar 2001 | B1 |
6206929 | Ochoa et al. | Mar 2001 | B1 |
6217249 | Merlo | Apr 2001 | B1 |
6231264 | McLaughlin et al. | May 2001 | B1 |
6299646 | Chambat et al. | Oct 2001 | B1 |
6364910 | Shultz et al. | Apr 2002 | B1 |
6368350 | Erickson et al. | Apr 2002 | B1 |
6375682 | Fleischmann et al. | Apr 2002 | B1 |
6416553 | White et al. | Jul 2002 | B1 |
6425921 | Grundei et al. | Jul 2002 | B1 |
6475243 | Sheldon et al. | Nov 2002 | B1 |
6494916 | Babalola et al. | Dec 2002 | B1 |
6537321 | Horber | Mar 2003 | B1 |
6558427 | Leclercq et al. | May 2003 | B2 |
6626947 | Lester et al. | Sep 2003 | B2 |
6660040 | Chan et al. | Dec 2003 | B2 |
RE38409 | Noiles | Jan 2004 | E |
6719800 | Meyers et al. | Apr 2004 | B2 |
6740117 | Ralph et al. | May 2004 | B2 |
6740118 | Eisermann et al. | May 2004 | B2 |
6743258 | Keller | Jun 2004 | B1 |
6770095 | Grinberg et al. | Aug 2004 | B2 |
6866685 | Chan et al. | Mar 2005 | B2 |
6875235 | Ferree | Apr 2005 | B2 |
6893465 | Huang | May 2005 | B2 |
6896703 | Barbieri et al. | May 2005 | B2 |
6916342 | Frederick et al. | Jul 2005 | B2 |
6942701 | Taylor | Sep 2005 | B2 |
6949105 | Bryan et al. | Sep 2005 | B2 |
6964686 | Gordon | Nov 2005 | B2 |
6972039 | Metzger et al. | Dec 2005 | B2 |
6981989 | Fleischmann et al. | Jan 2006 | B1 |
6981991 | Ferree | Jan 2006 | B2 |
6986791 | Metzger | Jan 2006 | B1 |
7001433 | Songer et al. | Feb 2006 | B2 |
7022142 | Johnson | Apr 2006 | B2 |
7037341 | Nowakowski | May 2006 | B2 |
7060099 | Carli et al. | Jun 2006 | B2 |
7060101 | O'Connor et al. | Jun 2006 | B2 |
7066963 | Naegerl | Jun 2006 | B2 |
7083650 | Moskowitz et al. | Aug 2006 | B2 |
7083651 | Diaz et al. | Aug 2006 | B2 |
7083652 | McCue et al. | Aug 2006 | B2 |
7108719 | Horber | Sep 2006 | B2 |
7108720 | Hanes | Sep 2006 | B2 |
7115145 | Richards | Oct 2006 | B2 |
7121755 | Schlapfer et al. | Oct 2006 | B2 |
7128761 | Kuras et al. | Oct 2006 | B2 |
7153325 | Kim et al. | Dec 2006 | B2 |
7153328 | Kim | Dec 2006 | B2 |
7160332 | Frederick et al. | Jan 2007 | B2 |
7179294 | Eisermann et al. | Feb 2007 | B2 |
7214243 | Taylor | May 2007 | B2 |
7214244 | Zubok et al. | May 2007 | B2 |
7250060 | Trieu | Jul 2007 | B2 |
7267693 | Mandell et al. | Sep 2007 | B1 |
7270679 | Istephanous et al. | Sep 2007 | B2 |
7276082 | Zdeblick et al. | Oct 2007 | B2 |
7297164 | Johnson et al. | Nov 2007 | B2 |
7309363 | Dietz | Dec 2007 | B2 |
7326250 | Beaurain et al. | Feb 2008 | B2 |
7326252 | Otto et al. | Feb 2008 | B2 |
7326253 | Synder et al. | Feb 2008 | B2 |
7338529 | Higgins | Mar 2008 | B1 |
7393362 | Cruchet et al. | Jul 2008 | B2 |
7407513 | Alleyne et al. | Aug 2008 | B2 |
7442211 | de Villiers et al. | Oct 2008 | B2 |
7465320 | Kito et al. | Dec 2008 | B1 |
7468076 | Zubok et al. | Dec 2008 | B2 |
7468079 | Collier | Dec 2008 | B2 |
7470287 | Tornier et al. | Dec 2008 | B2 |
7485145 | Purcell | Feb 2009 | B2 |
7494507 | Dixon et al. | Feb 2009 | B2 |
7531002 | Sutton et al. | May 2009 | B2 |
7537615 | Lemaire | May 2009 | B2 |
7550009 | Arnin et al. | Jun 2009 | B2 |
7550010 | Humphreys et al. | Jun 2009 | B2 |
7572295 | Steinberg | Aug 2009 | B2 |
7572296 | Scott et al. | Aug 2009 | B2 |
7578848 | Albert et al. | Aug 2009 | B2 |
7582115 | Weber | Sep 2009 | B2 |
7588384 | Yokohara | Sep 2009 | B2 |
7601174 | Kelley et al. | Oct 2009 | B2 |
7611653 | Elsner et al. | Nov 2009 | B1 |
7618439 | Zubok et al. | Nov 2009 | B2 |
7618459 | Justin et al. | Nov 2009 | B2 |
7621956 | Paul et al. | Nov 2009 | B2 |
7655041 | Clifford et al. | Feb 2010 | B2 |
7658767 | Wyss | Feb 2010 | B2 |
7682398 | Croxton et al. | Mar 2010 | B2 |
7740659 | Zarda et al. | Jun 2010 | B2 |
7758645 | Studer | Jul 2010 | B2 |
7758653 | Steinberg | Jul 2010 | B2 |
7776085 | Bernero et al. | Aug 2010 | B2 |
7879095 | Pisharodi | Feb 2011 | B2 |
7905919 | Kellar et al. | Mar 2011 | B2 |
7914580 | Kellar et al. | Mar 2011 | B2 |
7955395 | Shea et al. | Jun 2011 | B2 |
8007539 | Slone | Aug 2011 | B2 |
8029574 | Kellar et al. | Oct 2011 | B2 |
8070823 | Kellar et al. | Dec 2011 | B2 |
20020035400 | Bryan et al. | Mar 2002 | A1 |
20020111682 | Ralph et al. | Aug 2002 | A1 |
20020143402 | Steinberg | Oct 2002 | A1 |
20020147499 | Shea et al. | Oct 2002 | A1 |
20030055500 | Fell et al. | Mar 2003 | A1 |
20030081989 | Kondoh | May 2003 | A1 |
20030114935 | Chan et al. | Jun 2003 | A1 |
20030191534 | Viart et al. | Oct 2003 | A1 |
20030220691 | Songer et al. | Nov 2003 | A1 |
20040010316 | William et al. | Jan 2004 | A1 |
20040024460 | Ferree | Feb 2004 | A1 |
20040034433 | Chan et al. | Feb 2004 | A1 |
20040073311 | Ferree | Apr 2004 | A1 |
20040088052 | Dearnaley | May 2004 | A1 |
20040093087 | Ferree et al. | May 2004 | A1 |
20040117021 | Biedermann et al. | Jun 2004 | A1 |
20040143332 | Krueger et al. | Jul 2004 | A1 |
20040143334 | Ferree | Jul 2004 | A1 |
20040167626 | Geremakis et al. | Aug 2004 | A1 |
20040167629 | Geremakis et al. | Aug 2004 | A1 |
20040172021 | Khalili | Sep 2004 | A1 |
20040215345 | Perrone, Jr. et al. | Oct 2004 | A1 |
20040220674 | Pria et al. | Nov 2004 | A1 |
20040260396 | Ferree et al. | Dec 2004 | A1 |
20040267374 | Friedrichs | Dec 2004 | A1 |
20040267375 | Friedrichs | Dec 2004 | A1 |
20050004572 | Biedermann et al. | Jan 2005 | A1 |
20050015152 | Sweeney | Jan 2005 | A1 |
20050021145 | de Villiers et al. | Jan 2005 | A1 |
20050038516 | Spoonamore | Feb 2005 | A1 |
20050055101 | Sifneos | Mar 2005 | A1 |
20050071007 | Malek | Mar 2005 | A1 |
20050080488 | Schultz | Apr 2005 | A1 |
20050113926 | Zucherman et al. | May 2005 | A1 |
20050113931 | Horber | May 2005 | A1 |
20050125065 | Zucherman et al. | Jun 2005 | A1 |
20050143827 | Globerman et al. | Jun 2005 | A1 |
20050165485 | Trieu | Jul 2005 | A1 |
20050171604 | Michalow | Aug 2005 | A1 |
20050171614 | Bacon | Aug 2005 | A1 |
20050192674 | Ferree | Sep 2005 | A1 |
20050197706 | Hovorka et al. | Sep 2005 | A1 |
20050203626 | Sears et al. | Sep 2005 | A1 |
20050216081 | Taylor | Sep 2005 | A1 |
20050251261 | Peterman | Nov 2005 | A1 |
20050251262 | de Villiers et al. | Nov 2005 | A1 |
20050261776 | Taylor | Nov 2005 | A1 |
20050288793 | Dong et al. | Dec 2005 | A1 |
20060020342 | Ferree et al. | Jan 2006 | A1 |
20060025862 | Villiers et al. | Feb 2006 | A1 |
20060041314 | Millard | Feb 2006 | A1 |
20060064169 | Ferree | Mar 2006 | A1 |
20060085076 | Krishna et al. | Apr 2006 | A1 |
20060095135 | Kovacevic | May 2006 | A1 |
20060129240 | Lessar et al. | Jun 2006 | A1 |
20060136062 | DiNello et al. | Jun 2006 | A1 |
20060178744 | de Villiers et al. | Aug 2006 | A1 |
20060190079 | Istephanous et al. | Aug 2006 | A1 |
20060200247 | Charrois | Sep 2006 | A1 |
20060217809 | Albert et al. | Sep 2006 | A1 |
20060217815 | Gibbs et al. | Sep 2006 | A1 |
20060235527 | Buettner-Janz et al. | Oct 2006 | A1 |
20060241765 | Burn et al. | Oct 2006 | A1 |
20060241766 | Felton et al. | Oct 2006 | A1 |
20060259147 | Krishna et al. | Nov 2006 | A1 |
20060259148 | Bar-Ziv | Nov 2006 | A1 |
20060271200 | Greenlee | Nov 2006 | A1 |
20060293752 | Moumene et al. | Dec 2006 | A1 |
20070021837 | Ashman | Jan 2007 | A1 |
20070032875 | Blacklock et al. | Feb 2007 | A1 |
20070032877 | Whiteside | Feb 2007 | A1 |
20070050032 | Gittings et al. | Mar 2007 | A1 |
20070073405 | Verhulst et al. | Mar 2007 | A1 |
20070073410 | Raugel | Mar 2007 | A1 |
20070083267 | Miz et al. | Apr 2007 | A1 |
20070100447 | Steinberg | May 2007 | A1 |
20070100454 | Burgess et al. | May 2007 | A1 |
20070100456 | Dooris et al. | May 2007 | A1 |
20070106391 | Ronk | May 2007 | A1 |
20070118223 | Allard et al. | May 2007 | A1 |
20070123990 | Sharifi-Mehr | May 2007 | A1 |
20070156246 | Meswania et al. | Jul 2007 | A1 |
20070168037 | Posnick | Jul 2007 | A1 |
20070173936 | Hester et al. | Jul 2007 | A1 |
20070185578 | O'Neil et al. | Aug 2007 | A1 |
20070208427 | Davidson et al. | Sep 2007 | A1 |
20070213821 | Kwak et al. | Sep 2007 | A1 |
20070225806 | Squires et al. | Sep 2007 | A1 |
20070225810 | Colleran et al. | Sep 2007 | A1 |
20070225818 | Reubelt et al. | Sep 2007 | A1 |
20070233244 | Lopez et al. | Oct 2007 | A1 |
20070239276 | Squires et al. | Oct 2007 | A1 |
20080065211 | Albert et al. | Mar 2008 | A1 |
20080065216 | Hurlbert et al. | Mar 2008 | A1 |
20080071381 | Buscher et al. | Mar 2008 | A1 |
20080077137 | Balderston | Mar 2008 | A1 |
20080133017 | Beyar et al. | Jun 2008 | A1 |
20080133022 | Caylor | Jun 2008 | A1 |
20080154263 | Janowski et al. | Jun 2008 | A1 |
20080154369 | Barr et al. | Jun 2008 | A1 |
20080161924 | Viker | Jul 2008 | A1 |
20080161930 | Carls et al. | Jul 2008 | A1 |
20080195212 | Nguyen et al. | Aug 2008 | A1 |
20080215156 | Duggal et al. | Sep 2008 | A1 |
20080221689 | Chaput et al. | Sep 2008 | A1 |
20080221690 | Chaput et al. | Sep 2008 | A1 |
20080228276 | Mathews et al. | Sep 2008 | A1 |
20080228282 | Brodowski | Sep 2008 | A1 |
20080243253 | Levieux | Oct 2008 | A1 |
20080243262 | Lee | Oct 2008 | A1 |
20080243263 | Lee et al. | Oct 2008 | A1 |
20080300685 | Carls et al. | Dec 2008 | A1 |
20090005872 | Moumene et al. | Jan 2009 | A1 |
20090012619 | Cordaro et al. | Jan 2009 | A1 |
20090030521 | Lee et al. | Jan 2009 | A1 |
20090036992 | Tsakonas | Feb 2009 | A1 |
20090043391 | de Villiers et al. | Feb 2009 | A1 |
20090054986 | Cordaro et al. | Feb 2009 | A1 |
20090062920 | Tauber | Mar 2009 | A1 |
20090076614 | Arramon | Mar 2009 | A1 |
20090082867 | Sebastian Bueno et al. | Mar 2009 | A1 |
20090082873 | Hazebrouck et al. | Mar 2009 | A1 |
20090088865 | Brehm | Apr 2009 | A1 |
20090105758 | Gimbel et al. | Apr 2009 | A1 |
20090125111 | Copf, Jr. | May 2009 | A1 |
20090138090 | Hurlbert et al. | May 2009 | A1 |
20090157185 | Kim | Jun 2009 | A1 |
20090192616 | Zielinski | Jul 2009 | A1 |
20090192617 | Arramon et al. | Jul 2009 | A1 |
20090215111 | Veenstra et al. | Aug 2009 | A1 |
20090234458 | de Villiers et al. | Sep 2009 | A1 |
20090248161 | Theofilos et al. | Oct 2009 | A1 |
20090265009 | Ward et al. | Oct 2009 | A1 |
20090270986 | Christensen | Oct 2009 | A1 |
20090276051 | Arramon et al. | Nov 2009 | A1 |
20090281629 | Roebling et al. | Nov 2009 | A1 |
20090306784 | Blum | Dec 2009 | A1 |
20090306785 | Farrar et al. | Dec 2009 | A1 |
20090326656 | de Villiers et al. | Dec 2009 | A1 |
20090326663 | Dun | Dec 2009 | A1 |
20090326664 | Wagner et al. | Dec 2009 | A1 |
20090326665 | Wyss et al. | Dec 2009 | A1 |
20090326666 | Wyss et al. | Dec 2009 | A1 |
20090326668 | Dun | Dec 2009 | A1 |
20100004746 | Arramon | Jan 2010 | A1 |
20100030335 | Arramon | Feb 2010 | A1 |
20100063589 | Tepic | Mar 2010 | A1 |
20100063597 | Gradel | Mar 2010 | A1 |
20100100189 | Metzger | Apr 2010 | A1 |
20100100191 | May et al. | Apr 2010 | A1 |
20100131073 | Meridew et al. | May 2010 | A1 |
20100161064 | Kellar et al. | Jun 2010 | A1 |
20100161072 | Drescher | Jun 2010 | A1 |
20100191342 | Byrd et al. | Jul 2010 | A1 |
20100262250 | Kellar et al. | Oct 2010 | A1 |
20100268340 | Capote et al. | Oct 2010 | A1 |
20100292794 | Metz-Stavenhagen | Nov 2010 | A1 |
20100331993 | Gradl | Dec 2010 | A1 |
20110009975 | Allen et al. | Jan 2011 | A1 |
20110015752 | Meridew | Jan 2011 | A1 |
20110190901 | Weissberg et al. | Aug 2011 | A1 |
Number | Date | Country |
---|---|---|
4102509 | Jul 1992 | DE |
4102510 | Jul 1992 | DE |
4423020 | Jan 1996 | DE |
10164328 | Jul 2003 | DE |
202008004709 | Jul 2008 | DE |
46926 | Mar 1982 | EP |
636353 | Feb 1995 | EP |
648478 | Apr 1995 | EP |
974316 | Jan 2000 | EP |
1114624 | Jul 2001 | EP |
1508315 | Feb 2005 | EP |
2750036 | Dec 1997 | FR |
2805456 | Aug 2001 | FR |
2883723 | Oct 2006 | FR |
2897528 | Aug 2007 | FR |
2936145 | Mar 2010 | FR |
1322680 | Jul 1973 | GB |
1417407 | Dec 1975 | GB |
1527498 | Oct 1978 | GB |
1528906 | Oct 1978 | GB |
2191402 | Dec 1987 | GB |
2004011782 | Jan 2004 | JP |
2004169820 | Jun 2004 | JP |
9523566 | Sep 1995 | WO |
9604867 | Feb 1996 | WO |
9716138 | May 1997 | WO |
9738650 | Nov 1997 | WO |
0023015 | Apr 2000 | WO |
03049649 | Jun 2003 | WO |
2004066882 | Aug 2004 | WO |
2005039455 | May 2005 | WO |
2006069465 | Jul 2006 | WO |
2007087730 | Aug 2007 | WO |
2008088777 | Jul 2008 | WO |
2008094260 | Aug 2008 | WO |
2009094477 | Jul 2009 | WO |
2009105884 | Sep 2009 | WO |
2009121450 | Oct 2009 | WO |
2009126908 | Oct 2009 | WO |
2010095125 | Aug 2010 | WO |
2011011340 | Jan 2011 | WO |
Number | Date | Country | |
---|---|---|---|
20120095569 A1 | Apr 2012 | US |
Number | Date | Country | |
---|---|---|---|
60864667 | Nov 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13073963 | Mar 2011 | US |
Child | 13311119 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13311119 | Dec 2011 | US |
Child | 13342584 | US | |
Parent | 12826620 | Jun 2010 | US |
Child | 13073963 | US | |
Parent | 12714288 | Feb 2010 | US |
Child | 12826620 | US | |
Parent | 11936601 | Nov 2007 | US |
Child | 12714288 | US |