The invention relates to prosthetic joint with at least two members having each a cooperating articulating surface layer and wherein at least one of said articulating surface layers contains amorphous diamond-like carbon.
The design of the articulating components of orthopedic joint prosthesis is usually based on a ball and socket joint. Due to friction between the articulating components, wear debris is caused. With special hardlayer coatings it was tried to reduce these wear debris. However, these effort were only partly successful.
Hardlayer coatings as such are well known in techniques where friction and wear debris has to be reduced such as automotive industry, power stations (turbine and generator design) or valve control in engines for cars.
From U.S. Pat. No. 6,398,815 B1 POPE ET AL. a prosthetic joint is known with a superhard articulation surface consisting of poly-crystalline diamond-like carbon.
The disadvantage of poly-crystalline diamond lies in the fact that is produced at high temperatures where the mechanical integrity of the substrate is not guaranteed anymore. Furthermore, the initial surface of poly-crystalline diamond is rough which requires a final polishing process step.
From U.S. Pat. No. 6,447,295 KUMAR ET AL an ADLC coated dental retaining screw is known. KUMAR discloses the application of ADLC against cold welding between titanium implants. The application of the hard layer on the substantial more elastic substrate bears the risk of exfoliation, i.e. the destruction of the hard layer. The coating of KUMAR would not be suitable for an articulation surface.
It is further known from US 2005/0016635 DESPRES III ET AL. to use ADLC for a knee-endoprosthesis; however, the ADLC surface is explicitly used as a coating for promoting tissue in-growth or on-growth to that surface and not for an articulating surface of a an endo-joint prosthesis
Metal-on-Metal articulation in endo-joint prosthesis create wear debris, in particular small particles of Chromium, Cobalt and Molybdenum which will be released from the surface. Therefore it is an object of the invention to provide a prosthetic joint having articulating surfaces which lead to a reduction of the number of such released particles.
Another object of this invention is to provide a prosthetic joint with enhanced dry run properties.
Further objects of this invention are to provide a prosthetic joint having:
The prosthetic joints with the ADLC surface layers according to the invention have shown excellent properties particularly under dry run conditions. The friction factor is reduced as well, which leads in lower volume of wear debris.
ADLC is processed at temperatures between 150 and 250° C. At these temperatures the usual substrates CoCrMo and CoCrMoC do not change its material structure and remain in sound condition. No final polishing is necessary due to the fact that ADLC and its bonding layer is applied literally atom by atom, i.e. not changing the surface topography.
In a special embodiment said amorphous diamond-like carbon is tetrahedral amorphous diamond-like carbon. This configuration has the advantage of being one of the hardest materials.
The articulating surface layer may be formed by a coating applied to a metallic or ceramic substrate, preferably like CoCrMo, CoCrMoC, Ti, TAN, TAV, Aluminium Oxide or Zirconium Oxide.
The surface layer may have a thickness between 0.5 μm and 800 μm, preferably between 2 μm and 25 μm.
In a further embodiment a bonding layer is disposed between the surface layer and the substrate. Since ADLC is significantly harder than the substrate, surface tension may result between. It has been found that the surface tension can be reduced by placing a bonding layer between the substrate and the surface layer (ADLC). The bonding layer can be a metal or a metal alloy, in particular it may comprise Niobium, Silizium, Tantalum or Gold or other biocompatible metals.
The bonding layer may have a thickness between 3 nm and 40 μm, preferably between 50 nm and 9 μm.
In a further embodiment the surface layer can be a multi-layer composite. The advantage of this design is a reduction of the surface tension through several “more elastic” layers from pure metals. The multi-layer composite may comprise the following sequence of single layers: (Substrate)-Ti—TiN—Ti—TiN.
The joint according to the invention may be part of an endojoint prosthesis, preferably for the hip, knee and shoulder, or of an intervertebral implant, preferably an intervertebral disk prosthesis.
Several embodiments of the invention will be described in the following by way of example and with reference to the accompanying drawings in which:
In this exemplary embodiment the first and second bonding layers 12;13 are metallic, have a thickness between 3 nanometer and 6 micrometer and are fixed at the respective first and second substrates 33;34 of the corresponding convex and concave joint members 23;24 by means of chemical vapor deposition technique whereas the first and second articulating surfaces 10;11 have a thickness between 2 and 30 micrometer and are applied by means of a plasma assisted chemical vapor deposition process.
The convex sliding surface 29 and the concave sliding surface 30 have the same radius, which permits a sliding motion of the convex sliding surface 29 relative to the concave sliding surface 30 when the ball-and-socket joint 22 is bent or stretched. Analogously, a sliding motion between the convex and concave sliding surface 29;30 is performed when the first and second member 2;3 of the prosthetic joint rotate relative to each other about the central axis 19.
Number | Date | Country | Kind |
---|---|---|---|
2160/04 | Dec 2004 | CH | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH2005/000777 | 12/27/2005 | WO | 00 | 6/27/2007 |