Prosthetic joint with articulating surface layers comprising ADLC

Information

  • Patent Grant
  • 10182924
  • Patent Number
    10,182,924
  • Date Filed
    Tuesday, December 27, 2005
    19 years ago
  • Date Issued
    Tuesday, January 22, 2019
    5 years ago
Abstract
The prosthetic joint has at least two members having each a cooperating articulating surface layer on a substrate material. At least one of said articulating surface layers comprises amorphous diamond-like carbon; or Titanium Nitrate (TiN) on a bonding layer bonded to the substrate material. The prosthetic joint provides a reduction of the number of wear debris and shows enhanced dry run properties.
Description
CROSS REFERENCE TO RELATED APPLICATION

This Application is a national stage application under 35 U.S.C. 371 based on International Application Serial No. PCT/CH/2005/000777 filed on Dec. 27, 2005 for “PROSTHETIC JOINT WITH ARTICULATING SURFACE LAYERS COMPRISING ADLC”.


FIELD OF THE INVENTION

The invention relates to prosthetic joint with at least two members having each a cooperating articulating surface layer and wherein at least one of said articulating surface layers contains amorphous diamond-like carbon. (“ADLC”).


DESCRIPTION OF THE PRIOR ART

The design of the articulating components of orthopedic joint prosthesis is usually based on a ball and socket joint. Due to friction between the articulating components, wear debris is caused. Special hardlayer coatings have been used in the past to try and reduce these wear debris. However, these efforts were only partly successful. Hardlayer coatings as such are well known in techniques where friction and wear debris has to be reduced such as automotive industry, power stations (turbine and generator design) or valve control in engines for cars.


From U.S. Pat. No. 6,398,815 B1 POPE ET AL. a prosthetic joint is known with a superhard articulation surface consisting of poly-crystalline diamond-like carbon.


The disadvantage of poly-crystalline diamond lies in the fact that it is produced at high temperatures where the mechanical integrity of the substrate is not guaranteed anymore. Furthermore, the initial surface of poly-crystalline diamond is rough which requires a final polishing process step.


From U.S. Pat. No. 6,447,295 KUMAR ET AL an ADLC coated dental retaining screw is known. KUMAR discloses the application of ADLC against cold welding between titanium implants. The application of the hard layer on the substantial more elastic substrate bears the risk of exfoliation, i.e. the destruction of the hard layer. The coating of KUMAR would not be suitable for an articulation surface.


It is further known from US 2005/0016635 DESPRES III ET AL. to use ADLC for a knee-endoprosthesis; however, the ADLC surface is explicitly used as a coating for promoting tissue in-growth or on-growth to that surface and not for an articulating surface of a an endo-joint prosthesis


SUMMARY OF THE INVENTION

Metal-on-Metal articulation in endo-joint prosthesis create wear debris, in particular small particles of Chromium, Cobalt and Molybdenum which will be released from the surface. Therefore it is an object of the invention to provide a prosthetic joint having articulating surfaces which lead to a reduction of the number of such released particles.


Another object of this invention is to provide a prosthetic joint with enhanced dry run properties.


Further objects of this invention are to provide a prosthetic joint having:

    • higher biological compatibility; and
    • lower risk of delamination of the hard layer from the substrate.


The prosthetic joints with the ADLC surface layers according to the invention have shown excellent properties particularly under dry run conditions. The friction factor is reduced as well, which leads to lower volume of wear debris.


ADLC is processed at temperatures between 150 and 250° C. At these temperatures the usual substrates CoCrMo and CoCrMoC do not change its material structure and remain in sound condition. No final polishing is necessary due to the fact that ADLC and its bonding layer is applied literally atom by atom, i.e. not changing the surface topography.


In a special embodiment said amorphous diamond-like carbon is tetrahedral amorphous diamond-like carbon. This configuration has the advantage of being one of the hardest materials.


The articulating surface layer may be formed by a coating applied to a metallic or ceramic substrate, preferably like CoCrMo, CoCrMoC, Ti, TAN, TAV, Aluminium Oxide or Zirconium Oxide.


The surface layer may have a thickness between 0.5 μm and 800 μm, preferably between 2 μm and 25 μm.


In a further embodiment a bonding layer is disposed between the surface layer and the substrate. Since ADLC is significantly harder than the substrate, surface tension may result between. It has been found that the surface tension can be reduced by placing a bonding layer between the substrate and the surface layer (ADLC). The bonding layer can be a metal or a metal alloy, in particular it may comprise Niobium, Silizium, Tantalum or Gold or other biocompatible metals.


The bonding layer may have a thickness between 3 nm and 40 μm, preferably between 50 nm and 9 μm.


In a further embodiment the surface layer can be a multi-layer composite. The advantage of this design is a reduction of the surface tension through several “more elastic” layers from pure metals. The multi-layer composite may comprise the following sequence of single layers: (Substrate)-Ti—TiN—Ti—TiN.


The joint according to the invention may be part of an endojoint prosthesis, preferably for the hip, knee and shoulder, or of an intervertebral implant, preferably an intervertebral disk prosthesis.





A BRIEF DESCRIPTION OF THE DRAWINGS

Several embodiments of the invention will be described in the following by way of example and with reference to the accompanying drawings in which:



FIG. 1 shows a perspective view of the key functional members of a prosthetic joint according to the invention;



FIG. 2 shows a perspective view of the key functional members of another prosthetic joint according to the invention;



FIG. 3 shows a perspective view of the key functional members of yet another prosthetic joint according to the invention;



FIG. 4 shows a cross section of the prosthetic joint of FIG. 3;



FIG. 5 shows an exploded view of an embodiment of the prosthetic joint according to the invention; and



FIG. 6 shows a cross section of the embodiment of FIG. 5.






FIG. 1 schematically illustrates the key functional members of a prosthetic joint 1 according to the invention. The prosthetic joint 1 is configured as a uniaxial joint having an axis of rotation 4, schematizing e.g. a hinged knee prosthesis. The prosthetic joint 1 essentially comprises a first member 2 with a channel 7 coaxially penetrating the first member 2 and a second member 3 which is configured as an articular shaft 9. The first and second members 2;3 each are provided with an articulating surface layer 10;11 and a bonding layer 12;13 between the articulating surface layer 10;11 and the peripheral wall 8 of the channel 7, respectively the cylindrical surface of the articular shaft 9. The configuration of the prosthetic joint 1 with a convex sliding surface 29 at the articular shaft 9 and a concave sliding surface 30 at the peripheral wall 8 of the channel 7 solely permit a sliding relative motion between the first and second member 2;3.



FIGS. 2 to 4 schematically illustrate the key functional members of a further prosthetic joint 1 according to the invention, for example of a knee joint prosthesis of the surface replacement type. The embodiments in FIGS. 2 to 4 differ from the one shown in FIG. 1 solely in a plane (FIG. 4) respectively concave (FIGS. 5 and 6) configuration of the concave sliding surface 30 of the first member 2 and an articular shaft 9 having a circular cross section, whereby the radius of curvature of the concave sliding surface 30 of the first member 2 is greater than the radius of the convex sliding surface 29 of the articular shaft 9. This configuration of the first and second member 2;3 permits a superimposed sliding and rolling motion of the first and second member 2;3 relative to each other.



FIGS. 5 and 6 illustrate an embodiment of the prosthetic joint 1 in the form of an intervertebral implant 14, particularly an intervertebral disc prosthesis comprising an upper apposition member 15, a lower apposition member 16 and a ball-and-socket joint 22 articulatedly connecting said upper and lower apposition member 15;16. Opposite the ball-and-socket joint 22 the upper and lower apposition member 15;16 comprise an upper terminal surface 17, respectively a lower terminal surface 18, whereby said upper terminal surface 17 is configured for abutting the base plate of a first intervertebral body contacting the intervertebral implant 14 on top and said lower terminal surface 18 is configured for abutting the cover plate of a second intervertebral body contacting the intervertebral implant 14 at the bottom. The ball-and-socket joint 22 is a two-piece member having a spherical convex joint member 23, the convex sliding surface 29 of which is configured as a spherical cap with the central axis 19 of the intervertebral implant 14 intersecting the spherical cap at its apex. At the rear end 25 of the convex joint member 23 a first cylindrical section 31 is provided by means of which the convex joint member 23 may be fit into a corresponding first recess 27 in the intermediate surface 21 of the lower apposition member 16, which is arranged opposite to the lower terminal surface 18. Analogously, the rear end 26 of the concave joint member 24 comprises a second cylindrical section 32 by means of which the concave joint member 24 may be fit into a corresponding second recess 28 in the intermediate surface 20 of the upper apposition member 15 which is arranged opposite the upper terminal surface 17.


In this exemplary embodiment the first and second bonding layers 12;13 are metallic, have a thickness between 3 nanometer and 6 micrometer and are fixed at the respective first and second substrates 33;34 of the corresponding convex and concave joint members 23;24 by means of chemical vapor deposition technique whereas the first and second articulating surfaces 10;11 have a thickness between 2 and 30 micrometer and are applied by means of a plasma assisted chemical vapor deposition process.


The convex sliding surface 29 and the concave sliding surface 30 have the same radius, which permits a sliding motion of the convex sliding surface 29 relative to the concave sliding surface 30 when the ball-and-socket joint 22 is bent or stretched. Analogously, a sliding motion between the convex and concave sliding surface 29;30 is performed when the first and second member 2;3 of the prosthetic joint rotate relative to each other about the central axis 19.

Claims
  • 1. An intervertebral implant comprising: an upper apposition member including an upper terminal surface sized and configured to abut a first vertebra, a lower surface opposite the upper terminal surface, and a first recess that extends into the lower surface;a lower apposition member including a lower terminal surface sized and configured to abut a second vertebra, an upper surface opposite the lower terminal surface, and a second recess that extends into the upper surface;a first substrate coupled to the upper apposition member, the first substrate including a first curved surface;an articulating surface layer and a bonding layer positioned between the articulating surface layer and the first curved surface, the articulating surface layer including a multi-layer composite, wherein the multi-layer composite includes a layer consisting of titanium and a layer consisting of titanium nitride adjacent the layer consisting of titanium; anda second substrate coupled to the lower apposition member, the second substrate including a second curved surface configured to movably contact the first curved surface so that the upper apposition member is moveable with respect to the lower apposition member.
  • 2. The intervertebral implant of claim 1, wherein the articulating surface layer is a first articulating surface layer, the bonding layer is a first bonding layer, and the multi-layer composite is a first multi-layer composite; the intervertebral implant further comprising: a second articulating surface layer and a second bonding layer positioned between the second articulating surface layer and the second curved surface, the second articulating surface layer including a second multi-layer composite, wherein the second multi-layer composite includes a layer of titanium and a layer of titanium nitride adjacent the layer of titanium.
  • 3. The intervertebral implant of claim 2, wherein the layer consisting of titanium is a first layer of titanium, the layer consisting of titanium nitride is a first layer of titanium nitride, and the first multi-layer composite includes a second layer of titanium and a second layer of titanium nitride adjacent the second layer of titanium.
  • 4. The intervertebral implant of claim 3, wherein the second layer of titanium nitride is adjacent to the first layer of titanium.
  • 5. The intervertebral implant of claim 2, wherein the first bonding layer comprises Niobium, Silizium, Tantalum or Gold.
  • 6. The intervertebral implant of claim 5, wherein the second bonding layer comprises Niobium, Silizium, Tantalum or Gold.
  • 7. The intervertebral implant of claim 1, wherein the first curved surface is concave, and the second curved surface is convex.
  • 8. The intervertebral implant of claim 1, wherein the first curved surface is spherical.
  • 9. The intervertebral implant of claim 8, wherein the second curved surface is spherical.
  • 10. The intervertebral implant of claim 1, further comprising a joint member that is configured to be coupled to the upper apposition member, the joint member including the first substrate.
Priority Claims (1)
Number Date Country Kind
2160/04 Dec 2004 CH national
PCT Information
Filing Document Filing Date Country Kind 371c Date
PCT/CH2005/000777 12/27/2005 WO 00 6/27/2007
Publishing Document Publishing Date Country Kind
WO2006/069465 7/6/2006 WO A
US Referenced Citations (77)
Number Name Date Kind
4759766 Buettner-Janz et al. Jul 1988 A
5169597 Davidson et al. Dec 1992 A
5314477 Marnay May 1994 A
5458643 Oka et al. Oct 1995 A
5534029 Shima Jul 1996 A
5593719 Dearnaley et al. Jan 1997 A
5688557 Lemelson et al. Nov 1997 A
5702448 Buechel et al. Dec 1997 A
5716415 Steffee Feb 1998 A
5855996 Corrigan et al. Jan 1999 A
5895428 Berry Apr 1999 A
6083570 Lemelson et al. Jul 2000 A
6086593 Bonutti Jul 2000 A
6099531 Bonutti Aug 2000 A
6368351 Glenn et al. Apr 2002 B1
6398815 Pope et al. Jun 2002 B1
6419705 Erickson Jul 2002 B1
6423419 Teer et al. Jul 2002 B1
6447295 Kumar et al. Sep 2002 B1
6497727 Pope et al. Dec 2002 B1
6514289 Pope et al. Feb 2003 B1
6527804 Gauchet et al. Mar 2003 B1
6579320 Gauchet et al. Jun 2003 B1
6596225 Pope et al. Jul 2003 B1
6719794 Gerber et al. Apr 2004 B2
6852126 Ahlgren Feb 2005 B2
6936071 Marnay et al. Aug 2005 B1
7083651 Diaz et al. Aug 2006 B2
7137997 Paul Nov 2006 B2
7364589 Eisermann Apr 2008 B2
7494507 Dixon et al. Feb 2009 B2
7591852 Prosser Sep 2009 B2
7621956 Paul et al. Nov 2009 B2
20010024737 Utsumi et al. Sep 2001 A1
20020016635 Despres et al. Feb 2002 A1
20020082693 Ahlgren Jun 2002 A1
20030074073 Errico et al. Apr 2003 A1
20030093154 Estes et al. May 2003 A1
20030191533 Dixon et al. Oct 2003 A1
20030195631 Ferree Oct 2003 A1
20030220649 Bao et al. Nov 2003 A1
20040049280 Cauthen Mar 2004 A1
20040059421 Glenn Mar 2004 A1
20040088052 Dearnaley May 2004 A1
20040111159 Pope et al. Jun 2004 A1
20040133278 Marino et al. Jul 2004 A1
20040158254 Eisermann Aug 2004 A1
20040186585 Feiwell Sep 2004 A1
20040225365 Eisermann et al. Nov 2004 A1
20040225366 Eisermann et al. Nov 2004 A1
20040243240 Beaurain et al. Dec 2004 A1
20040243241 Istephanous et al. Dec 2004 A1
20050021144 Malberg et al. Jan 2005 A1
20050033438 Schultz et al. Feb 2005 A1
20050038516 Spoonamore Feb 2005 A1
20050043800 Paul et al. Feb 2005 A1
20050043802 Eisermann et al. Feb 2005 A1
20050060036 Schultz Mar 2005 A1
20050070900 Serhan et al. Mar 2005 A1
20050080488 Schultz Apr 2005 A1
20050085917 Marnay et al. Apr 2005 A1
20050149194 Ahlgren Jul 2005 A1
20050165485 Trieu Jul 2005 A1
20050192671 Bao et al. Sep 2005 A1
20050197702 Coppes et al. Sep 2005 A1
20050216081 Taylor Sep 2005 A1
20050228500 Kim et al. Oct 2005 A1
20050251261 Peterman Nov 2005 A1
20050288788 Dougherty-Shah Dec 2005 A1
20060004458 Collins et al. Jan 2006 A1
20060036261 McDonnell Feb 2006 A1
20060229724 Lechmann et al. Oct 2006 A1
20060229725 Lechmann et al. Oct 2006 A1
20070032877 Whiteside Feb 2007 A1
20070198096 Wort Aug 2007 A1
20070299521 Glenn et al. Dec 2007 A1
20080103597 Lechmann et al. May 2008 A1
Foreign Referenced Citations (48)
Number Date Country
2446934 Nov 2002 CA
9015697 Jun 1991 DE
4102509 Jul 1992 DE
101 08 344 Sep 2001 DE
20311400 Oct 2003 DE
20315611 Dec 2003 DE
10323363 Dec 2004 DE
0302717 Feb 1989 EP
0 672 763 Sep 1995 EP
0 672 763 Sep 2001 EP
60-116361 Jun 1985 JP
61-122859 Jun 1986 JP
02-286158 Nov 1990 JP
3-64142 Oct 1991 JP
06-178787 Jun 1994 JP
07-178127 Jul 1995 JP
09-173437 Jul 1997 JP
11-318960 Nov 1999 JP
2000-087961 Mar 2000 JP
2001-178813 Jul 2001 JP
2001-316800 Nov 2001 JP
2002-204825 Jul 2002 JP
2004-130077 Apr 2004 JP
2004-515311 May 2004 JP
2004-525702 Aug 2004 JP
2005-505315 Feb 2005 JP
2005-537065 Dec 2005 JP
2006-517453 Jul 2006 JP
2006-528540 Dec 2006 JP
2007-505669 Mar 2007 JP
2008-525130 Jul 2008 JP
0153410 Nov 1998 KR
9526697 Oct 1995 WO
9604862 Feb 1996 WO
9958167 Nov 1999 WO
0101893 Jan 2001 WO
0154561 Aug 2001 WO
0154612 Aug 2001 WO
0164142 Sep 2001 WO
0205733 Jan 2002 WO
0359212 Jul 2003 WO
20041041131 May 2004 WO
20041056289 Jul 2004 WO
20041071344 Aug 2004 WO
20051027799 Mar 2005 WO
20051107656 Nov 2005 WO
20061058281 Jun 2006 WO
20061069465 Jul 2006 WO
Non-Patent Literature Citations (17)
Entry
International Preliminary Report on Patentability and Written Opinion of the International Searching Authority in appln. No. PCT/CH2005/000777 (Jul. 3, 2007).
U.S. Appl. No. 11/338,454—“Amendment in Response to the Office Action dated Nov. 17, 2009”.
U.S. Appl. No. 11/338,454—USPTO: Final Office Action dated Jun. 8, 2010.
U.S. Appl. No. 11/338,454—“Request for Continued Examination and Amendment in Response to the Final Office Action dated Jun. 8, 2010”.
International Search Report, dated Mar. 20, 2006, in International patent appln. No. PCT/CH2005/000777.
Yoshino et al., Surface and Coatings Technology, 47, 84-88, 1991.
Wei et al., International Materials Reviews, 2000, 45, 133-164.
Watkins, Postlateral fusion of the lumbar and lumbosacral spine, J. Bone Joint Surg. Am, 35-A(4), Oct. 1953, 1014-8.
Watkins, Posterolateral fusion in pseudoarthrosis and posterior element defects of the lumbosacral spine, Clin. Orthop. Relat. Res., 35:80-5, Jul.-Aug. 1964.
Ullmann's encyclopedia of industrial chemistry, vol. A26, 5th completely rev. ed., 1995, Thin Films, 717-725.
Standard Specification for Unalloyed Titanium, for Surgical Implant Applications (UNS R50250, UNS R50400, UNS R50550, UNS 50700), Designation F67-00.
Ronkainen et al., Surface and Coatings Technology, 90, 1997, 190-196.
Pappas et al, Clinical Orthopaedics, 1995, 317, 64-70.
Monteiro et al., Proceedings of the 17th International Conference of the Application of Accelerators in Research and Industry CAARI 2002, pp. 1-7.
Matsuno et al., Biomaterials, 2001, 22, 1253-1262.
Lappalaien et al., Diamond and Related Materials, 1998, 7, 482-485.
Fisher et al., Proc Instn Mech Engrs vol. 216, Part H: J Engineering in Medicine, 2002, 219-230.
Related Publications (1)
Number Date Country
20080154383 A1 Jun 2008 US