Devices and control systems for biologically-inspired artificial limbs are generally disclosed.
Existing prosthetic leg devices include a series-elastic actuator which functions as a biologically-inspired muscle-tendon unit to modulate, during a gait cycle, joint impedance, joint equilibrium and torque, in accordance with walking speed and terrain modality (e.g., sloping ground, stairs, etc.). It is desired for prosthetic leg devices to function in a way that matches the human ankle response as captured, in part, by
Prosthetic leg devices have been designed so as to exhibit response behavior captured by a “dashboard” of biomechanical characteristics, shown in
The ankle device depicted in
The inventors have recognized and appreciated there to be advantages in employing time-dependent decay behavior in one or more control parameters when the actuator torque of an artificial leg device is modulated during use. While not meant to be limiting, such parameters may include joint equilibrium, joint impedance (e.g., stiffness, damping) and/or joint torque components (e.g., gain, exponent) of the programmable state (e.g., powered reflex response). The decay behavior may conform to any suitable mathematical relationship, such as an exponential decay, linear drop, quadratic function, piecewise relation, dynamic behavior model that might arise from the output of a linear or non-linear differential equation, or other suitable function. Such behavior, when used in a positive force feedback system, may provide for a smooth experience that emulates biological kinetics (torque, power) and kinematics. For example, this type of control may ease the transition(s) between states of the device (e.g., so that they are generally unnoticeable to the wearer) and may allow for the wearer to alter his/her course during gait in a natural manner.
In an illustrative embodiment, a prosthesis, orthosis or exoskeleton apparatus is provided. The apparatus includes a proximal member; a distal member; a joint connecting the proximal and distal members, the joint adapted to permit flexion and extension between the proximal and distal members; a motorized actuator configured to apply at least one of a joint impedance and a joint torque, the joint impedance including at least one of a stiffness and damping, wherein the stiffness is referenced to a joint equilibrium; a sensor configured to detect at least one of a phase and a change in a phase of joint motion in a repetitive cycle; and a controller configured to modulate at least one of the joint equilibrium, the joint impedance and the joint torque, the modulation employing a decaying time response as a function of at least one of the phase and the detected change in phase of joint motion.
In another illustrative embodiment, a method of controlling a joint impedance and a joint equilibrium of a prosthesis, orthosis or exoskeleton apparatus is provided. The method includes actuating a joint of the apparatus; tracking a current joint position of the apparatus; and controlling a value of the joint equilibrium of the apparatus so as to converge to a value of the current joint position.
In yet another illustrative embodiment, a prosthesis, orthosis or exoskeleton device is provided. The device includes a joint constructed and arranged to permit flexion and extension between a proximal member and a distal member; a motorized actuator configured to apply at least one of a joint impedance and a joint torque, the joint impedance referenced to a joint equilibrium; a sensor configured to detect a characteristic of the device; and a controller configured to modulate at least one of the joint equilibrium, the joint impedance and the joint torque according to the detected characteristic, the modulation exhibiting time-dependent decay behavior.
In a further illustrative embodiment, a prosthesis, orthosis or exoskeleton device is provided. The device includes a joint constructed and arranged to permit flexion and extension between a proximal member and a distal member; a motorized actuator configured to apply at least one of a joint impedance and a joint torque, the joint impedance referenced to a joint equilibrium; a sensor configured to detect an angular rate of at least one of the proximal member, the distal member and a joint connecting the proximal and distal members; and a controller configured to modulate a parameter comprising at least one of the joint equilibrium, the joint impedance and the joint torque according to the detected angular rate to include at least one of a rate dependent stiffness response and a decaying response.
In yet another illustrative embodiment, a prosthesis, orthosis or exoskeleton apparatus is provided. The apparatus includes a proximal member; a distal member; a joint connecting the proximal and distal members, the joint adapted to permit flexion and extension between the proximal and distal members; a motorized actuator configured to apply torque at the joint; a sensor configured to detect at least one of a phase and a change in a phase of joint motion in a repetitive cycle; a battery to store electrical energy and to power the apparatus, a controller configured to short the leads of the motor where the controller recovers electrical energy from the apparatus during at least part of the repetitive cycle.
Other advantages and novel features of the invention will become apparent from the following detailed description of various non-limiting embodiments when considered in conjunction with the accompanying figures and claims.
Aspects of the present disclosure are described with reference to the following drawings in which numerals reference like elements, and wherein:
Various embodiments of the present disclosure relate to a biologically-inspired, sensing and control architecture for bionic leg actuation (e.g., knee joint actuation, ankle joint actuation). As described herein, a bionic device may function to restore or replace anatomical structure(s) and/or exhibit physiological process(es), with one or more electro-mechanical components. For instance, bionic devices of the present disclosure may emulate stance-phase kinetics (e.g., torque and power) that may occur naturally in intact limbs. Bionic leg joints described herein may employ a series-elastic actuator (SEA) to amplify mechanical power, to enable closed-loop torque control and to enable sensing of actuator torque through a model of the torque-displacement characteristics. In some embodiments, an ankle device may employ a hardstop with known flexion characteristics that limits dorsiflexion travel of the joint. A control system modulates joint impedance (e.g., stiffness, damping), joint equilibrium (e.g., equilibrium location) and joint torque (e.g., motor reflex gain, motor reflex exponent) in accordance with gait cycle state and walking speed, a surrogate for walking speed, or the rate of change of a state variable or sensor in the actuator control system. In some embodiments, the rate of change of the state variable may include an inertial pitch rate (e.g., of a tibial component) and/or an actuator torque rate (e.g., of an ankle or knee joint), shortly after foot strike.
In some embodiments, one or more parameters controlled by the system may exhibit time-dependent behavior. For example, the joint impedance, joint stiffness, joint damping, joint equilibrium, reflex torque gain, reflex torque exponent, or another suitable parameter(s) may employ a time decay (e.g., value of the parameter diminishes over time) during an appropriate phase of gait. Such a decay may exhibit any suitable functional behavior, such as exponential, linear, piecewise, etc. This type of behavior, in some cases, may also provide for a natural experience to the wearer, for example, without producing a feeling of abruptness upon changes in the phase of gait. For instance, a gradual lessening of ankle stiffness upon entry into an Early Stance mode may allow for a wearer to rollover smoothly in a natural manner such that mode changes (i.e., state transitions) of the device are transparent (e.g., almost unnoticeable).
As used herein, a phase of gait may describe a particular state of the device, which may be triggered by a gait event (e.g., heel-strike, toe-off). For example, a phase of gait may refer to: a state transition in a leg prosthesis control system, such as in a joint actuator controller; the inertial state of proximal and distal members of the device; and/or changes in one or more components of the inertial state of the proximal and distal members of the device.
As used herein, a motorized actuator or motorized actuation system may include any suitable motor. For example, motorized actuators may incorporate one or more electric motors, hydraulic motors, pneumatic motors, piezo-actuated motors, shape-memory motors, electro-polymer motors, or any other appropriate motorized device.
As used herein, a characteristic of motion of a device may include one or more of the following: an inertial pose of distal and proximal members of the device; changes in the inertial pose of the distal and proximal members of the device; translational velocity or angular rate of one or more points on the distal and proximal members; kinetics, including force, torque and power, and the derivatives thereof at the joints and at the interface between the device and ground; kinematics, including joint angles, and derivatives thereof; dynamic actuator state(s), including force, torque, displacement in the motor drive and transmission, including the elastic elements embodied within the transmission; and other appropriate characteristics.
While neuroscientists identify increasingly complex neural circuits that control animal and human gait, biomechanists have found that locomotion requires little outside control if principles of legged mechanics are heeded that shape and exploit the dynamics of legged systems. Embodiments according to the present disclosure may include muscle reflex response(s) that encode principles of legged mechanics, and provide a link to the above observations surrounding the behavior of natural limbs. Equipped with reflex control, various embodiments of bionic devices presented herein reproduce human walking dynamics and leg kinetics and kinematics; tolerate ground disturbances; and adapt to slopes without outside parameter intervention(s), such as might otherwise be informed by inertial sensor inputs, neural or cognitive functions. Accordingly, aspects/parameters of the bionic response may be appropriately encoded to adaptively modulate one or more parameters based upon intrinsic kinematic and kinetic measures (e.g., angle and torque including their derivatives) or extrinsic interventions arising from measures of walking speed and terrain (as might be supplied by an inertial measurement unit, for instance), so as to suitably emulate the muscle-tendon reflex. Aspects described herein may employ principles described in the article by Geyer, H. and Herr, H., entitled “A Muscle-Reflex Model that Encodes Principles of Legged Mechanics Produces Human Walking Dynamics and Muscle Activities,” submitted to IEEE Transactions on Neural Systems and Rehabilitation Engineering and accepted in 2010, the disclosure of which is hereby incorporated herein by reference in its entirety.
It can be appreciated that embodiments of the present disclosure are not required to incorporate a state machine that transitions from one discrete state to another in a gait cycle. For instance, a mere change in inertial state across a gait cycle (e.g., based on the use of a rate gyroscope to measure a rate of tibial pitch) may be a part of a gait cycle phase.
Systems described herein may be incorporated in devices made by iWalk, Inc., such as in the BiOMT2. In some cases, the BiOMT2 device employs a series-elastic actuator (SEA) that incorporates a biophysically-based, reflexive control system. This system emulates dominant muscle-tendon behavior, during walking, of the ankle plantar flexors, the Soleus and Gastrocnemius calf muscles, as well as the dominant dorsiflexor, the Tibialis Anterior. The SEA may control ankle joint impedance (e.g., stiffness, damping), virtual spring equilibrium and/or reflexive torque. The SEA system may enable sensing of actuator torque (ΓSEA) through measurements of series-spring deformation. Additionally, the ankle joint may include a hardstop, which limits the ability for the ankle to move to a position of increased dorsiflexion, after a certain point. In addition to measuring actuator torque, the system may also monitor hardstop torque (Γhs) through the measurement of hardstop spring deformation.
A finite state machine may be employed in a State Control Processor to control transitions of the device through different states. The gait cycle states in the State Machine may include early stance, late stance, late stance power, early swing and late swing, which are aligned with the conventional names employed in human biomechanics, namely, controlled plantar flexion, controlled dorsiflexion, powered plantar flexion, early swing and late swing, respectively. The transitions between these walking gait phases may be determined by a system clock (time) and/or the SEA torque (ΓSEA), hardstop torque (Γhs), and their time derivatives.
In some embodiments, the device includes a single finite state machine for walking. As a result, when a single finite state machine is employed, the control system does not revert to a non-walking state machine based on biomechanical change(s) made by the human wearer. Accordingly, the device is less cumbersome than would otherwise be the case if multiple state machines are incorporated.
The system may make some or all motor control actuation decisions based upon kinetic sensory information of the device (e.g., force/torque information), without requiring kinematic sensory information of the device (e.g., positions, velocities, accelerations). For example, the system is not required to employ reflex response parameter interventions as these might be informed by accelerometers or rate gyros or any other sensor for the measurement of overall device positions, velocities or accelerations relative to horizontal or vertical reference planes to adapt to walking speed and terrain modality. As a result, the position of the ankle joint may be controlled based on the interaction forces experienced between the human wearer, the device, and the ground surface. Therefore, contrary to conventional robotic systems, it is not necessary for the device to directly control the position of the ankle joint, whether in stance or swing phases, as systems described herein are controlled based on reflex response(s). Though, it can be appreciated that, in some cases, the system may employ position sensors, accelerometers, rate gyros and/or any other sensor, as suitably desired.
Non-linear, positive force feedback control is applied in powered plantar flexion to emulate human muscle-tendon reflex dynamics. Devices described herein employ positive force feedback with intent to emulate a natural, uncontrolled (e.g., automatic) reflex response. This reflex is implemented by a motor torque control that behaves according to a positive force feedback mathematical relationship involving parameters that include torque gain and torque exponent, each modulated according to the stimulation of certain parameters, for example, the torque rate measured by a series elastic actuator and/or the torque measured at a hardstop.
The system control architecture employs motor and joint angle sensing to compute, via calibrated models, instantaneous SEA and hardstop torque. Instead of using inertial information, the system architecture employs intrinsic measures of torque, torque rate of change and time duration within a gait cycle state to inform transitions in the State Machine that directs the response modulation in a Motor Processor and, in some embodiments, may rely exclusively on torque and time within a state to inform the transitions. That is, measurements of inertial information, such as position, velocity and acceleration are not used to inform parameter interventions that modulate the actuator response. Rather, force measurements, such as force and torque measured over time, may be used as input to direct the response modulation of the joint actuator.
The device may exhibit reflexive behavior, without any system memory. That is, the system may monitor device torque(s) and reflexively respond to such torque(s) with little delay between sensing and actuation. As a result, the monitoring of torque throughout or during a portion of a gait cycle may be the basis for modulation of control actions during a current gait cycle, without any consequence to control actions that affect a subsequent gait cycle.
In some embodiments, the control system does not require detection of particular gait patterns or events, and in response, the control system is not required to modulate either the control algorithm, or its system parameters. The control algorithm and its parameters are not necessarily adjusted in any manner in response to a user transitioning from a walk to a run, nor while ambulating from a level-ground surface to an incline, nor from level-ground to steps, nor while moving to standing, nor from a standing position to a sitting position, nor from a standing position to a leaning position, nor from a sitting position to a lying down position, nor while putting on pants. That is, despite the type of action the wearer may currently be performing, the control system may function according to a single state machine control, without regard to the type of user action currently performed.
The control system may be configured to detect a foot strike with the ground surface based on torque/force information. Independently of how the device has struck the ground, whether it is a heel strike, a toe strike, or a foot-flat strike, the system may run the same algorithm with the same control parameters.
Further, walking speed may be estimated from a known linearly correlated relationship with normalized, peak derivative of SEA torque in late stance. That is, torque rate may be used as an estimate (or surrogate) of a current walking speed so as to inform the reflex parameter modulation. In particular, the gain and exponent parameters of a reflex relationship may be modulated based on a rate of change of a parameter (e.g., pitch rate, torque rate). For example, a rate-based blending (interpolation) of the parameters may be employed.
In addition, to achieve a smooth and natural response, in some embodiments, the stiffness and/or damping of the joint in Early Stance may be designed to decay exponentially, for example, smoothly reducing stiffness/damping so as to increase joint compliance. Such exponential decay behavior, for impedance, may be particularly beneficial for a wearer of an artificial leg device when walking slowly on uneven terrain or descending down a steep slope, allowing for seamless, hi-fidelity device control.
In some embodiments, artificial leg devices are constructed according to a biologically-inspired approach where an IMU is not required for their use. A number of design principles are considered in constructing the artificial leg device.
For example, the time duration in a state, torque and torque derivative (torque rate) may guide the device in transitioning from one state to another, as well as to modulate the reflex parameters, which may or may not correlate with a current walking speed. In some cases, a single measured parameter may be sufficient as a signal for transitioning the device between states and/or estimate walking speed. As discussed, time duration within a state, SEA torque (ΓSEA) and hardstop torque (Fhs)—and the time derivatives of these—may be used as parameters that the system uses to inform state transitions and, in some cases, may be used independently and/or exclusively from other parameters. Peak SEA torque rate as sampled during late stance may be employed in the adjustment of the late stance power reflex, which may occur independently of an estimation (or correlation) of walking speed. As such, it may be a useful observation, yet not necessary for embodiments of the present disclosure, that the above-mentioned rate(s) may correlate with walking speed, for a broad range of wearers. As such, it is not necessary in the preferred embodiment to explicitly estimate the walking speed and to use that estimate to inform the reflex response modulation. So, the intrinsic inertial, kinematic or kinetic may be used directly to inform that modulation.
As muscle-tendon units of an intact limb do not employ inertial sensing to modulate their response, such intrinsic measures may enable the device to behave and respond as a more natural muscle-tendon unit. Instead, in an intact ankle, muscle and tendon stretch (torque) and their various rates of change are key inputs to the spinal reflex arc connecting the tendon and the muscle. As a result, transitions are more natural and consistent even when the wearer walks softly or runs and jumps in place.
Further, the system may employ a uniformly-applied stiffness/impedance that decays smoothly after foot strike. When the impedance after foot strike is set to decay, “impedance switching” between states, and the abrupt nature that often accompanies such a switch, may be eliminated. Early Stance impedance—generally defined by stiffness (kes) and damping (bes)—may be used by all states, except, in some cases, it might not be used during late stance power and early swing. Impedance may be set in late-swing to a programmable (tuned) value. In some embodiments, kes decays exponentially to a programmable value, kes
Exponential decay of impedance, or one or more other appropriate parameters, may begin at entry into Early Stance. In some cases, the time constant for decay may be set so that the stiffness is substantially maintained (e.g., does not drop quickly) during controlled plantar flexion (CP) (e.g., a time duration between 0.05-0.2 seconds), such as when walking at a brisk walking speed. When walking more slowly, e.g., down a steep hill, the stiffness may be set to drop smoothly, or more quickly, so as to enable the foot to find an equilibrium state at foot-flat with a diminished spring restoring torque—thereby reducing socket stress. The exponential decay behavior (e.g., for joint impedance, joint equilibrium, torque, or others) may continue for a portion of or for the entire gait cycle. For instance, in some cases, exponential decay may continue until it is reset at entry into Early Stance. Such transitions may occur without the wearer even noticing the occurrence of a state transition—thereby eliminating confusion and irritation.
A single walking state machine may deliver a biomimetic response either while walking or not walking, without need for a secondary non-walking state machine. Instead of discretely switching between a non-walking state machine and a walking state machine, state machines of the present disclosure may use the Early Stance state to uniformly deliver a biomimetic response without having to reconfigure the joint impedance and/or joint equilibrium when in a non-walking state. To accomplish this, the walking state machine may cause transition(s) to Early Stance if the time duration within any of the other walking machine states exceeds a programmable limit for that state, typically about two seconds. The stiffness, kes, may continue to decay to deliver a smoothly varying impedance that, in the limit, devolves to a substantially lightly damped response that responds naturally for non-directed activities that do not involve locomotion. As discussed above, for some embodiments, only torque and torque derivatives are used to inform the logic transition between states, for example, from early stance to late stance and late stance power where locomotion may then be initiated.
In some embodiments, spring impedance (e.g., stiffness, damping) may be dependent on angular rate in, for example, an ankle or a knee. For instance, an artificial joint device may employ a bionic control system that modulates the impedance of the joint so as to assist the wearer during stair ascent, steep ramp ascent or during the transition from sitting to standing. In some cases, when flexed past a certain threshold angle, the spring stiffness of the joint may be rate dependent, applying positive feedback in response to increases in the joint angular rate or the absolute value of joint angular rate. As an example, the spring stiffness of an artificial knee joint may be modulated such that when a wearer is standing up and the angular rate is increased, the joint becomes stiffer so as to provide increased support during the standing motion. Such support is effective to assist the wearer in standing up.
The present disclosure relates to U.S. Pat. No. 8,075,633 entitled “Active Ankle Foot Orthosis”; U.S. patent application Ser. No. 13/349,216, entitled “Controlling Powered Human Augmentation Devices”; U.S. patent applications entitled “Hybrid Terrain Adaptive Lower-Extremity Systems” corresponding to Ser. Nos. 61/231,754; 12/552,013; 12/552,021; 12/552,028; 12/552,036; and 12/551,845; U.S. patent application entitled “Biomimetic Transfemoral Prosthesis” corresponding to Ser. No. 61/554,921; U.S. patent application entitled “Powered Ankle Device” corresponding to Ser. No. 61/595,453; U.S. patent application entitled “Under-Actuated Exoskeleton” corresponding to Ser. No. 61/659,723; U.S. patent application entitled “Walking State Machine for Control of a Bionic Ankle Joint” corresponding to Ser. No. 61/658,568; U.S. patent application entitled “Bionic Control System for an Artificial Ankle Joint” corresponding to Ser. No. 61/662,104; U.S. patent application entitled “Biomimetic Ankle and Knee Actuator Designs” corresponding to Ser. No. 61/451,887; U.S. patent application entitled “Terrain Adaptive Powered Joint Orthosis” corresponding to Ser. No. 13/417,949; U.S. patent application entitled “Powered Joint Orthosis” corresponding to Ser. No. 13/347,443; U.S. patent application entitled “Using Knee Trajectory as a Discriminator in a Prosthesis or Orthosis” corresponding to Ser. No. 61/435,045; U.S. patent application entitled “Terrain Adaptive Powered Joint Orthosis” corresponding to Ser. No. 13/356,230; U.S. patent applications entitled “Controlling Power in a Prosthesis or Orthosis Based on Predicted Walking Speed or Surrogate for Same” corresponding to Ser. Nos. 61/432,083; 13/079,564; 13/079,571; U.S. patent application entitled “Estimated Hardstop Ankle Torque Contribution Using Measurements of Bumper/Ankle Shell Deflection” corresponding to Ser. No. 61/422,873; U.S. patent application entitled “Implementing a Stand-up Sequence Using a Lower Extremity Prosthesis or Orthosis” corresponding to Ser. No. 12/872,425, International Patent Application Nos. PCT/US2011/031105; PCT/US2012/020775; PCT/US2012/021084; and U.S. Provisional Patent Application No. 61/649,640, the disclosures of each of which are hereby incorporated herein by reference in their entirety.
In particular, concepts described herein may be guided by design principles that motivate use of positive force feedback, use of intrinsic, motor damping behavior to implement dynamic clutches, and catapult behaviors, such as those described in U.S. patent applications entitled “Variable-Mechanical-Impedance Artificial Legs” corresponding to Ser. Nos. 60/395,938; 10/613,499; 13/363,820, the disclosures of each of which are also hereby incorporated herein by reference in their entirety.
It should be understood that for those skilled in the art, the control architecture described herein may be extended to bionic ankles that employ physical and/or SEA-applied virtual, unidirectional and bi-directional parallel elastic elements where torque-displacement characteristics of these systems may be calibrated before use. Further, while such control architecture(s) may be applied to a bionic ankle prosthesis, these principles may be readily extended to orthotic, exoskeletal or humanoid applications in lower-extremity augmentation of ankle, knee and hip.
While systems in accordance with the present disclosure do not require inertial measurements as input for actuator modulation, it can be appreciated that systems described herein may be used in place of or in combination with inertial measurement systems. For instance, an actuator response may be accomplished by controlling motor torque, τm, in a closed-loop or open-loop manner, to match a desired response. In such an architecture, joint angle, motor angle and 6-DOF inertial state (orthogonally-opposed measures of local angular rate and acceleration as sampled by an Inertial Measurement Unit (IMU)) may be used to compute SEA and hardstop torque via calibrated models, to inform state machine transitions, to estimate walking speed and/or to adapt to changes in walking speed or terrain modality. As discussed above, SEA torque and hardstop torque may be used as input to modulate reflex parameters employed in powered plantar flexion. Table 1 provides a summarized mapping of the intrinsic firmware states to the level-ground, gait cycle states as implemented in an artificial ankle device.
1Only open-Loop response is shown, where τm is the motor torque as reflected onto the joint-referenced series-elastic element via the actuator gear ratio. β is the joint equilibrium as defined by the motor position. In a closed-loop formulation for States 4, 6, 2, 3 and 1, β is replaced by the joint angle, θ and τm is replaced by ΓSEA-the torque as applied by the series-elastic element via closed-loop torque control. In State 6 so as to avoid a circular reference to ΓSEA, τm would serve as an input to dynamics that emulate muscle-tendon response, where {dot over (x)} = f(x, τm) and ΓSEA = cTx, where x, f and c define the non-linear dynamics.
In systems that operate under the firmware states summarized by Table 1, the State Machine employs state transitions that are informed by time duration within the state, actuator torque, hardstop torque, and inputs from the Inertial Measurement Unit (IMU). Complex measures of “jerk” and vibration applied to the z-component of the local or world-referenced acceleration are employed to detect heel or toe strike transition from late swing (LSW) to early stance (ES). Logic employing pitch velocity (tibia rotation in the sagittal plane) is used as a “guard” (qualifying) condition prior to applying the accelerometer-based foot strike logic. Pitch velocity, as measured at or near the entry into late stance (LS) may be used (as a surrogate) to estimate walking speed and as input for determining resulting reflex response parameters (pff({dot over (s)}) and N({dot over (s)})) in late stance power (LSP).
Further, pitch rate or velocity may be used to inform state transitions from a non-walking state machine into a walking state machine. While such an IMU-based approach may work well for normal gait cycles involving locomotion (e.g., walking), such an approach might not be optimized for non-walking type sequences, for example, those that may occur when the wearer is moving slowly in a confined space, moving between standing and sitting positions, or ascending/descending a ladder. In a small percentage of such cases, a completely IMU-based actuator may have a tendency to respond more vigorously than desired. Conversely, in situations where the wearer is running or jumping in place, the state machine might miss an occasional transition, thereby causing the actuator response to be, in some cases, inconsistent.
The impedance response when the system is set to a non-walking state may, at times, be constrained to be a viscous damper (e.g., have a high damping coefficient resulting from shorting of the motor leads) for a discrete period of time (e.g., approximately two seconds) followed by a more lightly-damped response, which is a less than natural response for the wearer. In cases where transitions between non-walking and walking occur over short time intervals, the step response in viscosity may become less than desirable.
Considering again artificial leg devices that are programmed in a biologically-inspired manner where an IMU is not required, Table 2 provides a summary for such a device. Such devices may be constructed and programmed to capture the reliance on torque-time and the use of an exponential decay so as to eliminate or reduce the abruptness that may result due to transition from one state to another.
Table 2. Alignment of level-ground gait cycle states with intrinsic firmware states for an embodiment.
2Only open-Loop response is shown, where τm is the motor torque as reflected onto the joint-referenced series-elastic element via the actuator gear ratio. β is the joint equilibrium as defined by the motor position. In a closed-loop formulation for States 4, 5, 2, 3 and 1, β is replaced by the joint angle, θ and τm is replaced by ΓSEA-the torque as applied by the series-elastic element via closed-loop torque control. In State 6 so as to avoid a circular reference to ΓSEA, τm would serve as an input to dynamics that emulate muscle-tendon response, where {dot over (x)} = f(x, τm) and ΓSEA = cTx, where x, f and c define the non-linear dynamics.
3The stiffness applied in ES is unidirectional.
4The damping when θ > 0 is increased to a large value to handle the case when θ0 < 0.
To those skilled in the art it should be readily apparent that the computation and prediction of walking speed is not necessary. In some embodiments, the reflex parameters can be computed as a function directly of the SEA torque rate without loss of generality in another preferred embodiment.
Early Swing (ESW) to Late Swing (LSW) Transition
As shown in
Late Swing (LSW) to Early Stance (ES) Transition
Accordingly, for each type of state transition, a threshold would be crossed (e.g., when the measured or sensed torque is greater than or less than a particular set torque value, within a certain period of time) that triggers transition from one state to
Walking-Speed Referenced Reflex
The device may use the maximum, rate-of-change in SEA torque ({dot over (Γ)}SEA) as measured in Late Stance as an estimation (or surrogate) for instantaneous walking speed.
The graph shown in
Such studies have shown that {dot over ({tilde over (Γ)})}SEA is not invariant across a population of wearers, even when normalized by, for example, peak torque at a self-selected walking speed. So, in one embodiment, {dot over (Γ)}SEA is observed for each specific wearer—both at the fastest achievable walking speed and at the slowest desired walking speed. At each speed, preferred values for torque gain, pff ({dot over (s)}), and torque exponent, N({dot over (s)}), may be determined by tuning—thereby determining values/ranges for various parameters, such as pff slow Nslow, Pff fast, Nfast. With these parameters in hand, a basis is provided through which the reflex response may be blended across a range of walking speeds. By replacing {dot over (s)} with {dot over (Γ)}SEA, the following blended reflex equations may be used:
Method I: Blended Torque Models
Method II: Blended Coefficients
where c1 and c2 are defined as in Method I.
Where the subscript, SEA, on {dot over (Γ)}SEA, is removed to simplify the notation.
Device Extensions
It should be appreciated that while device control architectures in accordance with the present disclosure have been applied to an artificial (bionic) ankle device with a hardstop, the hardstop functionality may be replaced by a physical, unidirectional or bi-directional element, parallel elastic element, a virtual, SEA-applied, parallel elastic element, or other suitable component. For example, in either case the hard stop torque, Γhs, may be replaced by a parallel elastic element torque, ΓPE, where ΓPE is calibrated in manufacturing to determine the torque displacement characteristics of the physical or virtual elasticity.
Further, while device control architectures described herein have been applied to artificial ankle prostheses, concepts presented here may be extended for application in orthotic, exoskeletal, humanoid ankles, or other appropriate devices. And, while the device control architectures herein have been applied to artificial ankle applications, the techniques applied here may also be extended for use in accordance with other lower-extremity applications, for example, in the knee and hip.
Further Embodiments and their Implementation for Prosthetic or Orthotic Ankle Devices
Embodiments of bionic leg devices, such as the BiOMT2 system produced by iWalk, Inc., may employ five states—Early Stance (ES; State 4), Late Stance (LS; State 5), Late Stance Power (LSP; State 6), Early Swing (ESW; State 2) and Late Swing (LSW; State 3)—that align with the human biomechanical gait cycle states controlled plantar flexion (CP), controlled dorsiflexion (CD), powered plantar flexion (PP), Early Swing (ESW) and Late Swing (LSW), respectively. The present disclosure reviews various details of control actions within each state and describes the state transition logic that causes entry into the state.
Early Stance (ES) Control Action
In ES (State 4), for some embodiments, the SEA applies a lightly-damped, torsional spring response in accordance with the human biomechanical joint response in Controlled Plantar Flexion. The impedance as applied by the SEA motor torque, τm, is comprised of a time-varying spring, kes(t), and a time-varying damping component, bes(t). The “virtual spring” joint equilibrium, θes, is the ankle angle as captured at ES entry. In some cases, one or more variables (e.g., spring constant, damping component, joint equilibrium, gain, exponent, etc.) of the motor torque may be time-dependent and/or may exhibit a time decay-type behavior (e.g., exponential, linear, piecewise, etc.). The actuator may apply an exponential decay to the stiffness component in order to make the ankle increasingly more compliant as the state progresses—to emulate human biomechanics while walking slowly, including on steep or uneven terrain. The ES control action may be modeled as follows:
where
τm is the motor torque,
θ is the joint angle,
β is the SEA motor angle,
And where,
τes{dot over (k)}es(t)+kes(t)=kes
θes=θ(t=0),
In some embodiments, the following second-order relation may be used to model exponential stiffness decay:
τk
t=time since ES entry
kes (0)=kes
bes(0)=bes
To those skilled in the art, other linear or non-linear differential equations can be applied to accomplish this decay function.
As provided in the equation above, the stiffness decays to kes
Early Stance (ES) Entry State-Transition Details
Late Swing (LSW)-to-Early Stance (ES) Transition
In some embodiments, the state transition into ES from LSW may occur when a foot-strike is detected—for example, by presence of a large or increasing heel load (L3-4
GUARD=((tlsw<100 msec)AND(Γhard stop<0.58Γ0))OR((tlsw<250 msec)AND(TransitionEnabled=FALSE)AND(Γhard stop<0.58Γ0))
Or, alternatively, the GUARD logic may be employed according to the following relation:
GUARD=((tlsw<100 msec)AND(Γhard stop<0.58Γ0))OR((tlsw<250 msec)AND(AnkleNotReturned=TRUE)AND(Γhard stop<0.58Γ0))
In the event that GUARD is FALSE, the LSW to ES state transition (3-4) logic may be as follows:
L3-4=L3-4
where
L3-4
(Γhard stop(t)−Γhard stop(t−40 msec)>11 Nm).
L3-4
(Motor is in the READY state) AND
({dot over (Γ)}SEA<−50 Nm/s)AND
(ΓSEA<min(ΓSEA
L3-4
({dot over (Γ)}SEA<−180 Nm/s)AND
(
(ΓSEA(t)−ΓSEA(t−6 msec)<−0.5 Nm)AND
(ΓSEA(t)−ΓSEA(t−10 msec)<−1.0 Nm).
L3-4
(TransitionEnabled=TRUE)AND
Γankle(t)>30 Nm)Vt where tLSW−300 msec<t≤tLSW.
where
tLSW is the elapsed time since LSW entry,
ΓSEA(t), and Γhard stop(t) are the SEA and Hard Stop torque at time, t, respectively, READY is a signal indicating that the motor controller processor has completed the trajectory return,
Transition Enabled is a motor state indicating that the motor controller has completed the trajectory return instruction and that the motor temperature measurement has been completed.
AnkleNotReturned is a check to indicate whether the ankle has returned to an initial state and has suitably dorsiflexed.
min(ΓSEA
Γankle(t)=ΓSEA(t)+Γhard stop(t) is the total ankle torque.
For various embodiments presented herein, it is noted that the ES, LS, LSP, ESW and LSW control response may be invariant with respect to which logic condition—L3-4
Late Stance (LS)-to-Early Stance (ES) Transition
In some cases, for instance, when the wearer stops in mid-stance, the control system may transition from LS (State 5) back to ES (State 4), so that the ankle state responds in accordance with the true walking cycle state. The L5-4 transition may be informed by a negative change in ΓSEA after the elapsed time in LS exceeds 500 msec and may be summarized as follows:
L5-4=((ΓSEA(tLS)−maxLS(ΓSEA))<−5 Nm)AND((ΓSEA(tLS)−ΓSEA(TLs−10 msec))<−0.5 Nm)AND(tLS>500 msec)
where
tLS is the elapsed time since entering LS
maxLS(ΓSEA(t)) is the maximum value of ΓSEA(t) in LS.
Early Stance (ES)-to-Early Stance (ES) Transition
In some cases, for instance, when the wearer stops in ES then begins to walk again, the impedance and equilibrium are reset to appropriate values for foot strike to occur. Accordingly, the device may be configured to re-enter the ES state based upon detection of an L4-4 transition. This transition may be informed by a negative change in ΓSEA after the elapsed time in ES exceeds 500 msec, and may be summarized as follows:
L4-4=((ΓSEA(tES)−maxES(ΓSEA))<−5 Nm)AND((ΓSEA(tES)−ΓSEA(tES−10 msec))<−0.5 Nm)AND(tES>500 msec)
where
tES is the elapsed time since entering ES
maxES(ΓSEA(t)) is the maximum value of ΓSEA(t) in ES.
Late Stance Power (LSP)-to-Early Stance (ES) Transition
In some cases, the entry into ES from LSP may occur if the ankle is back-driven into LSP (LSPRegen)—to protect the wearer in the event that the state machine does not detect a walking state transition out of LSP, for example, to ESW. Because there is no stiffness in opposition to a plantar flexion displacement in LSP, the expected ES impedance (heel-strike stiffness) may be absent in a heel-strike event and would thereby surprise the wearer. That is, if there is no stiffness in the ankle after LSP occurs, the system may, by default, set its parameters to the ES stance in preparation for the device in striking the ground.
LSP-to-ES “LSPRegen” Transition The LSP-ES LSPRegen transition may occur when L6-4
L6-4
GuardRegen=(maxLSPΓSEA−ΓSEA(0)<10 Nm)
L6-4
where
t=tLSP is the elapsed time in LSP and maxLSP ΓSEA is the maximum value of the SEA torque since entry into LSP.
Late Stance (LS) Control Response
In various embodiments of a controller for artificial leg devices presented herein, LS (State 5) bridges the control response between ES and LSP—typically between foot flat and hard stop engagement. In LS, the actuator continues to apply a damped, torsional spring response so as to correspond with the early CD response in human biomechanics. Mathematically, the LS response is captured in Eq. 1.
It is well-understood that the spinal reflex arc connecting the Achilles tendon stretch and the soleus (calf) muscle contraction employs positive force feedback—both torque and torque derivative are employed to amplify the reflex response in the contractile element (muscle). To mimic this reflex arc in artificial leg devices according to the present disclosure, the peak rate of change of ankle torque in LS, {dot over (Γ)}ankle
{dot over (Γ)}ankle
where maxls(⋅) denotes the maximum of a function during LS
and ∫ls(⋅)dt denotes the time integral over LS.
Late Stance (LS) Entry State-Transition Details
In some embodiments, ES entry into LS (State 5) is the only state transition into LS. The LS transition may occur if either a large toe load (L4-5
L4-5=L4-5
where
L4-5=L4-5
Where
It should be appreciated that the control response in LS, LSP, ESW and LSW may be invariant with respect to which logic condition—L4-5
Late Stance Power (LSP) Control Response
In some embodiments, the actuator response in LSP (State 6) is comprised of two terms—a unidirectional torsional spring, klsp, with equilibrium at a torque-rate-dependent plantar flexion angle, θpp, and a torque-rate-dependent reflex. The reflex term applies a positive force-feedback response that comprises two components—a torque-rate dependent gain, pff({dot over (Γ)}ankle
Mathematically, the LSP control response may be defined in Equation 2, shown below.
where
τm is the SEA motor torque
klsp
θpp is a plantar flexed torsional spring equilibrium that is a piecewise, continuous linear function of {dot over (Γ)}ankle
pff and N are each a piecewise, continuous linear function of {dot over (Γ)}ankle
is the normalized ankle torque
where Γ0 is a normalizing torque equal to
where mwearer is the wearer mass in kilograms.
In some cases, one or more of the parameters of an actuated torque are time-dependent functions that exhibit time-decay behavior (e.g., exponential, linear, piecewise, etc.). For instance, kpp, θpp, pff and/or N may exhibit exponential decay behavior over time, so as to provide for a soft reflex response or gradual joint equilibrium transitions. As an example, during LSP, the wearer may decide that he/she would like to ease in or out of powered plantar flexion. If the gain and/or exponent of the torque reflex response exhibits time-dependent decay, the wearer may experience a relatively smooth reflex response than may otherwise be the case without the decay behavior. Or, θpp may also exhibit time-dependent decay behavior, resulting in relatively smooth transitions from one state to another. Any suitable time-dependent behavior may be employed, such as those functions described for various embodiments of the present disclosure.
Late Stance Power (LSP) Entry State-Transition Details
In some embodiments, the LS to LSP transition (5-6) may occur when the toe-load torque exceeds a programmable threshold. Mathematically, the L5-6 transition may occur when Γhard stop>5 Nm.
Early Swing Control Response
In some embodiments, the ESW (State 2) control response of the artificial leg device mimics the damped, second-order, spring-mass response of the early swing phase in human walking biomechanics—this response restores the ankle from the toe-off position at the terminus of powered plantar flexion to its neutral position, in anticipation of the foot strike in the next gait cycle. Typically, the time constant, τesw, of this response is approximately 50 milliseconds, but may vary appropriately.
In ESW, an overdamped, second-order equilibrium trajectory, θ0(t), may be applied to return the joint to a fixed neutral position, θesw—a position that may be invariant to all biomechanical modalities including, but not limited to, terrain, walking speed, and toe-off angle. A damped (besw) and spring (kesw) impedance may be applied in relation to this equilibrium trajectory. Feedforward of the estimated motor torque may be used to eliminate response lag due to motor/drive-train inertia and damping. The mathematical formulation of the ESW control response with inertia-only feedforward may be summarized in Equation 3 shown below.
where
τm is the SEA motor torque,
τesw is the time constant of the over-damped, second-order response,
θ0(0) is the toe-off angle, initialized to θ(t) at ESW entry (LSP Exit),
β is the SEA motor angle reflected at the ankle joint and θesw is the invariant, neutral position destination for all ESW trajectories
Jβ
Early Swing (ESW) Entry State Transition Logic
Transitions into ESW may normally originate from LSP, as described in the following section that addresses the late stance power to early swing transition. Transitions into ESW can originate from ES when the wearer lifts the foot off the ground, as described in the section that addresses ES-to-ESW at Foot-off.
Late Stance Power (LSP)-to-Early Swing (ESW) Transition
The LSP-ESW transition may be defined by either a toe-off (L6-2
LSP-to-ESW at Toe-Off
Toe-off may occur when the ankle torque, Γankle, drops below a threshold close to zero.
The following guard, pre-trigger, and state transition conditions may be applied in succession to accomplish the LSP-ESW (6-2) transition by toe-off.
Toe-Off Guard Condition Details
The LSP-ESW by toe-off transition may be halted until GUARD has transitioned from TRUE to FALSE.
Toe-Off Pre-Trigger Details
Before detecting the LSP-ESW toe-off transition, compute the following:
ToeOffTransitionEnable−Γankle<0.5maxtlsp(Γhard stop(t))AND Γankle<25 Nm if ToeOffTransitionEnable−TRUE then capturetenabled
Toe-Off Transition (6-2) Logic
L6-2
where in the above,
tlsp is the time since LSP entry
maxlsp(Γhard stop(t)) is the maximum value of hard stop torque in LSP prior to tlsp {dot over (
As a result, the LSP to ESW transition can occur when L6-2 is TRUE.
LSP-to-ESW at Foot-Off
The “foot-off” condition—L6-2
L6-2
L6-2
L6-2
L6-2
L6-2
where
t=tLSP is the elapsed time since entry into LSP
ES-to-ESW at Foot-Off
The “foot-off” condition—L4-2
L4-2
Guardfoot-off=FromLSPRegen ORtES<800 msec
L4-2
L4-2
L4-2
L4-2
where
t=tES is the elapsed time since entry into ES,
FromLSPRegen is a flag set in ES to note that ES entry originated from LSP during an unexpected regeneration event in powered plantar flexion, Guardfoot-off is a guard logic condition that blocks the transition if ES entry originated from the excessive regeneration event in LSP or if the elapsed time within ES is less than a pre-specified duration (800 milliseconds).
Late Swing (LSW) Control Response
In LSW after the ESW return to the neutral angle is completed, the SEA applies a lightly-damped, torsional spring response equivalent to that applied at ES entry. This ensures that the intended impedance to be applied at foot strike is instantiated before impact-thereby achieving response continuity that is insensitive to ES state transition delay. The mathematical formulation of the LSW response is captured in Equation 4.
where
θes
β is the motor angle as projected onto the joint angle from SEA kinematics
In LSW, after the ESW return to the neutral angle is completed, the SEA may apply a lightly damped, torsional spring response—with a spring constant, kes(t) that may be designed to decay exponentially, according to a second-order differential equation. Such a decay, while not limited to exponential behavior, may help to ensure that the intended impedance to be applied at foot strike is instantiated before impact—thereby achieving foot-strike response continuity that is insensitive to ES state transition delay. Such a form of decay dynamics has the emergent property that stiffness decreases with increased walking speed. This property acts to reduce foot-strike stiffness while walking slowly down a steep slope, for instance. The joint equilibrium, θes0, may be set to the ankle angle, at entry, θ(0). The mathematical formulation of the LSW response, including stiffness decay dynamics, is captured in the Equations 5 and 6 below.
Where
The ESW-LSW state transition may occur when the motor control processor reports that it is READY, thereby signifying that the ESW trajectory is completed, OR, for example, when tesw>100 msec.
Late Swing (LSW) Entry from Early Stance (ES)
An ES-LSW transition can occur in cases where after an extended period in ES (e.g., approximately two seconds) a possible ground impact is present as detected by a toe load (L3-4
L4-3
L4-3
L4-3
While description for each of the state transitions is provided above, Table 3 summarizes the state transition logic, including various non-limiting conditions and thresholds that are used for an embodiment of an artificial leg device, in accordance with the present disclosure.
Embodiments of the present disclosure may include a multi-modal control system for an artificial leg device having series and parallelelastic actuator-based muscle-tendon units (MTU) at the ankle and knee for modulation of joint impedance, joint equilibrium and reflex torque, in accordance with locomotion modality, gait cycle phase within that modality and cadence; a plurality of metasensors for intra-gait cycle determination of terrain modality, ground reaction force and zero-moment point, and external load-bearing influence; an intent recognition processor that employs the metasensor data to infer locomotion modality and the transitions between these; and a biophysically-inspired state control processor that employs MTU torque and derivatives, metasensor state and intent recognition output to accomplish transitions between the joint-based state machines.
The bionic architecture may restore function per normative measures of metabolic cost-of-transport and gait mechanics, including joint kinematics and kinetic measures. The architecture may further optimize battery economy and achieve safe operation in the event of power loss through use of tuned series-elastic elements and regenerative dynamic clutching (braking) functions in the joint MTU controls. The multi-modal architecture herein can be broadly applied to lower extremity augmentation systems—including powered prosthetic and orthotic leg systems, exoskeletons, and exomuscle-tendon units—and humanoid robots that actuate the ankle, knee and hip.
Kinematic State Estimator (KSR)—
The KSR employs a 6-DOF IMU embedded in the ankle or knee and the knee joint angle, θk to reconstruct the tibia and femur coordinate systems in real-time-capturing the inertial path of the ankle, knee and hip and points between these throughout all or part of a gait cycle.
Terrain Modality Discriminator (TMD)—
The TMD applies pattern recognition of the ankle, knee and hip translational and rotational paths during the swing phase to infer underlying terrain. The state control processor uses the terrain context to inform the ankle and knee equilibrium and impedance at foot strike.
Ground Reaction Force/ZMP Estimator (GRFZMP)—
The GRFZMP processes the force-torque sensor data, the ankle joint torque and the tibia kinematic state to compute the ground reaction force vector and the zero-moment position of this. This information may be used by the state control processor in combination with the KSR, TMD and EIE (below) to determine locomotion context (walking, sitting, standing, stair climbing) and/or to apply balance control while standing, walking and running.
External Influence Estimator (EIE)—
The EIE may use the GRFZMP and the KSR information to determine, via inverse dynamic approximation, the external influences that must be acting on the trunk (as measured at the hip) to achieve its kinematic state (of acceleration). The EIE can estimate, for instance, the presence, and influence of external force as might be applied by the arms as the bionic leg wearer lifts out of a chair. The EIE can also estimate the presence and influence of trailing leg powered plantar flexion on a stair. Such information may be used by the state control processor to determine when to apply leg joint torques in such locomotion contexts. Additional details regarding various embodiments of the leg architecture are provided in the references incorporated by reference above.
Control Architecture
Embodiments of the leg system employ a loosely-coupled joint control architecture. Here, the ankle state machine and control behaviors are largely independent of the knee control state. Ankle state machine and control behaviors are described in greater detail in the references incorporated by reference above. In particular, the biophysically-motivated ankle state machine and behaviors are described in detail in U.S. Provisional Patent Application Ser. No. 61/662,104, entitled “Bionic Control System for an Artificial Ankle Joint.”
A schematic of one embodiment of a knee state machine is illustrated in
State-Dependent Control Behaviors
Early Stance
In Early Stance, the knee applies a lightly-damped spring response defined by stiffness, kES and damping, bES0. For stance flexion, δθk=θk−θ0es, when less than about 15°, the early stance impedance relation may be provided as follows:
Γk=−kES(θ−θes
Where
δk=knee joint torque
θes
For stance flexion that exceeds about 15°, the joint impedance relation creates a highly damped response:
Γk=−es
Equations 7 and 8 may be implemented by using closed-loop torque control, using SEA deflection as a measure of joint torque feedback. In another embodiment, the knee SEA may employ a series elasticity with stiffness substantially equal to kes. In this way, the motor drive transmission can be locked at θes0, enabling the series elastic element to compress and extend without motor movement to account for the maximum early stance knee flexion for typical level-ground gait cycles.
In another embodiment, the motor may be employed as a programmable clutch (dynamic brake/damper) by shorting the motor leads—applying a strong braking function with a time constant typically in the range of approximately 800-1500 milliseconds. Details concerning the use of shorted leads may be found in U.S. patent application Ser. No. 13/417,949, entitled “Biomimetic Joint Actuators.” In such an embodiment, the battery power source may be disconnected from the SEA, thereby eliminating battery consumption during knee flexion and extension in level-ground walking.
In some cases, the shorted-leads may be pulse-width modulated, enabling the damping to be controlled, e.g., to reduce the damping at large flexion while at the same time harvesting energy to charge the bionic leg power source (i.e., battery) during, for example, the swing phase of walking. Since the knee joint generally draws net energy, such an embodiment can be used to operate the knee joint at extremely low power in at least early stance flexion/extension early swing and late swing, even when the battery is disconnected. The shorted leads functionality can make possible assertion of a safe state during fault or power interruption, thereby protecting the wearer. In some embodiments, kes, and bes, are functions of time (e.g., may exhibit a time-dependent decay behavior). For instance, the change from a stiffness-dominated response to the damping-dominated response may not be accomplished by crossing an angle threshold, but rather by applying a programmable, exponential decay of the stiffness and damping as shown in
The stiffness and damping impedance coefficients may be defined by the following relations:
32 τk2{umlaut over (k)}es(t)+2τk{dot over (k)}es(t)+1=kes
Where
kes(0)=kes
τk is the time constant of the stiffness decay
τb2{umlaut over (b)}es(t)+2τb{dot over (b)}es(t)+1=bes
Where
bes(0)=bes
τb is the time constant of the damping decay
As shown in
In some embodiments, a first-order or higher order differential equation may be used in place of Eqs. 9 and 10. A second-order response may be advantageous in that the attenuation is substantively delayed—the initial values are substantially maintained for a certain amount of time controlled by the time constant prior to dropping off. Through these time varying impedances, the knee will behave during early stance as an efficient spring during level ground walking, a damper with a relatively high damping value for stair and slope descent, and a lightly damped knee while sitting.
Late Stance
The joint torque sign reversal at substantially full knee extension signals the transition from Early Stance to Late Stance in a typical gait cycle. In one embodiment, the Late Stance reflex behavior follows the relation below:
Where
τmotor
Γ0
pff( ) and N( ) are functions of knee torque rate of change at entry to late stance.
In other embodiments, a neuromuscular model, also employing positive force feedback on a modeled Gastrocnemius muscle, may be used. For further details regarding this neuromuscular model, the disclosure of U.S. Provisional Patent Application Ser. No. 61/595,453, entitled “Powered Ankle Device” may be relevant.
In certain cases—including stair ascent, steep ramp ascent and during the transition from sitting to standing—the knee joint may be flexed past a threshold of θk
Γk=−kes({dot over (
Where
bex(
bex(
τext({dot over (θ)})+
τext(
τext(
And where kex({dot over (
In some embodiments, kex and bex, are time-dependent functions that exponentially decay over time and are initialized to the nominal form when retriggered (
Swing Flexion
The Early Swing state transition occurs at toe-off, as reported by the ankle state machine. In early swing flexion, knee behavior may be ballistic for flexion angles less than about 45° (e.g., no spring or damping) and lightly damped (b=bsf) for greater flexion. This behavior is captured in Eq. 13.
Swing Extension
Once the maximum swing flexion is achieved, the knee state transitions to swing extension. In early swing extension the behavior is nearly ballistic (e.g., lightly damped) with damping constant, bse=bse
In Swing Extension, such behavior may be captured in Eq. 14.
Γk=−bse(θk)
Where
bse(θk) is defined as a piecewise continuos function per
Damping during Swing Extension may be used to decelerate knee flexion (tibia angular rate) as the joint angle approaches full-extension—increasing substantially linearly until θ drops below a threshold angle. Below the threshold, the damping increases according to a substantially quadratic function as it approaches θ≈0. Such damping creates a “sticky” behavior that holds the joint near full-extension-preparing the knee to absorb the foot strike energy and to transition to the spring-like behavior in Early Stance.
State Transitions
State Transition 1 (ST1): Swing Extension (or Flexion)-to-Early Stance
The foot strike gait event marks the transition from Swing Extension (or Flexion)-to-Early Stance—a transition that aligns with the Late Swing to Early Stance transition on the ankle. Here, the world-z component of the ground reaction force, as shown in
ST1=(FZ>FZFS) Eq. (15)
Where FZFS is the force transition threshold that signals foot-strike.
In another embodiment as described in U.S. Provisional Patent Application Ser. No. 61/662,104, entitled “Bionic Control System for an Artificial Joint,” a logic transition informed by ankle torque and derivatives can be used to accomplish ST1.
State Transition 6 (ST6): Early Stance-to-Late Stance
The Early Stance to Late Stance transition gait event signifies that toe-loading is occurring when the knee is fully extended as defined by the logic equation:
Where
In other embodiments, toe loading is detected by determining whether the ZMP of a ground reaction force of significant magnitude is substantially located in the forward half of the foot.
State Transition 4 (ST4): Late Stance (or Early Stance)-to-Swing Flexion
The toe-off gait event signals the transition to Swing Flexion from either Late Stance or Early Stance. ST4 is defined as:
ST4=(FZ<FZ
Where FZ is the z-component of the ground reaction force, and FZ
In other embodiments, substantially zero torque, as reported by the ankle MTU, can be used to detect the toe-off condition. In another embodiment described in U.S. Provisional Patent Application Ser. No. 61/662,104, entitled “Bionic Control System for an Artificial Joint,” ankle torque and derivatives (Γankle≈0) can be used as input for triggering or modulating parameters of the ST4 transition.
State Transition 7 (ST7): Swing Flexion-to-Swing Extension
The state transition from Swing-Flexion to Swing Extension is marked by a sign reversal in the knee angular velocity-detected here as the time when the knee velocity goes to zero at a time sufficiently after toe-off:
Where tsf is the time elapsed since toe-off, tsf
State Transition 8 (ST8): Late Stance-to-Early Stance
In some circumstances, e.g. when the wearer is standing quietly and then enters Late Stance and then flexes the knee, it may be appropriate for the state machine to transition back to early stance. The logic is defined as follows:
Where
θk
ξΓ− and ξΓ+ define the small torque detection boundaries.
In this embodiment, the joint equilibrium tracks the joint angle with a programmable convergence—preferably through use of a first or second-order tracking filter with time constant τ. In some embodiments, the system is configured for the joint equilibrium to exhibit time-dependent behavior that relaxes to an equilibrium that is substantially equivalent to the current joint angle. That is, in accordance with the system exhibiting a programmable convergence, the joint equilibrium of the system continually, yet gradually, tracks the current joint angle. For example, if the joint angle does not change after a long period of time, then the joint equilibrium gradually relaxes from an initial value to a value equal to that of the current joint angle.
In some embodiments, self-adjusting joint equilibrium behavior may be governed by the following relationships:
Γ=−k(θ−θ0)−b{dot over (θ)} Eq. 20
τ0{dot over (θ)}0+θ0=θ Eq. 21
Equation 21 is inserted into Eq. 20 and the resulting relationship is subject to a Fourier transform, where the function is transformed from the time domain to the frequency domain. Accordingly, the derivative represented by ({dot over ( )}) is replaced with s=jω and ω0 with 1/τ74 resulting in an impedance relation of the form:
where H(s) is defined by the relation,
represented by Eq. 22.
The frequency response of this impedance law has interesting properties. At low frequencies, the impedance behaves as a damper with coefficient, b*=b+kτ. At medium frequencies, the impedance has stiffness properties with an equivalent stiffness of
And at high frequencies, the impedance behaves as a damper with equivalent damping of
where
is the transition frequency between the first damping and stiffness behaviors. Here, ω74 may range from 0-13 rad/sec (0-2 Hz) providing a primarily damping response in that range. Between Wtheta and about 60 rad/sec (a preferred range between 5-20 Hz), a stiffness dominated response is applied. Above this latter frequency defined by
a damping-dominated response is applied. Often wearers complain that it is hard to maintain balance when the leg joints are in a substantially lightly damped state. So by implementing this method, improved stability results because in the frequency range between 1-10 Hz a stiffness-dominated response is applied that serves to restore balance.
Blended Reflex
The following disclosure describes two blended reflex methods, each blending (interpolating) independently tuned responses—defined by torque gain (Pff) and torque exponent (N), at a fast and a slow walk speed. At speeds below the “slow-walk” speed as determined by the wearer (e.g., less than 0.75 m/s), the reflex employs a slow-walk parameter set; at speeds greater than the fast-walk speed as determined by the wearer (e.g., greater than 1.75 m/s), the reflex employs the fast walk parameter set; and at speeds in between, the reflex adds the two responses together in accordance with a linear or non-linear interpolation based upon walking speed, a surrogate for walking speed (e.g., pitch rate in mid-stance), a kinetic (e.g., torque rate) or kinematic (e.g., joint angle rate). The term walking speed and operating speed below may loosely refer to the walking speed, surrogates of walking speed, a suitable kinetic rate or a suitable kinematic rate.
Other interpolations may be used, and more than two speed-registered responses may be blended through more complex interpolation, for example, based upon the “distance” between the operating speed and each of the tuned speeds. This approach may be advantageous over the existing methods in that both the gain and exponent can be independently controlled—that is, these reflex coefficients can be tuned independently of each other. For instance, a slow walk reflex response may require a lower exponent torque than that required by a fast walk reflex response, and vice-versa. With fixed N (the variable that controls timing), there is a tradeoff between slow-walk consistency and fast walk power and battery economy. By applying independent tuning, an optimum performance may be achieved at both ends of the walking speed spectrum, and overall wearer experience can be improved.
Method I blends two torque models—one defined at a slow speed and one at the fast speed, as determined by the wearer—with gain, Pff({dot over (s)}slow), and exponent, N({dot over (s)}slow), for a first (“slow-walk”) torque model; and gain, Pff({dot over (s)}fast), and exponent, N({dot over (s)}fast), for a second (“fast-walk”) torque model. Method II blends the gains and exponents into a single torque model—with gain,
Method I: Blended Torque Models
Method II: Blended Coefficients
Where c1 and c2 are defined as in Method I.
Non-Linear Distance-Based (Quadratic Non-Linear Interpolation)
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
While aspects of the invention have been described with reference to various illustrative embodiments, such aspects are not limited to the embodiments described. Thus, it is evident that many alternatives, modifications, and variations of the embodiments described will be apparent to those skilled in the art. Accordingly, embodiments as set forth herein are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit of aspects of the invention.
This application is a national stage filing under 35 U.S.C. § 371 of International PCT Application PCT/US2013/045356, filed Jun. 12, 2013, which claims priority to U.S. Provisional Application No. 61/658,568 filed Jun. 12, 2012, entitled “WALKING STATE MACHINE FOR CONTROL OF A BIONIC ANKLE JOINT,” U.S. Provisional Application No. 61/662,104 filed Jun. 20, 2012, entitled “BIONIC CONTROL SYSTEM FOR AN ARTIFICIAL ANKLE JOINT” and U.S. Provisional Application No. 61/679,194 filed Aug. 3, 2012, entitled “MULTI-MODAL BIONIC CONTROL SYSTEM FOR AN ARTIFICIAL LEG,” the entire contents of each of which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2013/045356 | 6/12/2013 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2013/188510 | 12/19/2013 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
45169 | Neubert | Nov 1864 | A |
360446 | Kreemer | Apr 1887 | A |
595634 | King | Dec 1897 | A |
2489291 | Henschke et al. | Nov 1949 | A |
2529968 | Sartin | Nov 1950 | A |
3098645 | Owens | Jul 1963 | A |
3207497 | Schoonover | Sep 1965 | A |
3449769 | Mizen | Jun 1969 | A |
3546712 | Tarte | Dec 1970 | A |
3844279 | Konvalin | Oct 1974 | A |
3987498 | Mason | Oct 1976 | A |
4442390 | Davis | Apr 1984 | A |
4454454 | Valentine | Jun 1984 | A |
4463291 | Usry | Jul 1984 | A |
4518307 | Bloch | May 1985 | A |
4532462 | Washbourn et al. | Jul 1985 | A |
4546295 | Wickham et al. | Oct 1985 | A |
4546296 | Washbourn et al. | Oct 1985 | A |
4546297 | Washbourn et al. | Oct 1985 | A |
4546298 | Wickham et al. | Oct 1985 | A |
4569352 | Petrofsky et al. | Feb 1986 | A |
4600357 | Cowles | Jul 1986 | A |
4657470 | Clarke et al. | Apr 1987 | A |
4697808 | Larson et al. | Oct 1987 | A |
4843921 | Kremer | Jul 1989 | A |
4865376 | Leaver et al. | Sep 1989 | A |
4872803 | Asakawa | Oct 1989 | A |
4909535 | Clark et al. | Mar 1990 | A |
4921293 | Ruoff et al. | May 1990 | A |
4921393 | Andeen et al. | May 1990 | A |
4923474 | Klasson et al. | May 1990 | A |
4923475 | Gosthnian et al. | May 1990 | A |
4936295 | Crane | Jun 1990 | A |
4964402 | Grim et al. | Oct 1990 | A |
4989161 | Oaki | Jan 1991 | A |
5012591 | Asakawa | May 1991 | A |
5038089 | Szakaly | Aug 1991 | A |
5049797 | Phillips | Sep 1991 | A |
5062673 | Mimura | Nov 1991 | A |
5088478 | Grim | Feb 1992 | A |
5092902 | Adams et al. | Mar 1992 | A |
5112296 | Beard et al. | May 1992 | A |
5174168 | Takagi et al. | Dec 1992 | A |
5181933 | Phillips | Jan 1993 | A |
5252102 | Singer et al. | Oct 1993 | A |
5282460 | Boldt | Feb 1994 | A |
5294873 | Seraji | Mar 1994 | A |
5311109 | Ozawa | May 1994 | A |
RE34661 | Grim | Jul 1994 | E |
5327790 | Levin et al. | Jul 1994 | A |
5330417 | Petersen et al. | Jul 1994 | A |
5367790 | Gamow et al. | Nov 1994 | A |
5383939 | James | Jan 1995 | A |
5405409 | Knoth | Apr 1995 | A |
5442270 | Tetsuaki | Aug 1995 | A |
5443521 | Knoth et al. | Aug 1995 | A |
5456341 | Garnjost et al. | Oct 1995 | A |
5458143 | Herr | Oct 1995 | A |
5476441 | Durfee et al. | Dec 1995 | A |
5502363 | Tasch et al. | Mar 1996 | A |
5514185 | Phillips | May 1996 | A |
5556422 | Powell, III et al. | Sep 1996 | A |
5571205 | James | Nov 1996 | A |
5643332 | Stein | Jul 1997 | A |
5650704 | Pratt et al. | Jul 1997 | A |
5662693 | Johnson et al. | Sep 1997 | A |
5701686 | Herr et al. | Dec 1997 | A |
5718925 | Kristinsson et al. | Feb 1998 | A |
5748845 | Labun et al. | May 1998 | A |
5776205 | Phillips | Jul 1998 | A |
5885809 | Effenberger et al. | Mar 1999 | A |
5888212 | Petrofsky et al. | Mar 1999 | A |
5888213 | Sears et al. | Mar 1999 | A |
5898948 | Kelly et al. | May 1999 | A |
5910720 | Williamson et al. | Jun 1999 | A |
5932230 | DeGrate | Aug 1999 | A |
5944760 | Christensen | Aug 1999 | A |
5971729 | Kristinsson et al. | Oct 1999 | A |
5972036 | Kristinsson et al. | Oct 1999 | A |
5980435 | Joutras et al. | Nov 1999 | A |
6029374 | Herr et al. | Feb 2000 | A |
6056712 | Grim | May 2000 | A |
6067892 | Erickson | May 2000 | A |
6071313 | Phillips | Jun 2000 | A |
6095991 | Krausman et al. | Aug 2000 | A |
6136039 | Kristinsson et al. | Oct 2000 | A |
6144385 | Girard | Nov 2000 | A |
6202806 | Sandrin et al. | Mar 2001 | B1 |
6223648 | Erickson | May 2001 | B1 |
6240797 | Morishima et al. | Jun 2001 | B1 |
6267742 | Krivosha et al. | Jul 2001 | B1 |
6416703 | Kristinsson et al. | Jul 2002 | B1 |
6443993 | Koniuk | Sep 2002 | B1 |
6456884 | Kenney | Sep 2002 | B1 |
6478826 | Phillips et al. | Nov 2002 | B1 |
6485776 | Janusson et al. | Nov 2002 | B2 |
6500138 | Irby et al. | Dec 2002 | B1 |
6507757 | Swain et al. | Jan 2003 | B1 |
6511512 | Phillips et al. | Jan 2003 | B2 |
6517503 | Naft et al. | Feb 2003 | B1 |
6532400 | Jacobs | Mar 2003 | B1 |
6585774 | Dean, Jr. et al. | Jul 2003 | B2 |
6589289 | Ingimarsson | Jul 2003 | B2 |
6592539 | Einarsson et al. | Jul 2003 | B1 |
6610101 | Herr | Aug 2003 | B2 |
6626952 | Janusson et al. | Sep 2003 | B2 |
6645252 | Asai et al. | Nov 2003 | B2 |
6660042 | Curcie et al. | Dec 2003 | B1 |
6666796 | MacCready, Jr. | Dec 2003 | B1 |
6706364 | Janusson et al. | Mar 2004 | B2 |
6752774 | Townsend et al. | Jun 2004 | B2 |
6755870 | Biedermann et al. | Jun 2004 | B1 |
6764520 | Deffenbaugh et al. | Jul 2004 | B2 |
6802382 | Hattori et al. | Oct 2004 | B2 |
6811571 | Phillips | Nov 2004 | B1 |
6821233 | Colombo et al. | Nov 2004 | B1 |
D503480 | Ingimundarson et al. | Mar 2005 | S |
D503802 | Bjarnason | Apr 2005 | S |
6887279 | Phillips et al. | May 2005 | B2 |
6923834 | Karason | Aug 2005 | B2 |
6936073 | Karason | Aug 2005 | B2 |
6942629 | Hepburn et al. | Sep 2005 | B2 |
6945947 | Ingimundarson et al. | Sep 2005 | B2 |
6966882 | Horst | Nov 2005 | B2 |
6969408 | Lecomte et al. | Nov 2005 | B2 |
6992455 | Kato et al. | Jan 2006 | B2 |
7001563 | Janusson et al. | Feb 2006 | B2 |
7025793 | Egilsson | Apr 2006 | B2 |
7029500 | Martin | Apr 2006 | B2 |
7037283 | Karason et al. | May 2006 | B2 |
D523149 | Bjarnason | Jun 2006 | S |
7063727 | Phillips et al. | Jun 2006 | B2 |
7077818 | Ingimundarson et al. | Jul 2006 | B2 |
7094058 | Einarsson | Aug 2006 | B2 |
7094212 | Karason et al. | Aug 2006 | B2 |
D527825 | Ingimundarson et al. | Sep 2006 | S |
D529180 | Ingimundarson et al. | Sep 2006 | S |
7101487 | Hsu et al. | Sep 2006 | B2 |
7105122 | Karason | Sep 2006 | B2 |
7107180 | Karason | Sep 2006 | B2 |
7109679 | Edson et al. | Sep 2006 | B2 |
7118601 | Yasui et al. | Oct 2006 | B2 |
7118602 | Bjarnason | Oct 2006 | B2 |
7136722 | Nakamura et al. | Nov 2006 | B2 |
D533280 | Wyatt et al. | Dec 2006 | S |
7144429 | Carstens | Dec 2006 | B2 |
7145305 | Takenaka et al. | Dec 2006 | B2 |
7154017 | Sigurjonsson et al. | Dec 2006 | B2 |
7161056 | Gudnason et al. | Jan 2007 | B2 |
7169188 | Carstens | Jan 2007 | B2 |
7169189 | Bjarnason et al. | Jan 2007 | B2 |
7169190 | Phillips et al. | Jan 2007 | B2 |
7190141 | Ashrafiuon et al. | Mar 2007 | B1 |
7198071 | Bisbee, III et al. | Apr 2007 | B2 |
7198610 | Ingimundarson et al. | Apr 2007 | B2 |
7217060 | Ingimarsson | May 2007 | B2 |
7220889 | Sigurjonsson et al. | May 2007 | B2 |
7223899 | Sigurjonsson | May 2007 | B2 |
7227050 | Sigurjonsson et al. | Jun 2007 | B2 |
7230154 | Sigurjonsson | Jun 2007 | B2 |
7230361 | Hirzel | Jun 2007 | B2 |
7235108 | Carstens | Jun 2007 | B2 |
7240876 | Doubleday et al. | Jul 2007 | B2 |
7266910 | Ingimundarson | Sep 2007 | B2 |
7270644 | Ingimundarson | Sep 2007 | B2 |
7278954 | Kawai et al. | Oct 2007 | B2 |
7279009 | Herr et al. | Oct 2007 | B2 |
7288076 | Grim et al. | Oct 2007 | B2 |
7295892 | Herr et al. | Nov 2007 | B2 |
RE39961 | Petrofsky et al. | Dec 2007 | E |
7303538 | Grim et al. | Dec 2007 | B2 |
7304202 | Sigurjonsson et al. | Dec 2007 | B2 |
7311686 | Iglesias et al. | Dec 2007 | B1 |
7313463 | Herr et al. | Dec 2007 | B2 |
D558884 | Ingimundarson et al. | Jan 2008 | S |
7335233 | Hsu et al. | Feb 2008 | B2 |
7347877 | Clausen et al. | Mar 2008 | B2 |
D567072 | Ingimundarson et al. | Apr 2008 | S |
7371262 | Lecomte et al. | May 2008 | B2 |
7377944 | Janusson et al. | May 2008 | B2 |
RE40363 | Grim et al. | Jun 2008 | E |
7381860 | Gudnason et al. | Jun 2008 | B2 |
7390309 | Dariush | Jun 2008 | B2 |
7393364 | Martin | Jul 2008 | B2 |
7396975 | Sigurjonsson et al. | Jul 2008 | B2 |
7402721 | Sigurjonsson et al. | Jul 2008 | B2 |
7411109 | Sigurjonsson et al. | Aug 2008 | B2 |
D576781 | Chang et al. | Sep 2008 | S |
D577828 | Ingimundarson et al. | Sep 2008 | S |
7423193 | Sigurjonsson et al. | Sep 2008 | B2 |
7427297 | Patterson et al. | Sep 2008 | B2 |
7429253 | Shimada et al. | Sep 2008 | B2 |
7431708 | Sreeramagiri | Oct 2008 | B2 |
7431737 | Ragnarsdottir et al. | Oct 2008 | B2 |
7438843 | Asgeirsson | Oct 2008 | B2 |
7449005 | Pickering et al. | Nov 2008 | B2 |
7455696 | Bisbee, III et al. | Nov 2008 | B2 |
D583956 | Chang et al. | Dec 2008 | S |
7459598 | Sigurjonsson et al. | Dec 2008 | B2 |
7465281 | Grim et al. | Dec 2008 | B2 |
7465283 | Grim et al. | Dec 2008 | B2 |
7468471 | Sigurjonsson et al. | Dec 2008 | B2 |
7470830 | Sigurjonsson et al. | Dec 2008 | B2 |
7488349 | Einarsson | Feb 2009 | B2 |
7488864 | Sigurjonsson et al. | Feb 2009 | B2 |
D588753 | Ingimundarson et al. | Mar 2009 | S |
7503937 | Asgeirsson et al. | Mar 2009 | B2 |
7513880 | Ingimundarson et al. | Apr 2009 | B2 |
7513881 | Grim et al. | Apr 2009 | B1 |
D592755 | Chang et al. | May 2009 | S |
D592756 | Chang et al. | May 2009 | S |
7527253 | Sugar et al. | May 2009 | B2 |
7531006 | Clausen et al. | May 2009 | B2 |
7531711 | Sigurjonsson et al. | May 2009 | B2 |
7534220 | Cormier et al. | May 2009 | B2 |
7544214 | Gramnas | Jun 2009 | B2 |
7549970 | Tweardy | Jun 2009 | B2 |
D596301 | Campos et al. | Jul 2009 | S |
7578799 | Thorsteinsson et al. | Aug 2009 | B2 |
7581454 | Clausen et al. | Sep 2009 | B2 |
7597672 | Kruijsen et al. | Oct 2009 | B2 |
7597674 | Hu et al. | Oct 2009 | B2 |
7597675 | Ingimundarson et al. | Oct 2009 | B2 |
7618463 | Oddsson et al. | Nov 2009 | B2 |
7628766 | Kazerooni et al. | Dec 2009 | B1 |
7632315 | Egilsson | Dec 2009 | B2 |
7637957 | Ragnarsdottir et al. | Dec 2009 | B2 |
7637959 | Clausen et al. | Dec 2009 | B2 |
7641700 | Yasui | Jan 2010 | B2 |
7650204 | Dariush | Jan 2010 | B2 |
7662191 | Asgeirsson | Feb 2010 | B2 |
D611322 | Robertson | Mar 2010 | S |
7674212 | Kruijsen et al. | Mar 2010 | B2 |
7691154 | Asgeirsson et al. | Apr 2010 | B2 |
7696400 | Sigurjonsson et al. | Apr 2010 | B2 |
7704218 | Einarsson et al. | Apr 2010 | B2 |
D616555 | Thorgilsdottir et al. | May 2010 | S |
D616556 | Hu | May 2010 | S |
7713225 | Ingimundarson et al. | May 2010 | B2 |
D616996 | Thorgilsdottir et al. | Jun 2010 | S |
D616997 | Thorgilsdottir et al. | Jun 2010 | S |
D618359 | Einarsson | Jun 2010 | S |
7727174 | Chang et al. | Jun 2010 | B2 |
7736394 | Bedard et al. | Jun 2010 | B2 |
7745682 | Sigurjonsson et al. | Jun 2010 | B2 |
D620124 | Einarsson | Jul 2010 | S |
7749183 | Ingimundarson et al. | Jul 2010 | B2 |
7749281 | Egilsson | Jul 2010 | B2 |
7762973 | Einarsson et al. | Jul 2010 | B2 |
7770842 | Benson | Aug 2010 | B2 |
7771488 | Asgeirsson et al. | Aug 2010 | B2 |
7780741 | Janusson et al. | Aug 2010 | B2 |
7794418 | Ingimundarson et al. | Sep 2010 | B2 |
7794505 | Clausen et al. | Sep 2010 | B2 |
7811333 | Jonsson et al. | Oct 2010 | B2 |
7811334 | Ragnarsdottir et al. | Oct 2010 | B2 |
D627079 | Robertson | Nov 2010 | S |
7833181 | Cormier et al. | Nov 2010 | B2 |
7842848 | Janusson et al. | Nov 2010 | B2 |
D628696 | Robertson | Dec 2010 | S |
D629115 | Robertson | Dec 2010 | S |
7846213 | Lecomte et al. | Dec 2010 | B2 |
7862620 | Clausen et al. | Jan 2011 | B2 |
7863797 | Calley | Jan 2011 | B2 |
7867182 | Iglesias et al. | Jan 2011 | B2 |
7867284 | Bedard | Jan 2011 | B2 |
7867285 | Clausen et al. | Jan 2011 | B2 |
7867286 | Einarsson | Jan 2011 | B2 |
7868511 | Calley | Jan 2011 | B2 |
7874223 | Sugar et al. | Jan 2011 | B2 |
7879110 | Phillips | Feb 2011 | B2 |
7883546 | Kazerooni et al. | Feb 2011 | B2 |
7891258 | Clausen et al. | Feb 2011 | B2 |
7892195 | Grim et al. | Feb 2011 | B2 |
D634438 | Hu | Mar 2011 | S |
D634852 | Hu | Mar 2011 | S |
7896826 | Hu et al. | Mar 2011 | B2 |
7896827 | Ingimundarson et al. | Mar 2011 | B2 |
7896927 | Clausen et al. | Mar 2011 | B2 |
7909884 | Egilsson et al. | Mar 2011 | B2 |
7910793 | Sigurjonsson et al. | Mar 2011 | B2 |
7914475 | Wyatt et al. | Mar 2011 | B2 |
7918765 | Kruijsen et al. | Apr 2011 | B2 |
D637942 | Lee et al. | May 2011 | S |
7935068 | Einarsson | May 2011 | B2 |
D640380 | Tweardy et al. | Jun 2011 | S |
D640381 | Tweardy et al. | Jun 2011 | S |
7955398 | Bedard et al. | Jun 2011 | B2 |
7959589 | Sreeramagiri et al. | Jun 2011 | B2 |
D641482 | Robertson et al. | Jul 2011 | S |
D641483 | Robertson et al. | Jul 2011 | S |
7981068 | Thorgilsdottir et al. | Jul 2011 | B2 |
7985193 | Thorsteinsson et al. | Jul 2011 | B2 |
7985265 | Moser et al. | Jul 2011 | B2 |
D643537 | Lee | Aug 2011 | S |
7992849 | Sugar et al. | Aug 2011 | B2 |
7998221 | Lecomte et al. | Aug 2011 | B2 |
8002724 | Hu et al. | Aug 2011 | B2 |
8007544 | Jonsson et al. | Aug 2011 | B2 |
8016781 | Ingimundarson et al. | Sep 2011 | B2 |
8021317 | Arnold et al. | Sep 2011 | B2 |
8025632 | Einarsson | Sep 2011 | B2 |
8025699 | Lecomte et al. | Sep 2011 | B2 |
8026406 | Janusson et al. | Sep 2011 | B2 |
D646394 | Tweardy et al. | Oct 2011 | S |
D647622 | Lee et al. | Oct 2011 | S |
D647623 | Thorgilsdottir et al. | Oct 2011 | S |
D647624 | Thorgilsdottir et al. | Oct 2011 | S |
8034120 | Egilsson et al. | Oct 2011 | B2 |
8038636 | Thorgilsdottir et al. | Oct 2011 | B2 |
8043244 | Einarsson et al. | Oct 2011 | B2 |
8043245 | Campos et al. | Oct 2011 | B2 |
8048007 | Roy | Nov 2011 | B2 |
8048013 | Ingimundarson et al. | Nov 2011 | B2 |
8048172 | Jonsson et al. | Nov 2011 | B2 |
8052760 | Egilsson et al. | Nov 2011 | B2 |
8057550 | Clausen et al. | Nov 2011 | B2 |
8065105 | Bar-Haim et al. | Nov 2011 | B2 |
8075633 | Herr et al. | Dec 2011 | B2 |
8142370 | Weinberg et al. | Mar 2012 | B2 |
8181520 | Kadota et al. | May 2012 | B2 |
8202325 | Albrecht-Laatsch et al. | Jun 2012 | B2 |
8287477 | Herr et al. | Oct 2012 | B1 |
8419804 | Herr et al. | Apr 2013 | B2 |
8551184 | Herr | Oct 2013 | B1 |
8617254 | Bisbee, III et al. | Dec 2013 | B2 |
9724211 | Snell | Aug 2017 | B1 |
20010029400 | Deffenbaugh et al. | Oct 2001 | A1 |
20020052663 | Herr et al. | May 2002 | A1 |
20020092724 | Koleda | Jul 2002 | A1 |
20020138153 | Koniuk | Sep 2002 | A1 |
20030093021 | Goffer | May 2003 | A1 |
20030120183 | Simmons | Jun 2003 | A1 |
20030125814 | Paasivaara et al. | Jul 2003 | A1 |
20030139783 | Kilgore et al. | Jul 2003 | A1 |
20030163206 | Yasui et al. | Aug 2003 | A1 |
20030195439 | Caselnova | Oct 2003 | A1 |
20040039454 | Herr et al. | Feb 2004 | A1 |
20040049290 | Bedard | Mar 2004 | A1 |
20040054423 | Martin | Mar 2004 | A1 |
20040064195 | Herr | Apr 2004 | A1 |
20040083528 | Stewart et al. | May 2004 | A1 |
20040088025 | Gesotti | May 2004 | A1 |
20040111163 | Bedard et al. | Jun 2004 | A1 |
20040172097 | Brodard et al. | Sep 2004 | A1 |
20040181118 | Kochamba | Sep 2004 | A1 |
20040181289 | Bedard et al. | Sep 2004 | A1 |
20040193286 | Grundei | Sep 2004 | A1 |
20040255711 | Takenaka et al. | Dec 2004 | A1 |
20040261561 | Takenaka et al. | Dec 2004 | A1 |
20050007834 | Hidaka | Jan 2005 | A1 |
20050043614 | Huizenga et al. | Feb 2005 | A1 |
20050049652 | Tong | Mar 2005 | A1 |
20050059908 | Bogert | Mar 2005 | A1 |
20050070834 | Herr et al. | Mar 2005 | A1 |
20050085948 | Herr et al. | Apr 2005 | A1 |
20050094343 | Mintz | May 2005 | A1 |
20050155444 | Otaki et al. | Jul 2005 | A1 |
20050179417 | Takenaka et al. | Aug 2005 | A1 |
20050197717 | Ragnarsdottir et al. | Sep 2005 | A1 |
20050209707 | Phillips et al. | Sep 2005 | A1 |
20050228515 | Musallam et al. | Oct 2005 | A1 |
20050251079 | Carvey et al. | Nov 2005 | A1 |
20060004299 | Endo et al. | Jan 2006 | A1 |
20060004307 | Horst | Jan 2006 | A1 |
20060055358 | Ogawa et al. | Mar 2006 | A1 |
20060064047 | Shimada et al. | Mar 2006 | A1 |
20060069448 | Yasui | Mar 2006 | A1 |
20060094989 | Scott et al. | May 2006 | A1 |
20060135883 | Jonsson et al. | Jun 2006 | A1 |
20060173552 | Roy | Aug 2006 | A1 |
20060184280 | Oddsson et al. | Aug 2006 | A1 |
20060208606 | Hirzel | Sep 2006 | A1 |
20060211956 | Sankai | Sep 2006 | A1 |
20060213305 | Sugar et al. | Sep 2006 | A1 |
20060214621 | Ogawa et al. | Sep 2006 | A1 |
20060224246 | Clausen et al. | Oct 2006 | A1 |
20060249315 | Herr | Nov 2006 | A1 |
20060258967 | Fujil et al. | Nov 2006 | A1 |
20060264790 | Kruijsen et al. | Nov 2006 | A1 |
20060276728 | Ashihara et al. | Dec 2006 | A1 |
20060293791 | Dariush et al. | Dec 2006 | A1 |
20070016329 | Herr et al. | Jan 2007 | A1 |
20070043449 | Herr et al. | Feb 2007 | A1 |
20070050044 | Haynes et al. | Mar 2007 | A1 |
20070050047 | Ragnarsdottir et al. | Mar 2007 | A1 |
20070123997 | Herr et al. | May 2007 | A1 |
20070129653 | Sugar et al. | Jun 2007 | A1 |
20070145930 | Zaier | Jun 2007 | A1 |
20070156252 | Jonsson et al. | Jul 2007 | A1 |
20070162152 | Herr et al. | Jul 2007 | A1 |
20070233279 | Kazerooni et al. | Oct 2007 | A1 |
20070267791 | Hollander et al. | Nov 2007 | A1 |
20080039756 | Thorsteinsson et al. | Feb 2008 | A1 |
20080114272 | Herr et al. | May 2008 | A1 |
20080155444 | Pannese et al. | Jun 2008 | A1 |
20080161937 | Sankai | Jul 2008 | A1 |
20080234608 | Sankai | Sep 2008 | A1 |
20090030530 | Martin | Jan 2009 | A1 |
20090171469 | Thorsteinsson et al. | Jul 2009 | A1 |
20090192619 | Martin | Jul 2009 | A1 |
20090222105 | Clausen | Sep 2009 | A1 |
20090299480 | Gilbert et al. | Dec 2009 | A1 |
20100004860 | Chernoguz et al. | Jan 2010 | A1 |
20100025409 | Hunter | Feb 2010 | A1 |
20100094188 | Goffer et al. | Apr 2010 | A1 |
20100113980 | Herr | May 2010 | A1 |
20100114329 | Casler et al. | May 2010 | A1 |
20100174384 | Herr et al. | Jul 2010 | A1 |
20100174385 | Casler et al. | Jul 2010 | A1 |
20100179668 | Herr et al. | Jul 2010 | A1 |
20100312363 | Herr et al. | Dec 2010 | A1 |
20110082566 | Herr et al. | Apr 2011 | A1 |
20110098828 | Balboni et al. | Apr 2011 | A1 |
20110105966 | Kazerooni et al. | May 2011 | A1 |
20110224804 | Clausen et al. | Sep 2011 | A1 |
20110245931 | Clausen et al. | Oct 2011 | A1 |
20110257764 | Herr et al. | Oct 2011 | A1 |
20110260380 | Hollander et al. | Oct 2011 | A1 |
20110264230 | Herr et al. | Oct 2011 | A1 |
20110278857 | Sugar et al. | Nov 2011 | A1 |
20110295384 | Herr et al. | Dec 2011 | A1 |
20110295385 | Herr et al. | Dec 2011 | A1 |
20120209405 | Herr et al. | Aug 2012 | A1 |
20120259429 | Han et al. | Oct 2012 | A1 |
20120259430 | Han et al. | Oct 2012 | A1 |
20120259431 | Han et al. | Oct 2012 | A1 |
20120271433 | Galea et al. | Oct 2012 | A1 |
20120283845 | Herr et al. | Nov 2012 | A1 |
20130312483 | Herr et al. | Nov 2013 | A1 |
20140081420 | Herr et al. | Mar 2014 | A1 |
20140081421 | Herr et al. | Mar 2014 | A1 |
20140081424 | Herr et al. | Mar 2014 | A1 |
20140088727 | Han et al. | Mar 2014 | A1 |
20140114437 | Herr et al. | Apr 2014 | A1 |
20140121782 | Herr et al. | May 2014 | A1 |
20140296997 | Herr et al. | Oct 2014 | A1 |
Number | Date | Country |
---|---|---|
1 393 866 | Mar 2004 | EP |
1 408 892 | Apr 2004 | EP |
1 534 117 | Jun 2005 | EP |
2005-000500 | Jan 2005 | JP |
WO 199409727 | May 1994 | WO |
WO 2003003953 | Jan 2003 | WO |
WO 03068453 | Aug 2003 | WO |
WO 2004017872 | Mar 2004 | WO |
WO 2004019832 | Mar 2004 | WO |
WO 2006110895 | Oct 2006 | WO |
WO 2007025116 | Mar 2007 | WO |
WO 2009011682 | Jan 2009 | WO |
WO 2009082249 | Jul 2009 | WO |
WO 2010025403 | Mar 2010 | WO |
WO 2010025409 | Mar 2010 | WO |
WO 2010027968 | Mar 2010 | WO |
WO 2011005482 | Jan 2011 | WO |
Entry |
---|
[No Author Listed] Date Sheet AM8192BD01_05. RLS. Issue 5. Jan. 14, 2009. |
Abbas J. and Chizeck H., Neural Network Control of Functional Neuromuscular Stimulation Systems: Computer Simulation Studies, IEEE Transactions on Biomedical Engineering, vol. 42, No. 1, Nov. 1995, pp. 1117-1127. |
Abul-haj, C. and Hogan, N., Functional assessment of control systems for cybernetic elbow prostheses. Part I, Part II, IEEE Transactions on Biomedical Engineering, vol. 37, No. 11, Nov. 1990, Cambridge, MA, pp. 1037-1047. |
Akazawa, K., et. al, Biomimetic EMG prosthesis-hand, Proceedings of the 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2, Oct. 1996, Amsterdam, Netherlands, pp. 535-536. |
Aminian, Estimation of Speed and Incline of Walking Using Neural Network, IEEE Transactions on Biomedical Engineering, vol. 44, No. 3, Jun. 1995, pp. 743-746. |
Anderson, F. and Pandy M., Dynamic optimization of human walking, Journal of Biomechanical Engineering, vol. 123, Oct. 2001, pp. 381-390. |
Andrews, et al., Hybrid FES Orthosis incorporating closed loop control and sensory feedback, J. Biomed Eng., vol. 10, Apr. 1988, pp. 189-195. |
Arakawa, T. and Fukuda, T., Natural motion generation of biped locomotion robot using hierarchical trajectory generation method consisting of GA, EP layers, Proceedings of the 1997 IEEE International Conference on Robotics and Automation, Apr. 1997, Albuquerque, NM, pp. 211-216. |
Au, S. and Herr H., Initial experimental study on dynamic interaction between an amputee and a powered ankle-foot prosthesis, Workshop on Dynamic Walking. Mechanics and Control of Human and Robot Locomotion, May 2006, Ann Arbor, MI, p. 1. |
Au, S., An EMG-position controlled system for an active ankle-foot prosthesis: an initial experimental study, Proc. of the 2006 IEEE International Conference on Rehabilitation Robotics, Jul. 2005, Chicago, IL, pp. 375-379. |
Au, S., et al. An ankle-foot emulation system for the study of human walking biomechanics, Proc. of the 2006 IEEE Int. Conf. on Robotics and Automation, May 2006, Orlando, FL, pp. 2939-2945. |
Au, S., et. al., Biomechanical design of a powered ankle-foot prosthesis, Proc. of the 2007 IEEE Int. Conf. on Rehabilitation Robotics, Jun. 2007, Noordwijk, Netherlands, pp. 298-303. |
Au, S., et. al., Powered Ankle-foot Prosthesis Improves Walking Metabolic Economy, IEEE Trans. on Robotics, vol. 25, No. 1, Feb. 2009, pp. 51-66. |
Au, S., et. al., Powered ankle-foot prosthesis to assist level-ground and stair-descent gaits, Neural Networks, vol. 21, No. 4, Mar. 2008, pp. 654-666. |
Au., et. al., Powered Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation, Proceedings of the 29th Annual International Conference of the IEEE, Aug. 2007, Lyon, France, pp. 3020-3026. |
Barth, D.., et. al., Gait analysis and energy cost of below-knee amputees wearing six different prosthetic feet, Journal of Prosthetics & Orthotics, vol. 4, No. 2, Winter, 1992, pp. 63-75. |
Baten, et al., Inertial Sensing in Ambulatory back load Estimation, 18 Annual International Conferences of IEEE Engineering in Medicine and Biology Society, Amsterdam 1996, pp. 497-498. |
Bateni, H. and Olney S., Kinematic and kinetic variations of below-knee amputee gait, Journal of Prosthetics & Orthotics, vol. 14, No. 1, Mar. 2002, pp. 2-13. |
Blaya et al., Adaptive control of a variable-impedance ankle-foot orthosis to assist drop-foot gait, IEEE Transactions on Neural Systems and Rehabilitation Engineering, vol. 12, No. 1, Mar. 2004, pp. 24-31. |
Blaya, et al., Active Ankle Foot Orthoses (AAFO). http://www.ai.mit.edu. Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts. 2001. 251-253. |
Blickhan, R., The spring-mass model for running and hopping, J of Biomech. Feb. 22, 1989, Great Britain, pp. 1217-1227. |
Bortz, A New Mathematical Formulation for Strapdown Inertial Navigation, IEEE Transactions of Aerospace and Electronic Systems, vol. AES-7, No. 1, Jan. 1971, p. 61-66. |
Bouten et al., Assessment of energy expenditure for physical activity using a triaxial accelerometer. Med Sci Sports Exerc. Dec. 1994;26(12):1516-23. |
Bouten, A Triaxial Accelerometer and Portable Data Processing Unit for the Assessment of Daily Physical Activity, IEEE Transactions on Biomedical Engineering, vol. 44, No. 3, Mar. 1997, pp. 136-147. |
Brockway, J., Derivation of formulae used to calculate energy expenditure in man, Human Nutrition Clinical Nutrition, vol. 41, Nov. 1987, pp. 463-471. |
Brown, R., On the nature of the fundamental activity of the nervous centres: together with an analysis of the conditioning of rhythmic activity in progression, and a theory of the evolution of function in the nervous system, J Physiol, vol. 48,No. 1, Mar. 1914, pp. 18-46. |
Chang, et al., Ischemic Colitis and Complications of Constipation Associated with the use of Alosetron Under a Risk Management Plan: Clinical Characteristics, Outcomes, and Incidences The Americal Journal of Gastronenterology, vol. 105, No. 4, Apr. 2010, pp. 866-875. |
Chu, A., Kazerooni, H. and Zoss, A., On the Biomimetic Design of the Berkeley Lower Extremity Exoskeleton (BLEEX), Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Apr. 2005, Barcelona, Spain, pp. 4356-4363. |
Colborne, G. R., S. Naumann, P. E. Longmuir, and D. Berbrayer, Analysis of mechanical and metabolic factors in the gait of congenital below knee amputees, Am. J. Phys. Med. Rehabil., vol. 92, pp. 272-278, Oct. 1992. |
Colgate, The control of dynamically interacting systems. MIT. Aug. 1988. 1-19. |
Collins, et al., Controlled Energy Storage and Return Prosthesis Reduces Metabolic cost of Walking, ASB 29.sup.th Annual Meeting, Cleveland, Ohio, Jul. 31-Aug. 5, 2005, 1 page. |
Collins, et al., Supporting Online Material for Efficient bipedal robots based on passive-dynamic walkers, Mechanical Engineering, University of Michigan, Feb. 2005, Ann Arbor, MI, pp. 1-8. |
Crago P., et. al., New Control Strategies for neuroprosthetic systems, Journal of Rehabilitation Research and Development, vol. 33, No. 2, Apr. 1996, pp. 158-172. |
Daley, M. A., Felix, G., Biewener, A. A., 2007. Running stability is enhanced by a proximo-distal gradient in joint neuromechanical control. J Exp Biol 210 (Pt 3), Nov. 2006, pp. 383-394. |
Dapena, J. and McDonald, C., Three-dimensional analysis of angular momentum in the hammer throw, Med. Sci. in Sports Exerc., vol. 21, No. 2, Apr. 1989, pp. 206-220. |
Davids et al., Disorders of Bone and Mineral Metabolism. Book reviews. J Ped Orthopaedics. 1992;12(6):815. |
Dietz, V., Proprioception and locomotor disorders, Nat Rev Neurosci, vol. 3, Oct. 2002, pp. 781-790. |
Dietz, V., Spinal Cord Pattern Generators for Locomotion, download Feb. 6, 2012, http://www.Clinph-journal.com/article/PIIS1388245703001202/fullt- ext, 12 pages. |
Doerschuk, et. al., Upper extremity limb function discrimination using EMG signal analysis, IEEE Transactions on Biomedical Engineering. vol. 30., No. 1., Jan. 1983, pp. 18-28. |
Doke, J., et. al., Mechanics and energetics of swinging the human leg, The Journal of Experimental Biology, vol. 208, Feb. 2005, pp. 439-445. |
Donelan, J., et. al. Simultaneous positive and negative external mechanical work in human walking, Journal of Biomechanics, vol. 35, Jan. 2002, pp. 117-124. |
Donelan, J., et. al., Force regulation of ankle extensor muscle activity in freely walking cats, J Neurophysiol, vol. 101, No. 1, Nov. 2008, pp. 360-371. |
Donelan, J., et. al., Mechanical work for step-to-step transitions is a major determinant of the metabolic cost of human walking, J. Exp. Biol., vol. 205, Dec. 2002, pp. 3717-3727. |
Drake, C., Ankle & Foot Splints or Orthoses (AFOs), HemiHelp, Last updated Jun. 2009, 8 pages. |
Drake, Foot & Ankle Splints or Orthoses. HemiHelp Information Sheet, London, United Kingdom. Jun. 2009;1-5. |
Eilenberg, M., A Neuromuscular-Model Based Control Strategy for Powered Ankle-Foot Prostheses, Masters Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 2009. |
Ekeberg, O. and Grillner, S., Simulations of neuromuscular control in lamprey swimming, Philos Trans R Soc Lond B Biol Sci, vol. 354, May 1999, pp. 895-902. |
Ekeberg, O. and Pearson, K., Computer simulation of stepping in the hind legs of the cat: an examination of mechanisms regulating the stance-to-swing transition, J Neurophysiol, vol. 94, No. 6, Jul. 2005, pp. 4256-4268. |
Endo, K., et. al., A quasi-passive model of human leg function in level-ground walking, Proc. of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2006, Beijing, China, pp. 4935-4939. |
Eppinger, S. Seering W., Three dynamic problems in robot force control, IEEE Transactions on Robotics and Automation, vol. 8, No. 6, Dec. 1992, pp. 751-758. |
Esquenazi, A. and DiGiacomo, R., Rehabilitation After Amputation, Journ Am Podiatr Med Assoc, vol. 91, No. 1, Jan. 2001, pp. 13-22. |
Farley, C. and McMahon, T., Energetics of walking and running: insights from simulated reduced-gravity experiments, The American Physiological Society, Dec. 1992, pp. 2709-2712. |
Farry, K. A., et al., Myoelectric teleoperation of a complex robotic hand, IEEE Transactions on Robotics and Automation. vol. 12, No. 5, Oct. 1996, pp. 775-788. |
Featherstone, R., 1987, Robot Dynamic Algorithms, Boston, Mass., Kluwer Academic Publishers, pp. 155-172. |
Fisekovic et al., New controller for functional electrical stimulation systems, Medical Engineering & Physics vol. 23, 2001, pp. 391-399. |
Fite, K., et. al., Design and Control of an Electrically Powered Knee Prosthesis, Proc. of 2007 IEEE 10th International Conference on Rehabilitation Robotics (ICORR), Jun. 2007, pp. 902-905. |
Flowers, W. A Man-Interactive Simulator System for Above-Knee Prosthetic Studies, Ph.D. thesis, Massachusetts of Institute Technology, Department of Mechanical Engineering. Jul. 10, 1973. |
Fod, A., et. al., Automated Derivation of Primitives for Movements Classification, Autonomous Robots, vol. 12, No. 1, Jan. 2002, pp. 39-54. |
Foerster et al., Detection of posture and motion by accelerometry a validation study in ambulatory monitoring, Computer in Human Behavior, 1999, pp. 571-583. |
Foxlin et al., Miniature 6-DOF inertial system for tracking HMDs, In SPIE vol. 3362, Helmet and Head-Mounted Displays III, AeroSense 98, Orlando, FL, Apr. 13-14, 1998, 15 pages. |
Frigon, A. and Rossignol, S., Experiments and models of sensorimotor interactions during locomotion, Biol Cybern, vol. 95, No. 6, Nov. 2006, pp. 607-627. |
Fujita K, et. al., Joint angle control with command filter for human ankle movement using functional electrical stimulation, Proc. of IEEE Ninth Annual Conference for the Engineering in Medicine and Biology Society, Nov. 1987, Boston, MA, pp. 1719-1720. |
Fukuda, O. et al., A human-assisting manipulator teleoperated by EMG signals and arm motions, IEEE Transactions on Robotics and Automation. vol. 19, No. 2, Apr. 2003, pp. 210-222. |
Gates, D., Characterizing ankle function during stair ascent, descent, and level walking for ankle prosthesis and orthosis design, Masters thesis, Boston University, 2004, pp. 1-82. |
Gerritsen et. al., Direct dynamics simulation of the impact phase in heel-toe running, J. Biomech., vol. 28, No. 6, Jun. 1995, Great Britain, pp. 661-668. |
Geyer, H. and Herr H., A muscle-reflex model that encodes principles of legged mechanics predicts human walking dynamics and muscle activities, IEEE Transactions on Neural Systems and Rehabilitations Engineering, vol. 18, No. 3, Jun. 2010, pp. 263-273. |
Geyer, H., et. al., Compliant leg behaviour explains the basic dynamics of walking and running, Proc. R. Soc. Cond. B 273, Aug. 2006, pp. 2861-2867. |
Geyer, H., et. al., Positive force feedback in bouncing gaits?, Proceedings of Royal Society B—Biological Sciences, vol. 270, No. 1529, Aug. 2003, pp. 2173-2183, 2003. |
Ghigliazza, R., et. al., A simply stabilized running model, SIAM J. Applied. Dynamical Systems, vol. 2, No. 2, May 2004, pp. 187-218. |
Giszter et al., Convergent force fields organized in the frog's spinal cord. J Neurosci. Feb. 1993;13(2):467-91. |
Godha, el al., Integrated GPS/INS System for Pedestrian Navigation in a Signal Degraded Environment, ION GNSS, Sep. 2006, Fort Worth, TX, pp. 1-14. |
Goswami, A. and Kallem, V., Rate of change of angular momentum and balance maintenance of biped robots, Proceedings of the 2004 IEEE International Conference on Robotics and Automation, Apr. 2004, New Orleans, La., pp. 3785-3790. |
Goswami, A., Postural stability of biped robots and the foot-rotation indicator (FRI) point, International Journal of Robotics Research, vol. 18, No. 6, Jun. 1999, pp. 523-533. |
Graupe, D., et al., A microprocessor system for multifunctional control of upper-limb prostheses via myoelectric signal identification, IEEE Transaction on Automatic Control. vol. AC-23, vol. 4, Aug. 1978, pp. 538-544. |
Gregoire, L., and et al, Role of mono- and bi-articular muscles in explosive movements, International Journal of Sports Medicine 5, 614-630. Dec. 1984. 301-305. |
Grillner, S. and Zangger, P., On the central generation of locomotion in the low spinal cat, Exp Brain Res, vol. 34, No. 2, Jan. 1979, pp. 241-261. |
Grimes, D. L., An active multi-mode above-knee prosthesis controller, Ph.D. Thesis, Massachusetts Institute of Technology, Jul. 20, 1979. |
Gu, W., The Regulation of Angular Momentum During Human Walking, Undergraduate Thesis, Massachusetts Institute of Technology, Physics Department, Jun. 2003, pp. 2-48. |
Gunther, M. and Ruder, H., Synthesis of two-dimensional human walking: a test of the A-model, Biol. Cybern., vol. 89, May 2003, pp. 89-106. |
Gunther, M., et. al., Human leg design: optimal axial alignment under constraints, J. Math. Biol., vol. 48, Mar. 2004, pp. 623-646. |
Hanafusa et al., A Robot Hand with Elastic Fingers and Its Application to Assembly Process, pp. 337-359, Robot Motion, Brady et al., MITPress, Cambridge, MA, 1982. |
Hansen, A. H., Childress, D. S., Miff, S. C., Gard, S. A., Mesplay, K. P., The human ankle during walking: implication for the design of biomimetic ankle prosthesis, Journal of Biomechanics, vol. 37, No. 10, Oct. 2004, pp. 1467-1474. |
Hashimoto et al., An instrumented compliant wrist using a parallel mechanism, Japan/USA Symposim on Flexible Automation, vol. 1, pp. 741-744, ASME, 1992. |
Hayes et al., Leg Motion Analysis During Gait by Multiaxial Accelerometry: Theoretical Foundations and Preliminary Validations, Journal of Biomechanical Engineering, vol. 105, Aug. 1983, pp. 283-289. |
Heglund, A Simple Design for a Force-Plat to Measure Ground Reaction Forces, J. exp. Biol., vol. 93, pp. 333-338, 1981. |
Herr, H. and Wilkenfeld A., User-adaptive control of a magnetorheologicalprosthetic knee, Industrial Robot: An International Journal, vol. 30, No. 1, 2003, pp. 42-55. |
Herr, H., et. al, A model of scale effects in mammalian quadrupedal running, J Exp Biol 205 (Pt 7), Apr. 2002, pp. 959-967. |
Herr, New Horizons for Orthotic and Prosthetic Technology: Artificial Muscle for Ambulation. MIT Media Laboratory. 2004:1-9. |
Heyn et al., The Kinematice of the Swing Phase Obtained from Accelerometer and Gyroscope Measurements, 18.sup.th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Nov. 1996, Amsterdam, Netherlands, pp. 463-464. |
Hill, V., The heat of shortening and the dynamic constants of muscle, Proceedings of the Royal Society London B, vol. 126, No. 843, Oct. 1938, pp. 136-195. |
Hirai, K., et al., The development of Honda humanoid robot, Proceedings on IEEE/RSJ International Conference on Intelligent Robots and Systems, May 1998, Leuven, Belgium, pp. 1321-1326. |
Hitt, J., R. Bellman, M. Holgate, T. Sugar, and K. Hollander, The sparky (spring ankle with regenerative kinetics) projects: Design and analysis of a robotic transtibial prosthesis with regenerative kinetics, in Proc. IEEE Int. Conf. Robot. Autom.Orlando, Fla., pp. 1587-1596, Sep. 2007. |
Hof. A., et. al., Calf muscle moment, work and efficiency in level walking; role of series elasticity, Journal of Biomechanics, vol. 16, No. 7, Sep. 1983, pp. 523-537. |
Hofbaur, M. and Williams, B., Hybrid Diagnosis with Unknown Behavioral Modes, Proceedings of the 13.sup.th International Workshop on Principles of Diagnosis (DX02), May 2002, pp. 1-10. |
Hofbaur, M. and Williams, B., Mode Estimation of Probabilistic Hybrid Systems, HSSC 2002, LNCS 2289, Mar. 25, 2002, pp. 253-266. |
Hofmann, A., et. al., A Sliding Controller for Bipedal Balancing Using Integrated Movement of Contact and Non-Contact Limbs, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 2004, Sendai, Japan, pp. 1952-1959. |
Hofmann, A., et. al., Robust Execution of Bipedal Walking Tasks from Biomechanical Principles, Doctor of Philosophy at the Massachusetts Institute of Technology, Jan. 2006, 407 pages. |
Hogan, N and Buerger S., Impedance and Interaction Control, Robotics and Automation Handbook, CRC Press, Jun. 2004, pp. 19.1-19.24. |
Hogan, N. (1976) A review of the methods of processing EMG for use as a proportional control signal. Biomedical Engineering. pp. 81-86. |
Hogan, N., Impedance Control: An Approach to Manipulation: Part I—Theory, Journal of Dynamic Systems, Measurement , and Control, vol. 107, Mar. 1985, pp. 1-7. |
Hollander, K. W., T. G. Sugar, and D. E. Herring, Adjustable robotic tendon using a ‘Jack Springs’.TM., Proceedings on IEEE International Conference on Rehabilitation Robotics, Chicago, pp. 113-118, Jun. 28, 2005. |
Howard, Joint and Actuator Design for Enhanced Stability in Robotic Force Control, Ph.D. thesis, Massachusetts Inst. of Technology, Dept. of Aeronautics and Astronautics, Sep. 19, 1990. |
Huang, H. and Chen. C., Development of a myoelectric discrimination system for a multi-degree prosthetic hand, Proceeding of the 1999 IEEE International Conference on Robotics and Automation, May 1999, Detroit, MI, pp. 2392-2397. |
Huang, Q., Planning walking patterns for a biped robot, IEEE Transactions on Robotics and Automation, vol. 17, No. 3, Jun. 2001, pp. 280-289. |
Hultborn, H., Spinal reflexes, mechanisms and concepts: from Eccles to Lundberg and beyond, Prog Neurobiol, vol. 78, Feb. 2006, pp. 215-232. |
Ijspeert, A. J., 2008, Central pattern generators for locomotion control in animals and robots: a review, Neural Netw, vol. 21, No. 4, May 2008, pp. 642-653. |
Ijspeert, A., et. al., From swimming to walking with a salamander robot driven by a spinal cord model, Science, vol. 315, No. 5817, Mar. 2007, pp. 1416-1420. |
Isakower, Design Charts for Torsional Properties of Non-circular Shafts, Technical Report ARMID-TR-78001, ARRADCOM, MISD, DRDAR-MSA, Dover,NJ, Nov. 1978. |
Ivashko, D., et. al, Modeling the spinal cord neural circuitry controlling cat hindlimb movement during locomotion, Neurocomputing, vol. 52-54, Mar. 2003, pp. 621-629. |
Johansson, J., et al., A clinical comparison of variable damping and mechanically passive prosthetic knee devices, American Journal of Physical Medicine & Rehabilitation, vol. 84, No. 8, Aug. 2005, pp. 563-575. |
Johnson, C. and Lorenz R., Experimental identification of friction and its compensation in precise, position controlled mechanisms, IEEE Trans. on Industry Applications, vol. 28, No. 6, Dec. 1992, pp. 1392-1398. |
Jonic S, et. al., Three machine learning techniques for automatic determination of rules to control locomotion, IEEE Trans Biomed Eng, vol. 46, No. 3, Mar. 1999, pp. 300-310. |
Kadaba, M., et. al., Measurement of lower extremity kinematics during level walking, J. Orthop. Res., vol. 8, May 1990, pp. 383-392. |
Kadaba, M., et. al., Repeatability of kinematic, kinetic, and electromyographic data in normal adult gait, J. Orthop. Res., vol. 7, Nov. 1989, pp. 849-860. |
Kajita, K., et. al., Biped walking on a low friction floor, Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2004, Sendai, Japan., pp. 3546-3551. |
Kajita, S., et. al., A Hop towards Running Humanoid Biped, Proceedings of the 2004 IEEE International Conference on Robotics and Automation, Apr. 2004, New Orleans, La., pp. 629-635. |
Kajita, S., et. al., Resolved Momentum Control: Humanoid Motion Planning based on the Linear and Angular Momentum, Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, Oct. 2003, Las Vegas, Nev., pp. 1644-1650. |
Kaneko, K., et al., Humanoid robot HRP-2, Proc. IEEE Int. Conf. on Robotics and Automation, Apr. 2004, New Orleans, La., pp. 1083-1090. |
Kapti, A. and Yucenur M., Design and control of an active artificial knee joint, Mechanism and Machine Theory, vol. 41, Apr. 2006, pp. 1477-1485. |
Katic, D. and Vukobratovic, M., Survey of intelligent control techniques for humanoid robots, Journal of Intelligent and Robotics Systems, vol. 37, Jun. 2003, pp. 117-141. |
Kerrigan, D, et. al., A refined view of thedeterminants of gait: significance of heel rise, Arch. Phys. Med. Rehab., vol. 81, Aug. 2000, pp. 1077-1080. |
Kerrigan, D, et. al., Quantification of pelvic rotation as a determinant of gait, Arch. Phys. Med. Rehab., vol. 82, Feb. 2001, pp. 217-220. |
Khatib, O., et. al., Coordination and decentralized cooperation of multiple mobile manipulators, Journal of Robotic Systems, vol. 13, No. 11, Nov. 1996, pp. 755-764. |
Khatib, O., et. al., Whole body dynamic behavior and control of human-like robots, International Journal of Humanoid Robotics, vol. 1, No. 1, Mar. 2004, pp. 29-43. |
Kidder, et al., A System for the Analysis of Foot and Ankle Kinematics During Gait, IEEE Transactions on Rehabilitation Engineering, vol. 4, No. 1, Mar. 1996, pp. 25-32. |
Kirkwood C, et. al., Automatic detection of gait events: a case study using inductive learning techniques., J Biomed Eng, vol. 11, Nov. 1989, pp. 511-516. |
Kitayama, I., Nakagawa N, Amemori K, A microcomputer controlled intelligent A/K prosthesis, Proceedings of the 7th' World Congress of the International Society for Prosthetics and Orthotics, Chicago. Jun. 28, 1992. |
Klute et al., Powering Lower Limb Prosthestics with Muscle-Like Actuators, Abstract in: Proceeding of the 1st Annual Meeting of the VA Rehabilitation Research and Development Service, Enabling Veterans: Meeting the Challenge of Rehabilitation inthe Next Millennium, Washington, D.C., Oct. 1-3, 1998, p. 52. |
Klute et al.,Variable Stiffness Prosthesis for Transtibial Amputees. Dept of Veteran Affairs, Seattle, WA USA, 2005. 2 pages. |
Klute, G., et. al., Mechanical properties of prosthetic limbs adapting to the patient, Journal of Rehabilitation Research and Development, vol. 38, No. 3, May 2001, pp. 299-307. |
Koganezawa, K. and Kato, I., Control aspects of artificial leg, IFAC Control Aspects of Biomedical Engineering, 1987, pp. 71-85. |
Kondak, K. and Hommel, G., Control and online computation of stable movement for biped robots, Proc. of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Oct. 2003, Las Vegas, Nev., pp. 874-879. |
Kostov A., et. al., Machine learning in control of functional electrical stimulation (FES) systems for locomotion, IEEE Trans on Biomed Eng, vol. 42, No. 6, Jun. 1995, pp. 541-551. |
Kuo, A., A simple model of bipedal walking predicts the preferred speed-step length relationship, Journal of Biomechanical Engineering, vol. 123, Jun. 2001, pp. 264-269. |
Kuo, A., Energetics of actively powered locomotion using the simplest walking model, Journal of Biomechanical Engineering, vol. 124, Feb. 2002, pp. 113-120. |
LaFortune, Three-Dimensional Acceleration of the Tibia During Walking and Running, J. Biomechanics, vol. 24, No. 10, 1991, pp. 877-886. |
LeBlanc, M. and Dapena, J., Generation and transfer of angular momentum in the javelin throw, Presented at the 20th annual meeting of the American Society of Biomechanics, Oct. 1996, Atlanta, Ga., pp. 17-19. |
Lee et al., activity and Location recognition Using Wearable Sensors, Pervasive Computing, Jul.-Sep. 2002, pp. 24-32. |
Li et al., (Jun. 25, 2006) Research and development of the intelligently-controlled prosthetic ankle joint. Proc. of IEEE Int. Conf. on Mechatronics and Automation. Luoyang, China, pp. 1114-1119. |
Liu et al., (2004) ‘Development of a Lower Extremity Exoskeleton for Human performance Enhancement’, IEEE Conf. on Intelligent Robots and Systems, Sendai, Japan. 3889-3894. |
Lloyd R. and Cooke C., Kinetic changes associated with load carriage using two rucksack designs, Ergonomics, vol. 43, No. 9, Sep. 2000, pp. 1331-1341. |
Luinge, Inertial Sensing of Human Movement, Twente University Press, ISBN 9036518237, 2002, pp. 1-80. |
Lundberg, A., Oct. 19, 1968. Reflex control of stepping. In: The Nansen memorial lecture V, Oslo: Universitetsforlaget, 5-42. |
Maganaris, C., Force-length characteristics of in vivo human skeletal muscle, Acta Physiol. Scand., vol. 172, Aug. 2001, pp. 279-285. |
Maganaris, C., Force-length characteristics of the in vivo human gastrocnemius muscle, Clin. Anat., vol. 16, May 2003, pp. 215-223. |
Martens, W.L.J., Exploring the Information Content and Some Applications of Body Mounted Piezo-Resistive Accelerometers, in: P.H. Veltink and R.C. van Lummel (eds.), Dynamic Analysis using Body Fixed Sensors, ISBN 90-9007328-0, 1994, pp. 8-11. |
Martinez-Villalpando et al., Agonist-antagonist active knee prosthesis: a preliminary study in level-ground walking. J Rehabil Res Dev. 2009;46(3):361-73. |
Maufroy, C., Towards a general neural controller for quadrupedal locomotion, Neural Netw, vol. 21, No. 4, Apr. 2008, pp. 667-681. |
Mayagoitia R., et al., Accelerometer and rate gyroscope measurement of kinematics: an inexpensive alternative to optical motion analysis systems, Journal of Biomechanics, vol. 35, Apr. 2002, pp. 537-542. |
McFadyen et al., An integrated biomechanical analysis of normal stair ascent and descent. J Biomech. 1988;21(9):733-44. |
McGeer T., Passive Dynamic Walking, International Journal of Robotics, vol. 9, No. 2, May 1988, pp. 62-82. |
McGeer, T., Principles of walking and running, Advances in Comparative and Environmental Physiology, vol. 11, Ch. 4, Apr. 1992, pp. 113-139. |
McIntosh, A., et. al., Gait dynamics on an inclined walkway, Journal of Biomechanics, vol. 39, Sep. 2005, pp. 2491-2502. |
McMahon, T., et. al., Groucho Running, Journal of Applied Physiology, vol. 62, No. 6, Jun. 1987, pp. 2326-2337. |
McMahon, T., The mechanics of running: how does stiffness couple with speed?, J. of Biomecb., vol. 23, 1990, pp. 65-78. |
Minassian, K., et. al., Human lumbar cord circuitries can be activated by extrinsic tonic input to generate locomotor-like activity, Hum. Mov. Sci., vol. 26, Mar. 2007, pp. 275-295. |
Mochon, S., et. al., Ballistic walking, Journal of Biomechanics, vol. 13, Dec. 1980, pp. 49-57. |
Moe-Nilssen, A new method for evaluating motor control in gait under real-life environmental conditions, Part 2: Gait analysis, Clinical biomechanics, vol. 13, 1998, pp. 328-335. |
Molen, N., Energy/speed relation of below-knee amputees walking on motor-driven treadmill, Int. Z. Angew. Physio, vol. 31, Mar. 1973, pp. 173. |
Morris, Accelerometry—A Technique for the Measurement of Human Body Movements, J. Biomechanics, vol. 6, Nov. 1973, pp. 729-736. |
Muraoka, T., et. al, Muscle fiber and tendon length changes in the human vastus lateralis during slow pedaling, J. Appl. Physiol., vol. 91, Nov. 2001, pp. 2035-2040. |
Nakagawa A., Intelligent Knee Mechanism and the Possibility to Apply the Principle to the Other Joints, Proceedings of the 20.sup.th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vo. 20, No. 5, Oct. 1998,pp. 2282-2287. |
Neal R. and Hinton G., A view of the EM algorithm that justifies incremental, sparse, and other variants, In Michael I. Jordan (editor), Learning in Graphical Models, 1999, Cambridge, MA, pp. 1-14. |
Ng, et al., Fuzzy Model Identification for Classification of Gait Events in Paraplegics, IEEE Transactions on Fuzzy Systems, vol. 5, No. 4, Nov. 1997, pp. 536-544. |
Nielsen, D., et. al., Comparison of energy cost and gait efficiency during ambulation in below-knee amputees using different prosthetic feet—a preliminary report, Journal of Prosthetics & Orthotics, vol. 1, No. 1, 1989, pp. 24-29. |
Oda et al., In Vivo Length-Force Relationships on Muscle Fiber and Muscle Tendon Complex in the Tibialis Anterior Muscle. Int. J. Sport and Health Sci. 2005;3:245-252. |
Ogihara, N. and Yama7aki, N., Generation of human bipedal locomotion by a bio-mimetic neuro-musculo-skeletal model, Biol Cybern, vol. 84, No. 1, Jan. 2001, pp. 1-11. |
Palmer, M., Sagittal plane characterization of normal human ankle function across a range of walking gait speeds, Master's Thesis, MIT, Feb. 2002, Cambridge, MA, pp. 1-71. |
Paluska, D. and Herr, H., Series Elasticity and Actuator Power Output, Proceedings of the 2006 IEEE International Conference on Robotics and Automation, May 2006, Orlando, FL, pp. 1830-1833. |
Paluska, D., and Herr, H., The effect of series elasticity on actuator power and work output: implications for robotic and prosthetic joint design, Robotics and Autonomous Systems, vol. 54, Jun. 2006, pp. 667-673. |
Pang, M., et. al., The initiation of the swing phase in human infant stepping: importance of hip position and leg loading, J Physiol, vol. 528, No. 2, Oct. 2000, pp. 389-404. |
Pasch, K. A., and W. P. Seering, On the drive systems for high performance machines, AMSE J. Mechanisms, Transmissions, and Automation in Design vol. 106, pp. 102-108, Mar. 1984. |
Paul, C., et. al., Development of a human neuro-musculo-skeletal model for investigation of spinal cord injury, Biol Cybern, vol. 93, No. 3, Aug. 2005, pp. 153-170. |
Pearson, K., Generating the walking gait: role of sensory feedback, Prog Brain Res, vol. 143, 2004, pp. 123-129. |
Perry, Gait Analysis: Normal and Pathological Function, New Jersey: SLACK Inc.; 1992, Book Review. 815. |
Perry, J. and S. Shanfield, Efficiency of dynamic elastic response prosthetic feet, Journal of Rehabilitation Research and Development, vol. 30, No. 1, 1993 pp. 137-143. |
Petrofsky et al., Feedback Control System for Walking in Man, Comput. Biol. Med., vol. 14, No. 2, Mar. 1984, pp. 135-149. |
Pfeffer et al., Experiments with a Dual-Armed, Cooperative, Flexible-Drivetrain Robot System, Proc. 1993 IEEE Int. Conf. on Robotics & Automation, vol. 3, pp. 601-608, May 5, 1993. |
Popovic D., et al., Control Aspects of Active Above-Knee Prosthesis, Int. Journal Man-Machine Studies, (1991) 35, pp. 751-767. |
Popovic, D., Control of Movement for the Physically Disabled, Springer-Verlag London Limited, May 2000, pp. 270-302. |
Popovic, et al., Gait Identification and Recognition Sensor, Proceedings of 6th Vienna International Workshop on Functional Electrostimulation, Sep. 1998, pp. 1-4. |
Popovic, M. and Herr, H., Global Motion Control and Support Base Planning, Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Aug. 2005, Alberta, Canada, pp. 1-8. |
Popovic, M., Angular Momentum Primitives for Human Walking: Biomechanics and Control, Proc. of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, Sep. 2004, Sendai, Japan., pp. 1685-1691. |
Popovic, M., et. al., Angular Momentum Regulation during human walking: Biomechanics and Control, Proceedings of the 2004 IEEE International Conference on Robotics and Automation, Apr. 2004, New Orleans, LA, pp. 2405-2411. |
Popovic, M., et. al., Ground Reference Points in Legged Locomotion: Definitions, Biological Trajectories and Control Implications, International Journal of Robotics Research, Dec. 2006, pp. 79-104. |
Popovic, M., et. al., Zero spin angular momentum control: definition and applicability, Proceedings of the IEEE-RAS/RSJ International Conference on Humanoid Robots, Nov. 2004, Los Angeles, CA, pp. 1-16. |
Popovic, M.B., W. Gu and H. Herr, Conservation of Angular Momentum in Human Movement, MIT AI Laboratory—Research Abstracts, Sep. 2002. pp. 231-232, 2002. |
Pratt, G. and Williamson M., Series elastic actuators, Proceedings on IEEE/RSJ International Conference on Intelligent Robots and Systems, Jan. 1995, Pittsburgh, PA, pp. 399-406. |
Pratt, G., Legged Robots: What's New Since Raibert, IEEE Robotics and Automation Magazine, Research Perspectives, Sep. 2000, pp. 15-19. |
Pratt, G., Low Impedance Walking Robots, Integ. and Comp. Biol., vol. 42, Feb. 2002, pp. 174-181. |
Pratt, J., et. al., The RoboKnee: An Exoskeleton for Enhancing Strength and Endurance During Walking, IEEE Conf. on Robotics and Automation, Apr. 2004, New Orleans, LA, pp. 2430-2435. |
Prochazka, A. and Yakovenko, S., The neuromechanical tuning hypothesis, Prog Brain Res, vol. 165, Oct. 2007, pp. 255-265. |
Prochazka, A., et. al., Positive force feedback control of muscles, J. of Neuro-phys., vol. 77, Jun. 1997, pp. 3226-3236. |
Prochazka, A., et. al., Sensory control of locomotion: reflexes versus higher-level control, Adv Exp Med Biol, vol. 508, 2002, pp. 357-367. |
Raibert, M., Legged Robots that Balance, The MIT Press, Nov. 1986, Cambridge, MA, p. 89. |
Rassier, D., et. al., Length dependence of active force production in skeletal muscle, Journal of Applied Physiology, vol. 86, Issue 5, May 1999, pp. 1455-1457. |
Riener, R., et. al., Stair ascent and descent at different inclinations, Gait Posture, vol. 15, Feb. 2002, pp. 32-44. |
Rietman, et. al., Gait analysis in prosthetics: opinions, ideas and conclusions, Prosthetics and Orthotics International, 2002, 26, 50-57. |
Robinson, D., Design and an analysis of series elasticity in closed-loop actuator force control, Ph.D. Thesis, MIT, Jun. 2000, Cambridge, MA, pp. 1-123. |
Robinson, D., Series elastic actuator development for a biomimetic walking robot, Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Sep. 1999, pp. 561-568. |
Rosen, J., et al., A myosignal-based powered exoskeleton system, IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, vol. 31, No. 3, May 2001, pp. 210-222. |
Ruina, A., et. al., A collisional model of the energetic cost of support work qualitatively explains leg sequencing in walking and galloping, pseudo-elastic leg behavior in running and the walk-to-run transition, Journal of Theoretical Biology,vol. 237, Issue 2, Jun. 2005, pp. 170-192. |
Rybak et al., Modelling spinal circuitry involved in locomotor pattern generation: insights from the effects of afferent stimulation. J Physiol. Dec. 1, 2006;577(Pt 2):641-58. Epub Sep. 28, 2006. |
Rybak, I., et. al., Modelling spinal circuitry involved in locomotor pattern generation: insights from deletions during fictive locomotion, J Physiol, vol. 577 (Pt 2), Dec. 2001, 617-639. |
Sanderson, D., et. al., Lower extremity kinematic and kinetic adaptations in unilateral below-knee amputees during walking, Gait and Posture, vol. 6, No. 2, Oct. 1997, pp. 126-136. |
Sanger, T., Human arm movements described by a low-dimensional superposition of principal component, Journal of NeuroScience, vol. 20, No. 3, Feb. 2000, pp. 1066-1072. |
Saranli, U., RHex: A simple and highly mobile hexapod robot, Int. Jour. Rob. Res., vol. 20, No. 7, Jul. 2001, pp. 616-631. |
Sarrigeorgidis K. and Kyriakopoulos K., Motion control of the N.T.U.A. robotic snamek on a planar surface, Proc. of the 1998 IEEE International Conference on Robotics and Automation, May 1998, pp. 2977-2982. |
Schaal, S. and Atkeson, C., Constructive incremental learning from only local information, Neural Computation, vol. 10, No. 8, Nov. 1998, pp. 2047-2084. |
Schaal, S., Is imitation learning the route to humanoid robots? Trends in Cognitive Sciences, vol. 3, Jun. 1999, pp. 233-242. |
Scott, S. and Winter, D., Biomechanical model of the human foot: kinematics and kinetics during the stance phase of walking, J. Biomech., vol. 26, No. 9, Sep. 1993, 1091-1104. |
Sekine et al., Classification of waist-acceleration signals in a continuous walking record, Medical Engineering & Physics, vol. 22, 2000, pp. 285-291. |
Sentis, L. and O. Khatib, Task-Oriented Control of Humanoid Robots Through Prioritization, IEEE-RAS/RSJ International Conference on Humanoid Robots, Nov. 2004, Santa Monica, CA, pp. 1-16. |
Seyfarth, A., et. al., A movement criterion for running, J. of Biomech., vol. 35, May 2002, pp. 649-655. |
Seyfarth, A., et. al., Stable operation of an elastic three-segmented leg, Biol.Cybern., vol. 84, 2001, pp. 365-382. |
Seyfarth, A., Swing-leg retraction: a simple control model for stable running, J. Exp. Biol., vol. 206, Aug. 2003, pp. 2547-2555. |
Sin et al., Significance of non-level walking on transtibial prosthesis fitting with particular reference to the effects of anterior-posterior alignment, Journal of Rehabilitation Research and Development, vol. 38, No. 1, Jan./Feb. 2001, p. 1-6. |
Sinkjaer, T., et. al., Major role for sensory feedback in soleus EMG activity in the stance phase of walking in man, J Physiol, vol. 523, No. 3, Mar. 2000, 817-827. |
Skinner, H. and Effeney D., Gait analysis in amputees, Am J Phys Med, vol. 64, Apr. 1985, pp. 82-89. |
Smidt et al., An Automated Accelerometry System for Gait Analysis, J. Biomechanics, vol. 10, 1977, pp. 367-375. |
Srinivasan, M., Energetics of legged locomotion: Why is total metabolic cost proportional to the cost of stance work, Proc. on ISB XXth Congress and the American Society of Biomechanics Annual Meeting, Jul. 2003, Cleveland, OH, pp. 829. |
Stepien, J., et al., Activity Levels Among Lower-Limb Amputees: Self-Report Versus Step Activity Monitor, Arch. Phys. Med. Rehabil., vol. 88, No. 7, Jul. 2007, pp. 896-900. |
Sugano et al., Force Control of the Robot Finger Joint equipped with Mechanical Compliance Adjuster, Proc. of the 1992 IEEE/RSJ Int. Conf. on Intell. Robots & Sys., Jul. 1992, pp. 2005-2013. |
Sugihara, T., et. al., Realtime Humanoid Motion Generation through ZMP Manipulation based on Inverted Pendulum Control, Proceedings of the 2002 IEEE International Conference on Robotics and Automation, May 2002, Washington, DC, pp. 1404-1409. |
Sup, F., Design and Control of a Powered Transfemoral Prosthesis, The International Journal of Robotics Research, vol. 27, No. 2, Feb. 2008, pp. 263-273. |
Taga, G., A model of the neuro-musculo-skeletal system for human locomotion, Biol. Cybern., vol. 73, No. 2, Jul. 1995, pp. 97-111. |
Takayuki Biped Locomotion using Multiple Link Virtual Inverted Pendulum Model, Publication of Electronics Information and Systems Society, vol. 120, No. 2, Feb. 2000, 8 pages. |
Thoroughman, K. and R. Shadmehr, Learning of action through adaptive combination of motor primitives, Nature, vol. 407, Oct. 2000, pp. 742-747. |
Tomovic R. et al., A Finite State Approach to the Synthesis of Bioengineering Control Systems, IEEE Transations on Human Factors in Electronics, vol. 7, No. 2, Jun. 1966, pp. 65-69. |
Tong et al., Virtual artificial sensor technique for functional electricial stimulation, Medical Engineering & Physics, vol. 20, 1998, pp. 458-468. |
Tong, et al., A Practical Gait Analysis System Using Gyroscopes, Medical Engineering & Physics, vol. 21, Mar. 1999, pp. 87-94. |
Turker, K., Electromyography: some methodological problems and issues, Physical Therapy, vol. 73, No. 10, Oct. 1993, pp. 698-710. |
Van den Bogert, A., Exotendons for assistance of human locomotion, Biomedical Engineering Online, Oct. 2003, pp. 1-8. |
Van den Bogert, et al. A Method for Inverse Dynamic Analysis Using Accelerometry, Journal Biomechanics, vol. 29, No. 7, 1996, pp. 949-954. |
Van der Kooij et al., A multisensory integration model of human stance control, Biological Cybernetics, 1999, pp. 299-308. |
Veltink P., et al., The Feasibility of Posture and Movement Detection by Accelerometry, D-7803-1377-I/93, IEEE, Oct. 1993, pp. 1230-1231. |
Veltink, Dection of Static and Dynamic Activities Using Uniaxial Accelerometers, IEEE. Transactions on Biomedical Engineering, vol. 4. No. 4, Dec. 1996, pp. 375-385. |
Vukobratovic M. and Juricic, D., Contributions to the synthesis of biped gait, IEEE Transactions on Biomedical Engineering, vol. BME-16, No. 1, Jan. 1969, pp. 1-6. |
Vukobratovic M. and Stepanenko J., Mathematical models of general anthropomorphic systems, Mathematical Biosciences, vol. 17, Aug. 1973, pp. 191-242. |
Walsh, C., Biomimetic Design of an Under-Actuated Leg Exoskeleton for Load-Carrying Augmentation, Master's Thesis, MIT, Feb. 2006, pp. 1-94. |
Waters, RL., Energy cost of walking amputees: the influence of level of amputation, J Bone Joint Surg., vol. 58, No. 1, Jan. 1976, pp. 42-46. |
Wilkenfeld, A. J., Biologically inspired auto adaptive control of a knee prosthesis, Ph.D. Thesis, Massachusetts Institute of Technology, Oct. 23, 2000. |
Wilkenfeld, A., An Auto-Adaptive External Knee Prosthesis, Artificial Intelligence Laboratory, MIT, Sep. 2000, Cambridge, MA, pp. 1-3. |
Willemsen A., et al., Automatic Stance-Swing Phase Detection from Accelerometer Data for Peroneal Nerve Stimulation, IEEE Transactions on Human Factors in Electronics, vol. 37, No. 12, Dec. 1990, pp. 1201-1208. |
Willemsen A., et al., Real-Time Gait Assessment Utilizing a New Way of Accelerometry, Journal of Biomechanics, vol. 23, No. 8, 1990, pp. 859-863. |
Williams, B., Mode Estimation of Model-based Programs: Monitoring Systems with Complex Behavior, Proceedings of the International Joint Conference on Artificial Intelligence, Aug. 2001, Seattle, WA, pp. 1-7. |
Williamson, M., Series Elastic Actuators, Artificial Intelligence Laboratory, MIT, Jan. 1995, Cambridge, MA, pp. 1-74. |
Winter, D, and Robertson D., Joint torque and energy patterns in normal gait, Biol. Cybem., vol. 29, May 1978, pp. 137-142. |
Winter, D. A, Energy generation and absorption at the ankle and knee during fast, natural, and slow cadences, Clinical Orthopedics and Related Research, vol. 175, May 1983, pp. 147-154. |
Winter, D. and Sienko S., Biomechanics of below-knee amputee gait, Journal of Biomechanics, vol. 21, No. 5, Aug. 1988, pp. 361-367. |
Wisse, M., Essentails of Dynamic Walking, Analysis and Design of two-legged robots, Phd Thesis, Technical University of Delft, 2004, pp. 1-195. |
Woodward et al., Skeletal Accelerations measured during different Exercises, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, vol. 207, Jun. 1993, pp. 79-85. |
Wu, The Study of Kinematic Transients in Locomotion Using the Integrated Kinematic Sensor, IEEE Transactions on Rehabilitation Engineering, vol. 4, No. 3, Sep. 1996, p. 193-200. |
Yakovenko, S., et. al., Contribution of stretch reflexes to locomotor control: a modeling study, Biol Cybern, vol. 90, No. 2, Jan. 2004, pp. 146-155. |
Yun X., Dynamic state feedback control of constrained robot manipulators, Proc. of the 27th conference on Decision and Control, Dec. 1988, pp. 622-626. |
Zlatnik, D et. al., Finite-state control of a trans-femoral prosthesis, IEEE Trans. on Control System Technology, vol. 10, No. 3, May 2002, pp. 408-420. |
Number | Date | Country | |
---|---|---|---|
20150127118 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61679194 | Aug 2012 | US | |
61662104 | Jun 2012 | US | |
61658568 | Jun 2012 | US |