This disclosure relates generally to prosthetic valves and delivery systems for prosthetic valves. More specifically, this disclosure relates to prosthetic heart valves and methods thereof.
The native heart valves (the tricuspid valve, pulmonary valve, mitral valve, and aortic valve) play an important role in regulating flow of blood through the cardiovascular system. However, the native heart valves may become damaged or impaired, such as due to cardiovascular diseases, infections, or congenital malformations, thus limiting the ability of the native heart valves to regulate blood flow. This deficiency may result in reduced cardiovascular function or even death.
To treat these conditions, prosthetic heart valves may be implanted at or near the site of a damaged or impaired native valve. A prosthetic heart valve may assist or replace the functionality of an impaired native valve, leading to better regulation of blood flow and improved cardiovascular function. However, many existing prosthetic heart valves require implantation via an open heart procedure, which is highly-invasive and may cause life-threatening complications. Other prosthetic valves may be collapsed within a prosthetic valve delivery system and advanced into the heart, at which point the prosthetic valve may be removed from the delivery system and expanded at the native valve site. However, many of these prosthetic valves are large in size and therefore difficult to deliver into the heart without causing damage to healthy tissue along the implantation route. In addition, once these prosthetic valves are situated within the heart, they may be difficult to securely implant at the native valve site due to their complex structure and the limited maneuverability of existing prosthetic valve delivery systems within the heart. Moreover, many prosthetic valves are so large that they may protrude several centimeters into surrounding heart chambers once they are implanted, impairing cardiac filling and causing injury to the anatomy within the heart.
Thus, there remains a need for prosthetic heart valves which are smaller in size while still configured to assist or replace the functionality of a diseased or damaged native heart valve. In addition, there remains a need for prosthetic heart valves which are more easily maneuvered into the heart and securely implanted at the site of a native heart valve. Moreover, there remains a need for improved prosthetic heart valve delivery systems which are configured to securely implant a prosthetic heart valve at an implantation site. The present disclosure provides prosthetic heart valves with a reduced axial length such that the prosthetic heart valves may be more easily delivered into the heart and may exhibit lower protrusion into the chambers of the heart. The present disclosure also provides improved prosthetic heart valve delivery systems and methods of implanting prosthetic heart valves therewith, such that prosthetic heart valves may be securely anchored at the implantation site.
Disclosed herein are prosthetic valves for implantation within a native valve and methods thereof. Particular examples of the disclosure may pertain to a prosthetic valve including a plurality of tissue anchors, where the tissue anchors are configured to be positioned relative to each other such that when the prosthetic valve is implanted, a volume between the tissue anchors is configured to be substantially filled with tissue.
According to an exemplary embodiment of the present disclosure, a prosthetic valve for implantation within a native mitral valve is provided. The prosthetic valve includes an annular valve body. The prosthetic valve also includes a plurality of atrial anchoring arms configured to extend radially outward from the annular valve body. The arms are configured to engage an atrial portion of the native mitral valve. The prosthetic valve also includes a plurality of ventricular anchoring legs configured to extend radially outward from the annular valve body. The ventricular anchoring legs are configured to engage a ventricular portion of the native mitral valve. The atrial anchoring arms and the ventricular anchoring legs are positioned relative to each other such that when the atrial anchoring arms and ventricular anchoring legs engage the native mitral valve, a volume between the atrial anchoring arms and ventricular anchoring legs is configured to be substantially filled with tissue.
The atrial anchoring arms and the ventricular anchoring legs are positioned relative to each other such that when the atrial anchoring arms and ventricular anchoring legs engage the native mitral valve, the volume between the atrial anchoring arms and ventricular anchoring legs is substantially devoid of gaps. The volume between the atrial anchoring arms and ventricular anchoring legs is formed between an outer surface of the annular valve body, surfaces of the ventricular anchoring legs facing toward an atrium, and surfaces of the atrial anchoring arms facing toward a ventricle. A portion of at least one ventricular anchoring leg is configured to be substantially aligned in a common lateral plane with a portion of at least one atrial anchoring arm. A circumference formed by the portion of the at least one ventricular anchoring leg and the portion of the at least one atrial anchoring arm forms an outer boundary of the volume between the atrial anchoring arms and ventricular anchoring legs. At least one atrial anchoring arm includes a first portion configured to extend toward a ventricle, and a second portion configured to extend toward an atrium. The first portion of the at least one atrial anchoring arm is configured to form a boundary of the volume between the atrial anchoring arms and ventricular anchoring legs. The second portion is situated radially outward from the volume between the atrial anchoring arms and ventricular anchoring legs. The second portion is situated radially outward from the first portion. The first portion has a flexibility that varies from a radially inner end of the first portion to a radially outer end of the first portion. A diameter of an outer circumference defined by terminal ends of the ventricular anchoring legs is between 1.6 and 1.8 times larger than a diameter of an inner circumference of the annular valve body. The inner circumference of the annular valve body is defined by an inner surface of the annular valve body to which prosthetic leaflets are coupled. The atrial anchoring arms and ventricular anchoring legs are angularly offset from each other. At least one ventricular anchoring leg includes at least one curved portion. A radially inner-most portion of at least one atrial anchoring arm is configured to extend toward an atrium. The entire length of at least one ventricular anchoring leg is configured to extend toward an atrium. The annular valve body includes an atrial end, a ventricular end opposite the atrial end, and an intermediate portion extending between the atrial end and the ventricular end. The atrial anchoring arms and ventricular anchoring legs are configured to extend from the intermediate portion. The annular valve body includes an annular outer frame and an inner frame situated at least partially within the annular outer frame. The atrial anchoring arms extend from the inner frame and the ventricular anchoring legs extend from the annular outer frame. The atrial anchoring arms are configured to transition between a radially-contracted configuration and a radially-expanded configuration independent of the ventricular anchoring legs. The radially-contracted configuration is a delivery configuration and the radially-expanded configuration is a deployed configuration. The volume between the atrial anchoring arms and ventricular anchoring legs is greater when the annular valve body is configured in a radially-contracted configuration than when the annular valve body is configured in a radially-expanded configuration. The radially-contracted configuration is a delivery configuration and the radially-expanded configuration is a deployed configuration. The volume between the atrial anchoring arms and ventricular anchoring legs of the annular valve body decreases after the annular valve body radially expands.
Additional features and advantages of the disclosed embodiments will be set forth in part in the description that follows, and in part will be obvious from the description, or may be learned by practice of the disclosed embodiments. The features and advantages of the disclosed embodiments will be realized and attained by the elements and combinations particularly pointed out in the appended claims.
It is to be understood that both the foregoing general description and the following detailed description are examples and explanatory only and are not restrictive of the disclosed embodiments as claimed.
The accompanying drawings constitute a part of this specification. The drawings illustrate several embodiments of the present disclosure and, together with the description, serve to explain the principles of the disclosed embodiments as set forth in the accompanying claims.
Exemplary embodiments are described with reference to the accompanying drawings. In the figures, which are not necessarily drawn to scale, the left-most digit(s) of a reference number identifies the figure in which the reference number first appears. Wherever convenient, the same reference numbers are used throughout the drawings to refer to the same or like parts. While examples and features of disclosed principles are described herein, modifications, adaptations, and other implementations are possible without departing from the spirit and scope of the disclosed embodiments. Also, the words “comprising,” “having,” “containing,” and “including,” and other similar forms are intended to be equivalent in meaning and be open ended in that an item or items following any one of these words is not meant to be an exhaustive listing of such item or items, or meant to be limited to only the listed item or items. It should also be noted that as used in the present disclosure and in the appended claims, the singular forms “a,” “an,” and “the” include plural references unless the context clearly dictates otherwise.
In some embodiments of the present disclosure, an “atrial direction” may refer to a direction extending towards an atrium of the heart. For example, from a location within the left ventricle or the mitral valve, an atrial direction may refer to a direction extending towards the left atrium. Additionally, from a location within an atrium (e.g., the left atrium), an atrial direction may refer to a direction extending away from an adjacent atrioventricular valve (e.g., the mitral valve) and further into the atrium. For example, in
In some exemplary embodiments of the present disclosure, a “ventricular direction” may refer to a direction extending towards a ventricle of the heart. From a location within the left atrium or the mitral valve, a ventricular direction may refer to a direction extending towards the left ventricle. Additionally, from a location within a ventricle (e.g., the left ventricle), a ventricular direction may refer to a direction extending away from an adjacent atrioventricular valve (e.g., the mitral valve) and further into the ventricle. For example, in
Exemplary embodiments generally relate to prosthetic valves for implantation within a native valve and methods for implanting prosthetic valves within a native valve. In addition, exemplary embodiments generally relate to systems and methods for implantation of prosthetic valves by prosthetic valve delivery systems. While the present disclosure provides examples relating to prosthetic heart valves, and in particular prosthetic mitral valves, as well as delivery systems for prosthetic heart valves, it should be noted that aspects of the disclosure in their broadest sense are not limited to a prosthetic heart valve. Rather, the foregoing principles may be applied to other prosthetic valves as well. In various embodiments in accordance with the present disclosure, the term prosthetic valve refers generally to an implantable valve configured to restore and/or replace the functionality of a native valve, such as a diseased or otherwise impaired native heart valve.
An exemplary prosthetic valve may include a prosthetic valve configured to render a native valve structure non-functional, and may thus replace the function of the native valve. For example, an exemplary prosthetic valve may have a size and shape similar to the valve being replaced and may include a number of leaflet-like structures to regulate fluid flow and prevent backflow of blood through the valve. Additionally, or alternatively, an exemplary prosthetic valve may also include a prosthetic valve configured to leave the native valve structure intact and functional. An exemplary prosthetic valve may include a mitral valve, tricuspid valve, aortic valve, or pulmonary valve, as well as a valve outside of the heart, such as a venous valve, lymph node valve, ileocecal valve, or any other structure configured to control and/or regulate fluid flow in the body. An exemplary prosthetic valve may additionally or alternatively be configured to replace a failed bioprosthesis, such as a failed heart valve prosthesis.
Annular outer frame 1200 may include an outer frame tubular portion 1220, which may be formed of a plurality of struts intersecting at junctions to form a wire mesh, stent-like, or cage-like structure of the outer frame tubular portion 1220. Annular outer frame 1200 may also include at least one ventricular anchoring leg 1240, which may be configured to extend radially outward from the outer frame tubular portion and which may contact, or otherwise engage, tissue within or near the native valve to anchor the prosthetic valve within the native valve. In some embodiments, exemplary valve frame 1000 may include twelve ventricular anchoring legs 1240, which may be configured to engage ventricular tissue of a native atrioventricular valve.
Inner frame 1400 may include an inner frame tubular portion 1420, which may be formed of a plurality of struts intersecting at junctions to form a wire mesh, stent-like, or cage-like structure of the inner frame tubular portion 1420. Inner frame 1400 may also include at least one atrial anchoring arm 1440, which may be configured to extend radially outward from the inner frame tubular portion and which may contact, or otherwise engage, tissue within or near the native valve to anchor the prosthetic valve within the native valve. In some embodiments, exemplary valve frame 1000 may include twelve atrial anchoring arms 1440, which may be configured to engage atrial tissue of a native atrioventricular valve.
Outer frame tubular portion 1220 and inner frame tubular portion 1420 may together form an annular valve body 1020 of the prosthetic valve, which may have at least one opening and from which the ventricular anchoring legs 1240 and atrial anchoring arms 1440 may extend. Annular valve body 1020 may include an axial lumen 1022 extending through the annular valve body 1020 along a longitudinal axis 1800 of the prosthetic valve. In some embodiments, annular valve body 1020 may be configured to receive a flow control device, such as one or more prosthetic leaflets, within axial lumen 1022. Optionally, annular valve body 1020 may include one or more atrial end delivery posts 1027 along an atrial end (i.e., top end) of the annular valve body and/or one or more ventricular end delivery posts 1028 along a ventricular end (i.e., bottom end) of the annular valve body. Delivery posts 1027 and 1028 may be configured to removably engage a delivery device of the prosthetic valve, for example, to assist with placement of frame 1000 within or near a native valve.
Annular outer frame 2200 may include an outer frame tubular portion 3605, which may be formed of a plurality of struts intersecting at junctions to form a wire mesh, stent-like, or cage-like structure of the outer frame tubular portion 3605. For example, as illustrated in
Inner frame 2400 may include an inner frame tubular portion 3005, which may be formed of a plurality of struts intersecting at junctions to form a wire mesh, stent-like, or cage-like structure of the inner frame tubular portion 3005. For example, as illustrated in
Outer frame tubular portion 3605 and inner frame tubular portion 3005 may together form an annular valve body 2020 of the prosthetic valve, which may have at least one opening and from which the ventricular anchoring legs 2240 and atrial anchoring arms 2440 may extend. Annular valve body 2020 may include an axial lumen 2022 extending through the annular valve body 2020 along a longitudinal axis 2800 of the prosthetic valve. Annular valve body 2020 may have an atrial end 2024, a ventricular end 2025 opposite the atrial end, and an intermediate portion 2026 extending between the atrial and ventricular ends. In some embodiments, the atrial end may refer to the portion of the annular valve body configured to be situated at a location within the atrium that is furthest from an adjacent ventricle, when the prosthetic valve is implanted in a native valve. Similarly, the ventricular end may refer to the portion of the annular valve body configured to be situated at a location within the ventricle that is furthest from an adjacent atrim, when the prosthetic valve is implanted in a native valve. The intermediate portion 2026 may extend between the atrial end 2024 and ventricular end 2025. In some embodiments, annular valve body 2020 may include one or more ventricular end delivery posts 1028 along the ventricular end 2025 of the annular valve body. Axial lumen 2022 may include an inlet opening 2032 at the atrial end of the annular valve body, as well as an outlet opening 2036 at the ventricular end of the annular valve body.
In some embodiments, prosthetic valve 6000 may additionally include a protective sleeve 6102 wrapped around the rim 6800 of the ventricular outlet opening of annular valve body 2020; protective sleeve 6102 may be secured to annular valve body 2020 by stitching 6108. Additionally, or alternatively, prosthetic valve 6000 may include at least one liner 6310 extending around an external surface of the ventricular anchoring legs 2240, with at least one protective layer 6330 positioned around the distal leg ends 2244 and at least one protective covering 6320 wrapped around the proximal leg ends 3622. In some embodiments, the at least one protective covering 6320 may be secured to the skirt layer 6100 via stitching 6322.
Control handle assembly 7100 may include an outer sheath control handle 7120 having a steering knob 7122 configured to steer an outer sheath 7210 of the telescoping catheter assembly 7200. Control handle assembly 7100 may also include a guide catheter control handle 7140 having a steering knob 7142 configured to steer a guide catheter 7220 of the telescoping catheter assembly 7200.
Control handle assembly 7100 may also include an implant catheter control handle 7160 having a steering knob 7168 configured to steer an implant catheter 8100 of the telescoping catheter assembly 7200. Implant catheter control handle 7160 may also include a proximal capsule portion slider 7162, a distal capsule portion knob 7170, and a distal capsule portion knob lock 7172 configured to control release of the prosthetic valve 6000 from within delivery capsule 7300. Implant catheter control handle 7160 may also include a slide lock 7166 configured to lock the implant catheter control handle 7160 at a position within track 7420 of stand 7400.
Control handle assembly 7100 may also include a cradle 7180, which may be secured to stand 7400 via a locking mechanism that can be released by actuated of release button 7184. Cradle 7180 may include a rotation knob 7182 configured to control rotation of the outer sheath 7210 and guide catheter 7220. Cradle 7180 may also include a rotation knob 7186 configured to control rotation of the implant catheter 8100. Cradle 7180 may also include a knob 7188 configured to control relative axial movement between outer sheath control handle 7120 (which may be secured to outer sheath 7210) and guide catheter control handle 7140 (which may be secured to guide catheter 7220).
In the embodiment illustrated in
In
In
Various embodiments of the present disclosure relate to prosthetic valves. Prosthetic heart valve 6000, illustrated in
In some embodiments, an exemplary prosthetic valve may be configured for implantation within a native atrioventricular valve and may regulate blood flow between the atrium and ventricle. For example, prosthetic heart valve 6000 illustrated in
An exemplary prosthetic valve in accordance with the present disclosure may include an annular valve body. The term “annular” may mean “ring-shaped” and may denote a structure having at least one opening therein. The at least one opening may extend longitudinally along the entire length of the annular valve body. For example, annular valve body 2020 illustrated in
In some embodiments, the annular valve body may be configured to have a smaller diameter, when fully-expanded, than the diameter of the orifice of the native valve. In such embodiments, the annular valve body may be anchored in the native valve by anchoring structures, such as atrial anchoring arms 2440 and/or ventricular anchoring legs 2240. Alternatively, the annular valve body may be configured to expand to an equal or greater diameter than the diameter of the native valve orifice such that the annular valve body is anchored within the native valve due to a pressure fit or friction fit with the native valve tissue. In such embodiments, the prosthetic valve may also include tissue anchors to further secure the prosthetic valve at the implantation site. In some embodiments, the annular valve body may be configured to receive and retain a flow control device, such as one or more leaflets, within the opening thereof. For example, the flow control device (e.g., leaflets) may be secured directly to the annular valve body and/or to an additional structure that is in turn secured to the annular valve body. For example, prosthetic heart valve 6000, illustrated in
The annular valve body may have a circular, oval-shaped, elliptical, or D-shaped cross-section and may be symmetrical about at least one axis. Alternatively, the annular valve body may have any suitable cross-sectional shape with at least one opening. In some embodiments, the annular valve body may be cylindrical, with a substantially constant diameter along the entire length. Alternatively, the annular valve body may have a variable diameter at different portions (e.g., at different longitudinal portions). For example, as illustrated in
In some embodiments, the exemplary annular valve body may include a plurality of supporting members or struts. In some embodiments, the struts may intersect at junctions to form a wire mesh, stent-like, or cage-like structure of the annular valve body. In some embodiments, the struts of the annular valve body may be made of metals or alloys such as Nitinol. In some embodiments, the struts of the annular valve body may meet or intersect at junctions of the annular valve body. For example, as illustrated in
In some embodiments, the prosthetic valve may include a plurality (that is, one or more) of atrial anchoring arms. In some embodiments, the exemplary prosthetic valve may include two atrial anchoring arms, three atrial anchoring arms, four atrial anchoring arms, five atrial anchoring arms, six atrial anchoring arms, seven atrial anchoring arms, eight atrial anchoring arms, nine atrial anchoring arms, ten atrial anchoring arms, eleven atrial anchoring arms, twelve atrial anchoring arms, thirteen atrial anchoring arms, fourteen atrial anchoring arms, fifteen atrial anchoring arms, sixteen atrial anchoring arms, seventeen atrial anchoring arms, eighteen atrial anchoring arms, nineteen atrial anchoring arms, twenty atrial anchoring arms, or any other suitable number of atrial anchoring arms. For example, exemplary prosthetic valve 6000 in
In some embodiments, the prosthetic valve may include a plurality of atrial anchoring arms configured to engage atrial tissue of the native mitral valve to anchor the prosthetic valve. In reference to the atrial anchoring arms, the term “proximal” refers to a portion of a respective atrial anchoring arm in closest proximity to the prosthetic valve and may, in some embodiments, include a point of connection between the atrial anchoring arm and the prosthetic valve. The term “distal” refers to a portion of the atrial anchoring arm furthest from the point of connection between the atrial anchoring arm and the prosthetic valve. In some embodiments, the atrial anchoring arms may be configured to extend radially outward from the prosthetic valve such that the distal arm ends may be the radially outer-most portions of the atrial anchoring arms, with reference to the longitudinal axis of the prosthetic valve. For example, in
In some embodiments, the atrial anchoring arms may be configured to extend radially outward from an annular valve body of the exemplary prosthetic valve. As used herewith, the term “radially outward” may mean in a direction away from the center of the prosthetic valve (that is, from the longitudinal axis of the prosthetic valve). By way of example in
In some embodiments, the locations of connection between the atrial anchoring arms and annular valve body may be spaced at a regular interval about a circumference of the annular valve body. For example, in
In some embodiments, one or more atrial anchoring arms may extend from the atrial end of the valve body (that is, a portion of the valve body configured to be situated at a location within the atrium that is furthest from the adjacent ventricle). In some alternative embodiments, one or more atrial anchoring arms may extend from the ventricular end of the valve body (that is, a portion of the valve body configured to be situated at a location within the ventricle that is furthest from the adjacent atrium). In some further alternative embodiments, one or more atrial anchoring arms may extend from an intermediate portion of the valve body, the intermediate portion of the valve body constituting the portions of the valve body positioned between the atrial and ventricular ends of the valve body. For example, one or more exemplary atrial anchoring arms 2440 depicted in
Exemplary atrial anchoring arms may be configured to anchor the prosthetic valve at the implantation site, such as within or near a native heart valve. In some embodiments, the atrial anchoring arms may be configured to be positioned at least partially within an atrium upon implantation of the prosthetic valve, and to engage atrial tissue of a native atrioventricular valve (e.g., a mitral valve) to anchor the prosthetic valve. As used herewith, the term “engage” may mean to be in contact with. For example,
In some embodiments, the prosthetic valve may include a plurality (one or more) of ventricular anchoring legs. In some embodiments, the exemplary prosthetic valve may include two ventricular anchoring legs, three ventricular anchoring legs, four ventricular anchoring legs, five ventricular anchoring legs, six ventricular anchoring legs, seven ventricular anchoring legs, eight ventricular anchoring legs, nine ventricular anchoring legs, ten ventricular anchoring legs, eleven ventricular anchoring legs, twelve ventricular anchoring legs, thirteen ventricular anchoring legs, fourteen ventricular anchoring legs, fifteen ventricular anchoring legs, sixteen ventricular anchoring legs, seventeen ventricular anchoring legs, eighteen ventricular anchoring legs, nineteen ventricular anchoring legs, twenty ventricular anchoring legs, or any other suitable number of ventricular anchoring legs. For example, exemplary prosthetic valve 6000 in
In some embodiments, the prosthetic valve may include a plurality of ventricular anchoring legs configured to engage ventricular tissue of the native mitral valve to anchor the prosthetic valve. In reference to the ventricular anchoring legs, the term “proximal” refers to a portion of a respective ventricular anchoring leg in closest proximity to the prosthetic valve and may, in some embodiments, include a point of connection between the ventricular anchoring leg and the prosthetic valve. The term “distal” refers to a portion of the ventricular anchoring leg furthest from the point of connection between the ventricular anchoring leg and the prosthetic valve. In embodiments, the ventricular anchoring legs may be configured to extend radially outward from the prosthetic valve such that the distal leg ends may be the radially outer-most portions of the ventricular anchoring legs, with reference to the longitudinal axis of the prosthetic valve. For example, in
In some embodiments, the ventricular anchoring legs may be configured to extend radially outward from an annular valve body of the exemplary prosthetic valve. As used herewith, the term “radially outward” may mean in a direction away from the center of the prosthetic valve (that is, from the longitudinal axis of the prosthetic valve). By way of example in
In some embodiments, the locations of connection between the ventricular anchoring legs and annular valve body may be spaced at a regular interval about a circumference of the annular valve body. For example, in
In some embodiments, one or more ventricular anchoring legs may extend from the atrial end of the valve body (that is, a portion of the valve body configured to be situated at a location within the atrium that is furthest from the adjacent ventricle). In some alternative embodiments, one or more ventricular anchoring legs may extend from the ventricular end of the valve body (that is, a portion of the valve body configured to be situated at a location within the ventricle that is furthest from the adjacent atrium). In some further alternative embodiments, one or more ventricular anchoring legs may extend from an intermediate portion of the valve body, the intermediate portion of the valve body constituting the portions of the valve body positioned between the atrial and ventricular ends of the valve body. For example, exemplary ventricular anchoring legs 2240 depicted in
Exemplary ventricular anchoring legs may be configured to anchor the prosthetic valve at the implantation site, such as within or near a native heart valve. In some embodiments, the ventricular anchoring legs may be configured to be positioned at least partially within an atrium upon implantation of the prosthetic valve, and to engage atrial tissue of a native atrioventricular valve (e.g., a mitral valve) to anchor the prosthetic valve. As used herewith, the term “engage” may mean to be in contact with. For example,
According to embodiments in which an exemplary prosthetic valve includes both atrial anchoring arms and ventricular anchoring legs, the valve may include the same number of atrial anchoring arms and ventricular anchoring legs. For example, exemplary prosthetic valve 6000 may include twelve atrial anchoring arms 2440 and twelve ventricular anchoring legs 2200. Alternatively, the valve may include more atrial anchoring arms than ventricular anchoring legs. Alternatively, the valve may include fewer atrial anchoring arms than ventricular anchoring legs.
In some embodiments, exemplary atrial anchoring arms of the prosthetic valve may extend radially from the annular valve body within the atrium while the annular valve body remains contracted. For example, as shown in
In some embodiments, exemplary ventricular anchoring legs may extend radially from the annular valve body within the ventricle while the annular valve body remains contracted. For example, as shown in
In some embodiments, when the atrial anchoring arms and ventricular anchoring legs engage the native mitral valve, a volume may be formed between the atrial anchoring arms and ventricular anchoring legs. The volume may be a three-dimensional space formed between some or all of the plurality of atrial anchoring arms and the ventricular anchoring legs, such as when the atrial anchoring arms and ventricular anchoring legs are in a radially-expanded configuration. The volume may be annular or ring-shaped when formed between all of the plurality of atrial anchoring arms and ventricular anchoring legs. By way of example,
In some embodiments, the annular valve body, atrial anchoring arms, and ventricular anchoring legs may be configured to radially expand independently of the other components of the prosthetic valve. For example, as depicted in
In an exemplary method of deploying the prosthetic valve in a native mitral valve, the ventricular anchoring legs may be released and may deflect radially outward while the atrial anchoring arms and annular valve body remain in a radially-contracted configuration (e.g., within a delivery device, such as exemplary delivery capsule 7300). For example, as shown in
The atrial anchoring arms may then be deployed, thus retaining the tissue between the atrial anchoring arms and the ventricular anchoring legs. For example, as depicted in
In some embodiments, the volume formed between the atrial anchoring arms and ventricular anchoring legs may be substantially filled with tissue due, at least in part, to the small axial distance between the arms and legs when the annular valve body is radially expanded. For example, in some embodiments the expansion of the annular valve body may decrease the distance between the atrial anchoring arms and the ventricular anchoring legs such that the distal end of at least one leg may extend in an atrial direction beyond a portion of the arms. As shown in
In some embodiments, the substantial filling of the volume between the atrial anchoring arms and ventricular anchoring legs with tissue may refer to the volume being substantially devoid of gaps when the annular valve body is expanded. As used herein, the term “gap” can be defined as an unfilled space; it may include, for example, a space between the atrial anchoring arms and ventricular anchoring legs not filled by native valve tissue.
In some embodiments, the exemplary volume between the atrial anchoring arms and ventricular anchoring legs may be formed between an outer surface of the annular valve body, one or more surfaces of the ventricular anchoring legs, and one or more surfaces of the atrial anchoring arms. That is, the exemplary volume may be bounded by the outer surface of the annular valve body, the one or more surfaces of the ventricular anchoring legs, and the one or more surfaces of the atrial anchoring arms. In some embodiments, the one or more surfaces of the ventricular anchoring legs may face an atrium when the prosthetic valve is implanted within a native atrioventricular valve (e.g., a native mitral valve). Additionally, or alternatively, the one or more surfaces of the atrial anchoring arms may face a ventricle when the prosthetic valve is implanted within a native atrioventricular valve (e.g., a native mitral valve). The exemplary volume may be formed by the outer surface of the valve body, and the aforementioned surfaces of the plurality of arms and ventricular anchoring legs, resulting in the volume having an annular shape around the central axis of the valve. By way of example as shown in
As described above, in some embodiments of the exemplary prosthetic valve, at least a portion of an atrial anchoring arm and at least a portion of a ventricular anchoring leg are configured to be aligned in a common lateral plane (that is, in a plane that is perpendicular to the longitudinal axis of the prosthetic valve). That is, a portion of an atrial anchoring arm and a portion of a ventricular anchoring leg may be arranged at the same axial position relative to the longitudinal axis of the exemplary prosthetic valve. In some embodiments, the portions of the atrial anchoring arm and ventricular anchoring leg may be configured to be aligned in a common lateral plane when the prosthetic valve is in a radially-expanded configuration. That is, the portions of the atrial anchoring arm and ventricular anchoring leg may be configured to be aligned in a plane that is perpendicular to the longitudinal axis of the prosthetic valve. By way of example in
In some embodiments of an exemplary prosthetic valve, a circumference about the longitudinal axis may be formed by the overlapping portions of the ventricular anchoring legs and atrial anchoring arms. For example, the aforementioned portions of the ventricular anchoring legs may be positioned an equal distance from the longitudinal axis as are the aforementioned portions of the atrial anchoring arms. Additionally, or alternatively, the overlapping portions of the atrial anchoring arms and ventricular anchoring legs may be positioned at a common height of the prosthetic valve (that is, may be positioned in a plane perpendicular to the longitudinal axis). As a result, a circumference may be drawn about the annular valve body which may pass through the overlapping portions of the atrial anchoring arms and ventricular anchoring leg. In some embodiments, this circumference may form a radially outer boundary of the volume between the atrial anchoring arms and the ventricular anchoring legs. For example, as can be seen in
In some embodiments, at least one atrial anchoring arm of the exemplary prosthetic valve may include at least a first portion configured to extend towards a ventricle (that is, in a ventricular direction) and at least a second portion configured to extend toward an atrium (that is, in an atrial direction). In some embodiments, the first and second portions of the at least one atrial anchoring arm may be so configured when the at least one atrial anchoring arm is in a radially-expanded configuration (for example, as depicted in
In some embodiments, the first portion of the at least one atrial anchoring arm may be configured to form a boundary of the volume between the atrial anchoring arms and the ventricular anchoring legs. That is, the exemplary volume may be bounded, in part, by the first portion of the at least one atrial anchoring arm. This can be seen in an exemplary valve as shown in
In some embodiments, at least a portion of the exemplary second portion of the at least one atrial anchoring arm may be situated radially outward from the volume between the atrial anchoring arms and ventricular anchoring legs. That is, at least a portion of the exemplary second portion may not form part of the boundary of the volume, and may instead be positioned radially outward from the volume, relative to the longitudinal axis of the prosthetic valve. In some embodiments, the entirety of the second portion of the at least one atrial anchoring arm may be situated radially outward from the volume. By way of example in
In some embodiments, the exemplary second portion of the at least one atrial anchoring arm may be configured to be situated radially outward from the exemplary first portion of the at least one atrial anchoring arm. For example, the first and second portions may be so configured when the at least one atrial anchoring arm is in a radially-expanded configuration. In some embodiments, the first portion may be immediately adjacent to the second portion. In the example depicted in
In some embodiments, the exemplary first portion of the atrial anchoring arm may have a flexibility which may vary between the radially inner end of the first portion (that is, the proximal end of the first portion) and a radially outer end of the first portion (that is, the distal end of the first portion). In some embodiments, the radially inner end of the first portion may be more flexible than the radially outer end of the first portion. Alternatively, the radially inner end of the first portion may be less flexible than the radially outer end of the first portion. In some embodiments, the variable flexibility along the first portion of the at least one atrial anchoring arm may be due, at least in part, to different structural configurations at the radially inner and outer ends of the first portion. For example, atrial anchoring arm 2440 illustrated in
In some embodiments, a prosthetic valve may be configured such that when a plurality of ventricular anchoring legs extend radially outward form the annular valve body, a shape formed by the terminal ends of the legs may constitute a circular outer circumference. For example, as depicted in
In some embodiments, a prosthetic valve may be configured such that the inner circumference of the annular valve body may be defined by an inner surface of the annular valve body to which one or more prosthetic leaflets may be coupled.
In some embodiments, the inner surface of the annular valve body may surround a central lumen of the annular valve body. In some embodiments, the one or more prosthetic leaflets may be coupled directly to the inner surface of the annular valve body, such as by stitching, adhesive, or other known coupling mechanisms. Additionally, or alternatively, the one or more prosthetic leaflets may be directly coupled to an intervening feature (e.g., a liner situated in the central lumen of the annular valve body) which may in turn be coupled directly to the inner surface of the annular valve body. For example,
In some embodiments, the atrial anchoring arms and ventricular anchoring legs may be angularly offset from each other, relative to the longitudinal axis of the prosthetic valve. That is, the atrial anchoring arms and ventricular anchoring legs may be situated at different positions about the circumference of the annular valve body. In some embodiments, the atrial anchoring arms and ventricular anchoring legs may be spaced at a regular interval about the circumference of the annular valve body. Alternatively, the atrial anchoring arms and ventricular anchoring legs may be spaced in a different pattern about the circumference of the annular valve body. Advantageously, the angular offset between the atrial anchoring arms and ventricular anchoring legs may prevent the arms and legs from contacting, damaging, or otherwise hindering the movement or functionality of the other. The angular offset may also allow the arrangement discussed above in reference to
In some embodiments, a prosthetic valve with a plurality of ventricular anchoring legs may have at least one ventricular anchoring leg that may include at least one curved portion. The term “curved” as used herewith, denotes a ventricular anchoring leg that is curved or bent, and is not limited in the direction or degree of curvature. For example, the ventricular anchoring leg may curve towards the central axis of the valve, or it may curve away. In some embodiments, the at least one ventricular anchoring leg may include two or more curved portions. The two or more curved portions may face in the same direction (e.g., in a direction facing radially-inward) or may face in different directions. An example of an exemplary ventricular anchoring leg 2240 may be shown in
In some embodiments, an exemplary prosthetic valve with a plurality of atrial anchoring arms may include at least one atrial anchoring arm, the radially inner-most portion of which may be configured to extend towards an atrium (that is, in an atrial direction). The radially inner-most potion of the at least one atrial anchoring arm may refer to the proximal end of the arm, that is, to the end of the arm immediately adjacent to the location of connection between the arm and the annular valve body. In some exemplary embodiments, the radially inner-most portion of the at least one atrial anchoring arm may be configured to extend towards the atrium in a direction parallel to the longitudinal axis of the prosthetic valve. Additionally, or alternatively, the radially inner-most portion of the at least one atrial anchoring arm may be configured to extend towards the atrium in a direction which is not parallel to the longitudinal axis of the prosthetic valve. In some embodiments, the inner-most portion of the at least one atrial anchoring arm may be configured to extend towards the atrium when the arm is in a radially-contracted configuration. For example, as depicted in
In some embodiments, an exemplary prosthetic valve with a plurality (that is, one or more) of ventricular anchoring legs may include at least one ventricular anchoring leg for which the entire length of the ventricular anchoring leg may be configured to extend toward an atrium (that is, in an atrial direction). In some embodiments, the entire length of the ventricular anchoring leg may be configured to extend toward an atrium when the leg is in a radially-contracted configuration. For example, as depicted in
In some embodiments, the exemplary annular valve body may include an atrial end. In some embodiments, the term atrial end may refer to a portion of a feature of the annular valve body configured to be situated closest to an atrium of the heart when the feature is positioned outside of the atrium. Additionally, or alternatively, the term atrial end may refer to a portion of a feature of the annular valve body configured to be situated at a location within the atrium that is furthest from an adjacent ventricle. For example, as depicted in
In some embodiments, the exemplary valve body may include both an atrial end and a ventricular end opposite the atrial end. That is, the ventricular end of the valve body may be situated at a portion of the valve body that is furthest from and opposite of the atrial end of the valve body, with respect to a longitudinal axis of the valve body. In some embodiments, the exemplary valve body may include an intermediate portion extending between the atrial and ventricular ends of the valve body. In some embodiments, the intermediate portion may constitute every portion of the valve body situated in between the atrial and ventricular ends of the valve body. For example, as depicted in
According to exemplary embodiments, the annular valve body may include one or more frames. In some embodiments, the annular valve body may include an outer frame and an inner frame situated at least partially within the outer frame. The outer frame may be annular, and the inner frame may be positioned within an opening of the outer frame. In some embodiments, the inner and outer frames of the annular valve body may include a stent-like tubular portion constructed of a plurality of struts intersecting at junctions to form a lattice or overlapping pattern. For example, in
In some embodiments in which a prosthetic valve may have an annular valve body that may include an annular outer frame and an inner frame situated at least partially within the annular outer frame, the atrial anchoring arms may extend from the inner frame and the ventricular anchoring legs may extend from the annular outer frame. In some exemplary embodiments, the atrial anchoring arms may be physically connected to the inner frame, such as by welding or adhesive. In some alternative embodiments, the atrial anchoring arms may be integrally formed with the inner frame. Similarly, in some exemplary embodiments, the ventricular anchoring legs may be physically connected to the annular outer frame, such as by welding or adhesive. In some alternative embodiments, the ventricular anchoring legs may be integrally formed with the annular outer frame. By an example shown in
In some embodiments, the exemplary prosthetic valve may be configured for radial expansion, such as between a radially-contracted configuration (e.g., a crimped state) and a radially-expanded configuration. In some embodiments, an exemplary prosthetic valve may be configured to be radially contracted into the radially-contracted configuration for introduction to the implantation site, such as on or within a delivery device. Accordingly, in some embodiments the radially-contracted configuration may also be a delivery configuration, in which the prosthetic valve may be arranged for delivery to the implantation site. Once at or near the implantation site, the prosthetic valve may be radially expanded to a radially-expanded configuration, in which the prosthetic valve may be anchored at the implantation site. Accordingly, in some embodiments the radially-expanded configuration may also be a deployed configuration, in which the prosthetic valve may be released from the delivery tool and seated at the implantation site.
In some embodiments, the transition of the prosthetic valve between a radially-contracted configuration and a radially-expanded configuration may include transition of the atrial anchoring arms between a radially-contracted configuration and a radially-expanded configuration. The ventricular anchoring legs may also be configured to transition between a radially-contracted configuration and a radially-expanded configuration. In some embodiments, expansion or contraction of the atrial anchoring arms between the radially-contracted and radially-expanded configurations thereof may be independent of the expansion or contraction of the ventricular anchoring legs between the radially-contracted and radially-expanded configurations thereof. For example, the atrial anchoring arms may be in a radially-contracted configuration while the ventricular anchoring legs may be in a radially-expanded configuration. In some other embodiments, the atrial anchoring arms may be in a radially-contracted configuration while the ventricular anchoring legs are also in a radially-contracted configuration. Similarly, there may be embodiments when the atrial anchoring arms are in a radially-expanded configuration while the ventricular anchoring legs may be in a radially-contracted or a radially-expanded configuration.
In some embodiments, the annular valve body may be configured in a radially-contracted configuration while the atrial anchoring arms and ventricular anchoring legs are configured in a radially-expanded configuration. A volume may be formed between the atrial anchoring arms and ventricular anchoring legs in such a configuration. For example, as depicted in
The foregoing description has been presented for purposes of illustration. It is not exhaustive and is not limited to precise forms or embodiments disclosed. Modifications and adaptations of the embodiments will be apparent from consideration of the specification and practice of the disclosed embodiments. For example, while certain components have been described as being coupled to one another, such components may be integrated with one another or distributed in any suitable fashion.
Moreover, while illustrative embodiments have been described herein, the scope includes any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments), adaptations and/or alterations based on the present disclosure. The elements in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application, which examples are to be construed as nonexclusive. Further, the steps of the disclosed methods can be modified in any manner, including reordering steps and/or inserting or deleting steps.
The features and advantages of the disclosure are apparent from the detailed specification, and thus, it is intended that the appended claims cover all systems and methods falling within the true spirit and scope of the disclosure. As used herein, the indefinite articles “a” and “an” mean “one or more.” Similarly, the use of a plural term does not necessarily denote a plurality unless it is unambiguous in the given context. Words such as “and” or “or” mean “and/or” unless specifically directed otherwise. Further, since numerous modifications and variations will readily occur from studying the present disclosure, it is not desired to limit the disclosure to the exact construction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the disclosure.
Other embodiments will be apparent from consideration of the specification and practice of the embodiments disclosed herein. It is intended that the specification and examples be considered as example only, with a true scope and spirit of the disclosed embodiments being indicated by the following claims.
This application claims priority from U.S. Provisional Patent Application No. 62/560,384, filed Sep. 19, 2017, which is hereby incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
3874388 | King et al. | Apr 1975 | A |
4222126 | Boretos et al. | Sep 1980 | A |
4340091 | Skelton et al. | Jul 1982 | A |
4972494 | White et al. | Nov 1990 | A |
5716417 | Girard et al. | Feb 1998 | A |
5741297 | Simon | Apr 1998 | A |
5776140 | Cottone | Jul 1998 | A |
5957949 | Leonhardt et al. | Sep 1999 | A |
6010530 | Goicoechea | Jan 2000 | A |
6165183 | Kuehn et al. | Dec 2000 | A |
6254609 | Vrba et al. | Jul 2001 | B1 |
6312465 | Griffin et al. | Nov 2001 | B1 |
6346074 | Roth | Feb 2002 | B1 |
6402780 | Williamson, IV et al. | Jun 2002 | B2 |
6458153 | Bailey et al. | Oct 2002 | B1 |
6669724 | Park et al. | Dec 2003 | B2 |
6733525 | Yang et al. | May 2004 | B2 |
6752813 | Goldfarb et al. | Jun 2004 | B2 |
6755857 | Peterson et al. | Jun 2004 | B2 |
6926715 | Hauck et al. | Aug 2005 | B1 |
7074236 | Rabkin et al. | Jul 2006 | B2 |
7201772 | Schwammenthal et al. | Apr 2007 | B2 |
7226467 | Lucatero et al. | Jun 2007 | B2 |
7288097 | Séguin | Oct 2007 | B2 |
7442204 | Schwammenthal et al. | Oct 2008 | B2 |
7556632 | Zadno | Jul 2009 | B2 |
7563267 | Goldfarb et al. | Jul 2009 | B2 |
7563273 | Goldfarb et al. | Jul 2009 | B2 |
7608091 | Goldfarb et al. | Oct 2009 | B2 |
7635329 | Goldfarb et al. | Dec 2009 | B2 |
7655015 | Goldfarb et al. | Feb 2010 | B2 |
7736388 | Goldfarb et al. | Jun 2010 | B2 |
7811296 | Goldfarb et al. | Oct 2010 | B2 |
7837727 | Goetz et al. | Nov 2010 | B2 |
7959672 | Salahieh et al. | Jun 2011 | B2 |
8052592 | Goldfarb et al. | Nov 2011 | B2 |
8057493 | Goldfarb et al. | Nov 2011 | B2 |
D652927 | Braido et al. | Jan 2012 | S |
D653341 | Braido et al. | Jan 2012 | S |
8109996 | Stacchino et al. | Feb 2012 | B2 |
D660433 | Braido et al. | May 2012 | S |
D660967 | Braido et al. | May 2012 | S |
8216256 | Raschdorf, Jr. et al. | Jul 2012 | B2 |
8313525 | Tuval et al. | Nov 2012 | B2 |
8403983 | Quadri et al. | Mar 2013 | B2 |
8414644 | Quadri et al. | Apr 2013 | B2 |
8449599 | Chau et al. | May 2013 | B2 |
8562672 | Bonhoeffer et al. | Oct 2013 | B2 |
8568475 | Nguyen et al. | Oct 2013 | B2 |
8579964 | Lane et al. | Nov 2013 | B2 |
8585755 | Chau et al. | Nov 2013 | B2 |
8628571 | Hacohen et al. | Jan 2014 | B1 |
8652203 | Quadri et al. | Feb 2014 | B2 |
8657872 | Seguin | Feb 2014 | B2 |
8728155 | Montorfano et al. | May 2014 | B2 |
8747460 | Tuval et al. | Jun 2014 | B2 |
8784481 | Alkhatib et al. | Jul 2014 | B2 |
8852272 | Gross et al. | Oct 2014 | B2 |
8870948 | Erzberger et al. | Oct 2014 | B1 |
8870950 | Hacohen | Oct 2014 | B2 |
8961595 | Alkhatib | Feb 2015 | B2 |
8986375 | Garde et al. | Mar 2015 | B2 |
8992604 | Hacohen et al. | Mar 2015 | B2 |
8998982 | Richter et al. | Apr 2015 | B2 |
9017399 | Hacohen et al. | Apr 2015 | B2 |
D730520 | Braido et al. | May 2015 | S |
D730521 | Braido et al. | May 2015 | S |
9023100 | Quadri et al. | May 2015 | B2 |
D732666 | Nguyen et al. | Jun 2015 | S |
9050188 | Schweich, Jr. et al. | Jun 2015 | B2 |
9060858 | Thornton et al. | Jun 2015 | B2 |
9072603 | Tuval et al. | Jul 2015 | B2 |
9095434 | Rowe | Aug 2015 | B2 |
9125740 | Morriss et al. | Sep 2015 | B2 |
9132009 | Hacohen et al. | Sep 2015 | B2 |
9173659 | Bodewadt et al. | Nov 2015 | B2 |
9232995 | Kovalsky et al. | Jan 2016 | B2 |
9241790 | Lane et al. | Jan 2016 | B2 |
9241791 | Braido et al. | Jan 2016 | B2 |
9241792 | Benichou et al. | Jan 2016 | B2 |
9248014 | Lane et al. | Feb 2016 | B2 |
9295551 | Straubinger et al. | Mar 2016 | B2 |
9295552 | McLean et al. | Mar 2016 | B2 |
9320591 | Bolduc | Apr 2016 | B2 |
D755384 | Pesce et al. | May 2016 | S |
9345573 | Nyuli et al. | May 2016 | B2 |
9387078 | Gross et al. | Jul 2016 | B2 |
9393110 | Levi et al. | Jul 2016 | B2 |
9439757 | Wallace et al. | Sep 2016 | B2 |
9445893 | Vaturi | Sep 2016 | B2 |
9463102 | Kelly | Oct 2016 | B2 |
9492273 | Wallace et al. | Nov 2016 | B2 |
9532870 | Cooper et al. | Jan 2017 | B2 |
9554897 | Lane et al. | Jan 2017 | B2 |
9554899 | Granada et al. | Jan 2017 | B2 |
9561103 | Granada et al. | Feb 2017 | B2 |
9566152 | Schweich, Jr. et al. | Feb 2017 | B2 |
9572665 | Lane et al. | Feb 2017 | B2 |
9597182 | Straubinger et al. | Mar 2017 | B2 |
9629716 | Seguin | Apr 2017 | B2 |
9662203 | Sheahan et al. | May 2017 | B2 |
9681952 | Hacohen et al. | Jun 2017 | B2 |
9717591 | Chau et al. | Aug 2017 | B2 |
9763657 | Hacohen et al. | Sep 2017 | B2 |
9770256 | Cohen et al. | Sep 2017 | B2 |
D800908 | Hariton et al. | Oct 2017 | S |
9788941 | Hacohen | Oct 2017 | B2 |
9974651 | Hariton et al. | May 2018 | B2 |
10010414 | Cooper et al. | Jul 2018 | B2 |
10076415 | Metchik et al. | Sep 2018 | B1 |
10105222 | Metchik et al. | Oct 2018 | B1 |
10111751 | Metchik et al. | Oct 2018 | B1 |
10123873 | Metchik et al. | Nov 2018 | B1 |
10130475 | Metchik et al. | Nov 2018 | B1 |
10136993 | Metchik et al. | Nov 2018 | B1 |
10143552 | Wallace et al. | Dec 2018 | B2 |
10149761 | Granada et al. | Dec 2018 | B2 |
10154906 | Granada et al. | Dec 2018 | B2 |
10159570 | Metchik et al. | Dec 2018 | B1 |
10182908 | Tubishevitz et al. | Jan 2019 | B2 |
10226341 | Gross et al. | Mar 2019 | B2 |
10231837 | Metchik et al. | Mar 2019 | B1 |
10238493 | Metchik et al. | Mar 2019 | B1 |
10245143 | Gross et al. | Apr 2019 | B2 |
10245144 | Metchik et al. | Apr 2019 | B1 |
10299927 | McLean et al. | May 2019 | B2 |
10321995 | Christianson et al. | Jun 2019 | B1 |
10322020 | Lam et al. | Jun 2019 | B2 |
10327895 | Lozonschi et al. | Jun 2019 | B2 |
10335278 | McLean et al. | Jul 2019 | B2 |
10357360 | Hariton et al. | Jul 2019 | B2 |
10376361 | Gross et al. | Aug 2019 | B2 |
10390952 | Hariton et al. | Aug 2019 | B2 |
10426610 | Hariton et al. | Oct 2019 | B2 |
10463487 | Hariton et al. | Nov 2019 | B2 |
10463488 | Hariton et al. | Nov 2019 | B2 |
10507105 | Hariton et al. | Dec 2019 | B2 |
10507108 | Delgado et al. | Dec 2019 | B2 |
10507109 | Metchik et al. | Dec 2019 | B2 |
10524792 | Hernandez et al. | Jan 2020 | B2 |
10524903 | Hariton et al. | Jan 2020 | B2 |
10531872 | Hacohen et al. | Jan 2020 | B2 |
10548731 | Lashinski et al. | Feb 2020 | B2 |
10575948 | Iamberger et al. | Mar 2020 | B2 |
10595992 | Chambers | Mar 2020 | B2 |
10595997 | Metchik et al. | Mar 2020 | B2 |
10646342 | Marr et al. | May 2020 | B1 |
10667908 | Hariton et al. | Jun 2020 | B2 |
10682227 | Hariton et al. | Jun 2020 | B2 |
10695177 | Hariton et al. | Jun 2020 | B2 |
10722360 | Hariton et al. | Jul 2020 | B2 |
10758342 | Chau et al. | Sep 2020 | B2 |
10758344 | Hariton et al. | Sep 2020 | B2 |
10799345 | Hariton et al. | Oct 2020 | B2 |
10813760 | Metchik et al. | Oct 2020 | B2 |
10820998 | Marr et al. | Nov 2020 | B2 |
10849748 | Hariton et al. | Dec 2020 | B2 |
10856972 | Hariton et al. | Dec 2020 | B2 |
10856975 | Hariton et al. | Dec 2020 | B2 |
10856978 | Straubinger et al. | Dec 2020 | B2 |
10864078 | Hariton et al. | Dec 2020 | B2 |
10881511 | Hariton et al. | Jan 2021 | B2 |
10888422 | Hariton et al. | Jan 2021 | B2 |
10905548 | Hariton et al. | Feb 2021 | B2 |
10905549 | Hariton et al. | Feb 2021 | B2 |
10905554 | Cao | Feb 2021 | B2 |
10925595 | Hacohen et al. | Feb 2021 | B2 |
20010021872 | Bailey et al. | Sep 2001 | A1 |
20020013571 | Goldfarb et al. | Jan 2002 | A1 |
20020032481 | Gabbay | Mar 2002 | A1 |
20030050694 | Yang et al. | Mar 2003 | A1 |
20040030382 | St. Goar et al. | Feb 2004 | A1 |
20040186558 | Pavcnik et al. | Sep 2004 | A1 |
20040210304 | Seguin et al. | Oct 2004 | A1 |
20040236354 | Seguin | Nov 2004 | A1 |
20040249433 | Freitag | Dec 2004 | A1 |
20050080474 | Andreas et al. | Apr 2005 | A1 |
20050085900 | Case et al. | Apr 2005 | A1 |
20050137681 | Shoemaker et al. | Jun 2005 | A1 |
20050137697 | Salahieh et al. | Jun 2005 | A1 |
20050203618 | Sharkawy et al. | Sep 2005 | A1 |
20050240200 | Bergheim | Oct 2005 | A1 |
20060004469 | Sokel | Jan 2006 | A1 |
20060020275 | Goldfarb et al. | Jan 2006 | A1 |
20060020327 | Lashinski et al. | Jan 2006 | A1 |
20060052867 | Revuelta et al. | Mar 2006 | A1 |
20060149360 | Schwammenthal | Jul 2006 | A1 |
20060184203 | Martin et al. | Aug 2006 | A1 |
20060195183 | Navia et al. | Aug 2006 | A1 |
20060216404 | Seyler et al. | Sep 2006 | A1 |
20060229708 | Powell et al. | Oct 2006 | A1 |
20060259137 | Artof et al. | Nov 2006 | A1 |
20070038293 | St. Goar et al. | Feb 2007 | A1 |
20070056346 | Spenser et al. | Mar 2007 | A1 |
20070007851 | Ryan | Apr 2007 | A1 |
20070197858 | Goldfarb et al. | Aug 2007 | A1 |
20070198077 | Cully et al. | Aug 2007 | A1 |
20070213810 | Newhauser et al. | Sep 2007 | A1 |
20070219630 | Chu | Sep 2007 | A1 |
20070239273 | Allen | Oct 2007 | A1 |
20070244546 | Francis | Oct 2007 | A1 |
20080065011 | Marchand et al. | Mar 2008 | A1 |
20080071361 | Tuval et al. | Mar 2008 | A1 |
20080071369 | Tuval et al. | Mar 2008 | A1 |
20080082166 | Styrc et al. | Apr 2008 | A1 |
20080132989 | Snow et al. | Jun 2008 | A1 |
20080147182 | Righini et al. | Jun 2008 | A1 |
20080200980 | Robin et al. | Aug 2008 | A1 |
20090005863 | Goetz et al. | Jan 2009 | A1 |
20090125098 | Chuter | May 2009 | A1 |
20090157175 | Benichou | Jun 2009 | A1 |
20090259306 | Rowe | Oct 2009 | A1 |
20090281619 | Le et al. | Nov 2009 | A1 |
20100023120 | Holecek et al. | Jan 2010 | A1 |
20100049313 | Alon et al. | Feb 2010 | A1 |
20100100167 | Bortlein et al. | Apr 2010 | A1 |
20100161036 | Pintor et al. | Jun 2010 | A1 |
20100256737 | Pollock et al. | Oct 2010 | A1 |
20100312333 | Navia et al. | Dec 2010 | A1 |
20100331971 | Keränen et al. | Dec 2010 | A1 |
20110004227 | Goldfarb et al. | Jan 2011 | A1 |
20110004299 | Navia et al. | Jan 2011 | A1 |
20110029072 | Gabbay | Feb 2011 | A1 |
20110066233 | Thornton et al. | Mar 2011 | A1 |
20110137397 | Chau et al. | Jun 2011 | A1 |
20110144742 | Madrid et al. | Jun 2011 | A1 |
20110208283 | Rust | Aug 2011 | A1 |
20110224785 | Hacohen | Sep 2011 | A1 |
20110245911 | Quill et al. | Oct 2011 | A1 |
20110264196 | Savage et al. | Oct 2011 | A1 |
20110313515 | Quadri et al. | Dec 2011 | A1 |
20120016468 | Robin et al. | Jan 2012 | A1 |
20120022629 | Perera et al. | Jan 2012 | A1 |
20120022639 | Hacohen et al. | Jan 2012 | A1 |
20120059458 | Buchbinder | Mar 2012 | A1 |
20120065464 | Ellis et al. | Mar 2012 | A1 |
20120078237 | Wang et al. | Mar 2012 | A1 |
20120078353 | Quadri et al. | Mar 2012 | A1 |
20120089223 | Nguyen et al. | Apr 2012 | A1 |
20120101571 | Thambar et al. | Apr 2012 | A1 |
20120296418 | Bonyuet et al. | Nov 2012 | A1 |
20120300063 | Majkrzak et al. | Nov 2012 | A1 |
20120310328 | Olson et al. | Dec 2012 | A1 |
20120323316 | Chau et al. | Dec 2012 | A1 |
20120323317 | Karapetian | Dec 2012 | A1 |
20130018458 | Yohanan et al. | Jan 2013 | A1 |
20130046373 | Cartledge et al. | Feb 2013 | A1 |
20130144381 | Quadri et al. | Jun 2013 | A1 |
20130178930 | Straubinger et al. | Jul 2013 | A1 |
20130190861 | Chau et al. | Jul 2013 | A1 |
20130261738 | Clague et al. | Oct 2013 | A1 |
20130274870 | Lombardi et al. | Oct 2013 | A1 |
20130282059 | Ketai et al. | Oct 2013 | A1 |
20130304200 | McLean et al. | Nov 2013 | A1 |
20140000112 | Braido et al. | Jan 2014 | A1 |
20140018915 | Biadillah et al. | Jan 2014 | A1 |
20140067050 | Costello et al. | Mar 2014 | A1 |
20140142688 | Duffy et al. | May 2014 | A1 |
20140172077 | Bruchman et al. | Jun 2014 | A1 |
20140172082 | Bruchman et al. | Jun 2014 | A1 |
20140194981 | Menk et al. | Jul 2014 | A1 |
20140207231 | Hacohen et al. | Jul 2014 | A1 |
20140222136 | Geist et al. | Aug 2014 | A1 |
20140222142 | Kovalsky et al. | Aug 2014 | A1 |
20140236287 | Clague et al. | Aug 2014 | A1 |
20140236289 | Alkhatib | Aug 2014 | A1 |
20140249622 | Carmi et al. | Sep 2014 | A1 |
20140257467 | Lane et al. | Sep 2014 | A1 |
20140277409 | Bortlein et al. | Sep 2014 | A1 |
20140277411 | Bortlein et al. | Sep 2014 | A1 |
20140277418 | Miller | Sep 2014 | A1 |
20140277422 | Ratz et al. | Sep 2014 | A1 |
20140277427 | Ratz et al. | Sep 2014 | A1 |
20140296969 | Tegels et al. | Oct 2014 | A1 |
20140324164 | Gross et al. | Oct 2014 | A1 |
20140343670 | Bakis et al. | Nov 2014 | A1 |
20140358224 | Tegels et al. | Dec 2014 | A1 |
20150018944 | O'Connell et al. | Jan 2015 | A1 |
20150142100 | Morriss et al. | May 2015 | A1 |
20150142103 | Vidlund | May 2015 | A1 |
20150157457 | Hacohen | Jun 2015 | A1 |
20150157458 | Thambar et al. | Jun 2015 | A1 |
20150173896 | Richter et al. | Jun 2015 | A1 |
20150173897 | Raanani et al. | Jun 2015 | A1 |
20150216661 | Hacohen et al. | Aug 2015 | A1 |
20150238313 | Spence et al. | Aug 2015 | A1 |
20150245934 | Lombardi et al. | Sep 2015 | A1 |
20150250588 | Yang et al. | Sep 2015 | A1 |
20150272730 | Melnick et al. | Oct 2015 | A1 |
20150272734 | Sheps et al. | Oct 2015 | A1 |
20150320556 | Levi et al. | Nov 2015 | A1 |
20150327994 | Morriss et al. | Nov 2015 | A1 |
20150328000 | Ratz et al. | Nov 2015 | A1 |
20150335429 | Morriss et al. | Nov 2015 | A1 |
20150351903 | Morriss et al. | Dec 2015 | A1 |
20150351904 | Cooper et al. | Dec 2015 | A1 |
20150351906 | Hammer et al. | Dec 2015 | A1 |
20150359629 | Ganesan et al. | Dec 2015 | A1 |
20150359631 | Sheahan et al. | Dec 2015 | A1 |
20160030169 | Shahriari | Feb 2016 | A1 |
20160030171 | Quijano et al. | Feb 2016 | A1 |
20160113765 | Ganesan et al. | Apr 2016 | A1 |
20160113766 | Ganesan et al. | Apr 2016 | A1 |
20160113768 | Ganesan et al. | Apr 2016 | A1 |
20160158497 | Tran et al. | Jun 2016 | A1 |
20160184098 | Vaturi | Jun 2016 | A1 |
20160270911 | Ganesan et al. | Sep 2016 | A1 |
20160310268 | Oba et al. | Oct 2016 | A1 |
20160317305 | Pelled et al. | Nov 2016 | A1 |
20160324633 | Gross et al. | Nov 2016 | A1 |
20160324635 | Vidlund et al. | Nov 2016 | A1 |
20160331525 | Straubinger et al. | Nov 2016 | A1 |
20160331526 | Schweich, Jr. et al. | Nov 2016 | A1 |
20160374801 | Jimenez et al. | Dec 2016 | A1 |
20160374802 | Levi et al. | Dec 2016 | A1 |
20170042678 | Ganesan et al. | Feb 2017 | A1 |
20170056166 | Ratz et al. | Mar 2017 | A1 |
20170056171 | Cooper et al. | Mar 2017 | A1 |
20170128205 | Tamir et al. | May 2017 | A1 |
20170135816 | Lashinski et al. | May 2017 | A1 |
20170189174 | Braido et al. | Jul 2017 | A1 |
20170209264 | Chau et al. | Jul 2017 | A1 |
20170231759 | Geist et al. | Aug 2017 | A1 |
20170231766 | Hariton et al. | Aug 2017 | A1 |
20170239048 | Goldfarb et al. | Aug 2017 | A1 |
20170325948 | Wallace et al. | Nov 2017 | A1 |
20170333187 | Hariton et al. | Nov 2017 | A1 |
20170367823 | Hariton et al. | Dec 2017 | A1 |
20180000580 | Wallace et al. | Jan 2018 | A1 |
20180021129 | Peterson et al. | Jan 2018 | A1 |
20180028215 | Cohen | Feb 2018 | A1 |
20180049873 | Manash et al. | Feb 2018 | A1 |
20180055630 | Patel et al. | Mar 2018 | A1 |
20180116843 | Schreck et al. | May 2018 | A1 |
20180125644 | Conklin | May 2018 | A1 |
20180153689 | Maimon et al. | Jun 2018 | A1 |
20180206983 | Noe et al. | Jul 2018 | A1 |
20180250126 | O'Connor et al. | Sep 2018 | A1 |
20180250130 | Hariton et al. | Sep 2018 | A1 |
20180256323 | Hariton et al. | Sep 2018 | A1 |
20180256325 | Hariton et al. | Sep 2018 | A1 |
20180271654 | Hariton et al. | Sep 2018 | A1 |
20180271655 | Hariton et al. | Sep 2018 | A1 |
20180289479 | Hariton et al. | Oct 2018 | A1 |
20180296336 | Cooper et al. | Oct 2018 | A1 |
20180338829 | Hariton et al. | Nov 2018 | A1 |
20180338830 | Hariton et al. | Nov 2018 | A1 |
20180338831 | Hariton et al. | Nov 2018 | A1 |
20180344457 | Gross et al. | Dec 2018 | A1 |
20180353294 | Calomeni et al. | Dec 2018 | A1 |
20180360457 | Ellis et al. | Dec 2018 | A1 |
20190015093 | Hacohen et al. | Jan 2019 | A1 |
20190053896 | Adamek-Bowers et al. | Feb 2019 | A1 |
20190060060 | Chau et al. | Feb 2019 | A1 |
20190060068 | Cope et al. | Feb 2019 | A1 |
20190060070 | Groothuis et al. | Feb 2019 | A1 |
20190069997 | Ratz et al. | Mar 2019 | A1 |
20190083242 | Hariton et al. | Mar 2019 | A1 |
20190083243 | Hariton et al. | Mar 2019 | A1 |
20190083246 | Hariton et al. | Mar 2019 | A1 |
20190083247 | Hariton et al. | Mar 2019 | A1 |
20190105153 | Barash et al. | Apr 2019 | A1 |
20190117391 | Humair | Apr 2019 | A1 |
20190175339 | Vidlund | Jun 2019 | A1 |
20190183639 | Moore | Jun 2019 | A1 |
20190328519 | Hariton et al. | Oct 2019 | A1 |
20190343627 | Hariton et al. | Nov 2019 | A1 |
20190350701 | Adamek-Bowers et al. | Nov 2019 | A1 |
20190365530 | Hoang et al. | Dec 2019 | A1 |
20190388218 | Vidlund et al. | Dec 2019 | A1 |
20190388220 | Vidlund et al. | Dec 2019 | A1 |
20190388223 | Hariton et al. | Dec 2019 | A1 |
20200000449 | Goldfarb et al. | Jan 2020 | A1 |
20200000579 | Manash et al. | Jan 2020 | A1 |
20200015964 | Noe et al. | Jan 2020 | A1 |
20200030098 | Delgado et al. | Jan 2020 | A1 |
20200046497 | Hariton et al. | Feb 2020 | A1 |
20200054335 | Hernandez et al. | Feb 2020 | A1 |
20200054451 | Hariton et al. | Feb 2020 | A1 |
20200060818 | Geist et al. | Feb 2020 | A1 |
20200069424 | Hariton et al. | Mar 2020 | A1 |
20200113677 | McCann et al. | Apr 2020 | A1 |
20200113689 | McCann et al. | Apr 2020 | A1 |
20200113692 | McCann et al. | Apr 2020 | A1 |
20200129294 | Hariton et al. | Apr 2020 | A1 |
20200138567 | Marr et al. | May 2020 | A1 |
20200146671 | Hacohen et al. | May 2020 | A1 |
20200214832 | Metchik et al. | Jul 2020 | A1 |
20200237512 | McCann et al. | Jul 2020 | A1 |
20200246136 | Marr et al. | Aug 2020 | A1 |
20200253600 | Darabian | Aug 2020 | A1 |
20200261094 | Goldfarb et al. | Aug 2020 | A1 |
20200315786 | Metchik et al. | Oct 2020 | A1 |
20200337842 | Metchik et al. | Oct 2020 | A1 |
Number | Date | Country |
---|---|---|
2822801 | Aug 2006 | CA |
1264582 | Dec 2002 | EP |
1637092 | Mar 2006 | EP |
2349124 | Oct 2018 | EP |
3583922 | Dec 2019 | EP |
3270825 | Apr 2020 | EP |
2485795 | Sep 2020 | EP |
WO 2003020179 | Mar 2003 | WO |
WO 2004028399 | Apr 2004 | WO |
WO 2006007389 | Jan 2006 | WO |
WO 2006086434 | Aug 2006 | WO |
WO 2006116558 | Nov 2006 | WO |
WO 2007047488 | Apr 2007 | WO |
WO 2008029296 | Mar 2008 | WO |
WO 2009091509 | Jul 2009 | WO |
WO 2010006627 | Jan 2010 | WO |
WO 2010027485 | Mar 2010 | WO |
WO 2010045297 | Apr 2010 | WO |
WO 2010057262 | May 2010 | WO |
WO 2011144351 | Nov 2011 | WO |
WO 2012011108 | Jan 2012 | WO |
WO 2012036740 | Mar 2012 | WO |
WO 2012048035 | Apr 2012 | WO |
WO 2013059747 | Apr 2013 | WO |
WO 2013072496 | May 2013 | WO |
WO 2013078497 | Jun 2013 | WO |
WO 2013175468 | Nov 2013 | WO |
WO 2014115149 | Jul 2014 | WO |
WO 2014144937 | Sep 2014 | WO |
WO 2014164364 | Oct 2014 | WO |
WO 2016016899 | Feb 2016 | WO |
WO 2016098104 | Jun 2016 | WO |
WO 2016125160 | Aug 2016 | WO |
WO 2018025260 | Feb 2018 | WO |
WO 2018025263 | Feb 2018 | WO |
WO 2018029680 | Feb 2018 | WO |
WO 2018039631 | Mar 2018 | WO |
WO 2018112429 | Jun 2018 | WO |
WO 2018118717 | Jun 2018 | WO |
WO 2018131042 | Jul 2018 | WO |
WO 2018131043 | Jul 2018 | WO |
WO 2019195860 | Oct 2019 | WO |
WO 2020167677 | Aug 2020 | WO |
Entry |
---|
International Search Report dated Dec. 5, 2011, by the United States Patent and Trademark Office in PCT/IL2011/000582 (3 pages). |
International Search Report dated Mar. 27, 2018, by the European Patent Office in PCT/IL2017/050849 (5 pages). |
International Search Report dated May 30, 2016, by the European Patent Office in PCT/IL2016/050125 (6 pages). |
International Search Report dated Nov. 24, 2017, by the European Patent Office in PCT/IL2017/050873 (5 pages). |
International Search Report dated Oct. 27, 2015, by the European Patent Office in PCT/IL2015/050792 (3 pages). |
International Search Report dated Sep. 4, 2014, by the European Patent Office in PCT/IL2014/050087 (6 pages). |
Batista, Randas J. V. et al., Partial Left Ventriculectomy to Treat End-Stage Heart Disease, 64 Annals Thoracic Surgery 634-38 (1997) (5 pages). |
Beall, Jr., Arthur C. et al., Clinical Experience with a Dacron Velour-Covered Teflon-Disc Mitral-Valve Prosthesis, 5 Annals Thoracic Surgery 402-10 (1968) (9 pages). |
Fucci, Carlo et al., Improved Results with Mitral Valve Repair Using New Surgical Techniques, 9 Eur. J. Cardiothoracic Surgery 621-27 (1995) (7 pages). |
Maisano, Francesco et al., The Edge-To-Edge Technique: A Simplified Method to Correct Mitral Insufficiency, 13 Eur. J. Cardiothoracic Surgery 240-46 (1998) (7 pages). |
Stone, Gregg W. et al., Clinical Trial Design Principles and Endpoint Definitions for Transcatheter Mitral Valve Repair and Replacement: Part 1: Clinical Trial Design Principles, 66 J. Am. C. Cardiology 278-307 (2015) (30 pages). |
Sündermann, Simon H. et al., Feasibility of the Engager™ aortic transcatheter valve system using a flexible over-the-wire design, 42 Eur. J. Cardiothoracic Surgery e48-e52 (2012) (5 pages). |
Symetis S.A., Clinical Investigation Plan for ACURATE Neo™ TA Delivery System, Protocol 2015-01, ver. 2, ClinicalTrials.gov Identifier NCT02950428, Sep. 8, 2015 (76 pages). |
Tchetche, Didier et al., New-generation TAVI devices: description and specifications, 10 EuroIntervention (Supplement) U90-U100 (2014) (11 pages). |
Edwards Lifesciences Corp.v. Cardiovalve Ltd. , IPR2021-00383, Paper 10: Decision Granting Institution Of Inter Partes Review (Dec. 10, 2021) (42 pages). |
Edwards Lifesciences Corp.v. Cardiovalve Ltd. , IPR2021-00383, Petitioners' Opposition to Patent Owner's Contingent Motion to Amend (Jan. 5, 2022) (32 pages). |
Edwards Lifesciences Corp.v. Cardiovalve Ltd. , IPR2021-00383, Petitioners' Reply to Patent Owner's Response (Jan. 5, 2022) (41 pages). |
Number | Date | Country | |
---|---|---|---|
20190083245 A1 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
62560384 | Sep 2017 | US |