Protected Ethernet backplane communication

Information

  • Patent Grant
  • 6804193
  • Patent Number
    6,804,193
  • Date Filed
    Wednesday, November 22, 2000
    23 years ago
  • Date Issued
    Tuesday, October 12, 2004
    19 years ago
Abstract
A multiprocessor system is provided that has a plurality of processor modules coupled together via a backplane. The system comprises a first processor module having a first processor and a first switch with a plurality of I/O ports and a plurality of communication paths coupled to the I/O ports of the first switch, the first switch being operable to route data packets. The system further comprises a second processor module having a second processor and a second switch with a plurality of I/O ports and a plurality of communication paths coupled to the I/O ports of the second switch, the second switch being operable to route data packets. The system also comprises a third processor module having a third processor and a first communication device that is operable to communicate with the first switch via a first communication path on the backplane and operable to communicate with the second switch via a second communication path on the backplane. In addition, the system comprises a fourth processor module having a fourth processor and a second communication device that is operable to communicate with the first switch via a third communication path on the backplane and operable to communicate with the second switch via a fourth communication path on the backplane. The first switch is operable to route data packets from one of the first, second, third or fourth processors to another of the first, second, third or fourth processors. The second switch is also operable to route data packets from one of the first, second, third or fourth processors to another of the first, second, third or fourth processors.
Description




FIELD OF THE INVENTION




The present invention relates in general to communication between multiple data processors and, more particularly, to communication between multiprocessors using a switch protocol.




BACKGROUND OF THE INVENTION




Communication between computers has become an important aspect of everyday life in both private and business environments. Computers converse with each other based upon a physical medium for transmitting the messages back and forth, and upon a set of rules implemented by electronic hardware attached to and programs running on the computers. These rules, often called protocols, define the orderly transmission and receipt of messages in a network of connected computers.




The use of multiple processors in a single system is well-known in the field of data processing systems, and the resulting systems are called multiprocessor systems. As data processing systems have expanded to incorporate multiprocessors, communication systems for allowing communication between the multiple processors have been proposed. The multiprocessor communication systems must be continually improved to allow for greater data processing capacity and faster speeds the multiprocessor environment is capable of delivering.




SUMMARY OF THE INVENTION




To improve upon the presently known multiprocessor communication systems, the present invention has been proposed. The present invention provides a system for inter-processor communication in a backplane based multiprocessor system. According to one aspect of the invention, provided is a communication system that implements the Ethernet MAC protocol over a backplane physical media that can take advantage of the Ethernet MAC that is built into many processors. According to another aspect of the present invention, provided is a protected communication system that provides redundancy at all levels within the system.




The present invention provides many advantages over the presently known communication systems for multiprocessors. Not all of these advantages are simultaneously required to practice the invention as claimed, and the following list is merely illustrative of the types of benefits that may be provided, alone or in combination, by the present invention. These advantages include: (1) the use of a standard Ethernet protocol to take advantage of the design simplification but without the cost, space, and power that normal Ethernet physical media requires; (2) providing a redundant communication system wherein each processor has a redundant communication path and wherein the redundancy is transparent to the processors; (3) communicating over a low power low voltage differential signal (LVDS) channel without the need for signal shaping, the use of an analog phase locked loop (PLL), or magnetic components typical of Ethernet systems; (4) providing a soft reset mechanism; (5) providing a mechanism for monitoring the link status of both connections, simultaneously; and (6) providing each processor with a full 10 Mbs connectivity to a non-blocking Ethernet switch.




In accordance with one aspect of the present invention, a multiprocessor system is provided that has a plurality of processor modules coupled together via a backplane. The system comprises a first processor module having a first processor and a switch with a plurality of I/O ports and a plurality of communication paths coupled to the I/O ports of the switch, the switch being operable to route data packets formatted according to an Ethernet MAC protocol. The system further comprises a second processor module having a second processor and a first communication device that is operable to communicate with the switch via a first communication path on the backplane. The system also comprises a third processor module having a third processor and a second communication device that is operable to communicate with the switch via a second communication path on the backplane. The switch is operable to route Ethernet MAC protocol data packets from one of the first, second or third processors to another of said first, second or third processors.




In accordance with another aspect of the present invention a multiprocessor system is provided that has a plurality of processor modules coupled together via a backplane. The system comprises a first processor module having a first processor and a first switch with a plurality of I/O ports and a plurality of communication paths coupled to the I/O ports of the first switch, the first switch being operable to route data packets. The system further comprises a second processor module having a second processor and a second switch with a plurality of I/O ports and a plurality of communication paths coupled to the I/O ports of the second switch, the second switch being operable to route data packets. The system also comprises a third processor module having a third processor and a first communication device that is operable to communicate with the first switch via a first communication path on the backplane and operable to communicate with the second switch via a second communication path on the backplane. In addition, the system comprises a fourth processor module having a fourth processor and a second communication device that is operable to communicate with the first switch via a third communication path on the backplane and operable to communicate with the second switch via a fourth communication path on the backplane. The first switch is operable to route data packets from one of the first, second, third or fourth processors to another of the first, second, third or fourth processors. The second switch is also operable to route data packets from one of the first, second, third or fourth processors to another of the first, second, third or fourth processors.











BRIEF DESCRIPTION OF DRAWINGS




The present invention will become more apparent from the following description when read in conjunction with the accompanying drawings wherein:





FIG. 1

is a front view of an exemplary backplane base multiprocessor system in which the present invention is useful;





FIG. 2

is a schematic view of an exemplary backplane based multiprocessor system;





FIG. 3

is a block diagram of a ring network in which the present invention is useful;





FIG. 4

is a block diagram showing a preferred coupling arrangement for the communication system according to the present invention;





FIG. 5

is a block diagram of the preferred system processor modules that include the switches of the present invention;





FIG. 6

is a block diagram of a preferred line processor module and its communication device;





FIG. 7

is a block diagram of a preferred communication device;





FIG. 8

is a block diagram of a preferred I/O port;





FIG. 9

is a block diagram of a preferred transmitter block; and





FIG. 10

is a block diagram of a preferred receiver block.











DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS




Referring now to the figures,

FIG. 1

shows an exemplary backplane based multiprocessor system


2


comprising a plurality of processor modules


10


,


12


,


14


,


16


,


18


, and


20


that are mounted in a shelf


22


. As shown in

FIG. 2

, the shelf


22


contains a backplane


24


which provides a physical media for allowing the modules


10


,


12


,


14


,


16


,


18


, and


20


to communicate with each other. Each module


10


,


12


,


14


,


16


,


18


, and


20


includes a connector


25


for providing electrical communication pathways between the backplane


24


and components on the processor modules


10


,


12


,


14


,


16


,


18


, and


20


.




As shown in

FIG. 3

, the exemplary multiprocessor system


2


is a multiple services carrier node


26


that can be used in networks carrying frame-, packet-, and cell-based traffic. The processor modules in this node


26


are either traffic carrying modules, i.e., modules that carry IP or ATM traffic to or from the node, or cross-connect modules, i.e., modules that pass IP or ATM traffic from one traffic carrying module to another traffic carrying module.




The present invention provides a highly robust, completely redundant, high-speed communication system for inter-processor communication in a multiprocessor environment. The communication system is implemented using Ethernet medium access control (MAC) over a backplane physical media.




As shown in

FIG. 4

, processor modules


10


,


12


,


14


,


16


,


18


, and


20


are interconnected to allow for inter-processor communication. The communication scheme is based on an Ethernet protocol that is implemented using a different physical media, the backplane. Each processor module includes a device that allows the processor module to communicate over the backplane.




The preferred multiprocessor system includes a set of redundant switches


28


and


30


that interconnect processor modules


10


,


12


,


14


,


16


,


18


, and


20


via the backplane. Switches


28


and


30


could optionally reside on one or more of the processor modules


10


,


12


,


14


,


16


,


18


, and


20


or could optionally reside on a separate module. In the illustrated embodiment, switches


28


and


30


reside on processor modules


10


and


12


, respectively, referred to hereinafter as the system processor modules. The switches


28


and


30


are the devices for backplane communication for the system processor modules.




The other processor modules


14


,


16


,


18


, and


20


, referred to hereinafter as the line processor modules, each include an output communication device


15


for backplane communication. In the preferred system, each communication device


15


is coupled to each switch


28


and


30


via a dedicated communication channel on the backplane. In the illustrated embodiment, the communication device


15


of processor module


14


is coupled to switch A via channel B


1


and coupled to switch B via channel B


2


. The other line processor modules are similarly coupled. Finally, switch A and switch B are coupled to each other via channel A. Inter-processor communication is accomplished by the switches


28


and


30


passing data traffic from one processor module to another via the dedicated communication channels.




As shown in

FIG. 5

, the system processor modules


10


and


12


each include a high speed communication link, preferably 100 Mbits/s, between the on-board processor


11


and the on-board switch. Each switch


28


and


30


includes a plurality of ports. One port is coupled to a high speed link A, preferably 100 Mbits/sec, that provides a high speed communication path between the switches. In addition, each switch


28


and


30


has a plurality of ports that are coupled to communication channels to the line processor modules


14


-


20


. Optionally, each switch


28


and


30


could include a debug port.




The function of the Ethernet switches


28


and


30


is to allow a processor on one of the processor modules to communicate with a processor on another of the processor modules. The protocol used for the communication is a modified Ethernet protocol. Because Ethernet is a widely known protocol and many CPUs have built-in media access controllers, the present invention provides a versatile and less complex system for inter-processor communication in a multiprocessor environment.




Communication between processor modules is via data packets that are formatted using an Ethernet media access control (MAC) protocol. Ethernet protocols and Ethernet MAC are well-known.




The physical media for communication includes the backplane which provides the communication channels and the processor module connectors


25


. The I/O communication devices


15


and the switches


28


and


30


contain the circuitry to provide for the transmission of data over the communication channels.




As shown in

FIG. 6

, each switch


28


includes a switch agent


32


, a transmitter block


34


, a receiver block


36


, and a data multiplexor


38


. The switch agent


32


communicates with the on-board processor


40


to transfer data and instructions between the two. The switch agent


32


also sends data packets to the transmitter block


34


for transmission to another processor module and receives data packets from the receiver block


36


that were sent by another processor module. The switch agent


32


also has access to an address table in which it stores the addresses of the processor modules with which it can communicate.




The transmitter block


34


forwards data packets to a multiplexor


38


which routes the data packets to the port


46


assigned to the recipient of the message. The multiplexor


38


also forwards data packets received from a port


46


to the receiver block. The multiplexor


38


is also capable of forwarding data packets to and from the debug port


48


and the high speed communication port


44


to the other switch.




As shown in

FIG. 7

, the communication devices


15


for the line processor modules include a transmitter block


34


, a receiver block


36


, a data multiplexor


50


, and two I/O ports


46


. The preferred line processor modules use a PowerQUICC (MPC860) processor, which already has a built-in Ethernet MAC. The MAC address does not need to come from a configuration memory on the board. The MAC address can be constructed based on a fixed number, and the slot ID in which the module physically resides.




The transmitter block


34


forwards data packets from the on-board processor to the data multiplexor


50


. The receiver block forwards data packets from the data multiplexor


50


to the on-board processor. The data multiplexor


50


selects which of the two ports


46


data packets are to be forwarded to from the transmitter. The on-board processor instructs the data multiplexor


50


to select a particular port via the use A/B line.




The I/O ports


46


are coupled to the communication channel and transfers data thereon. Functionally, the I/O ports


46


are the same on both the switches


28


and


30


and on the communication devices


15


. The communication channels have two data paths, an upstream path with a direction of data flow from a communication device to a switch and a downstream path with a direction of data flow from a switch to a communication device. Because the data sent over the paths are differential signals, each communication channel requires four lines, two for each path.




As shown in

FIG. 8

, the I/O ports


46


include a transmit section and a receive section. The transmit section transfers data from the data multiplexor


50


to the upstream path of the communication channel as a differential signal via a differential driver


56


. The transmit section also includes a blip generator


52


that generates a blip on the upstream path after each millisecond of inactivity on the data path. A blip is a simple ‘1’, Manchester encoded signal. It is not long enough to activate the detector (it lacks the Ethernet preamble), but it does trigger the activity detector that says the switch at the remote end is there and available. A 1ms detector


54


monitors the port to determine if a millisecond has passed since the last blip or transmission of data packets and signals the blip generator


52


to generate a blip when a millisecond has passed. This blip generation mechanism is used by the switch to determine if the communication channel is available.




The receive section of the I/O port


46


includes a differential receiver


58


for receiving data packets from the downstream data path and forwarding it to the receiver block via the data multiplexor. The receive section also includes a 4 millisecond activity detector


60


and a 1 Mhz detector


62


. The activity detector


60


detects whether there has been activity, either data packets or a blip, on the data path within the past 4 milliseconds and communicates this information to the on-board processor as the link status. The 1 Mhz detector


62


looks for a special 1 Mhz pattern on the receive data, such as a Manchester encoding is invalid pattern and outputs a reset pulse to the processor if one is received.




An exemplary transmitter block


34


is shown in block diagram form in FIG.


9


. The transmitter block


34


receives data packets from the on-board processor, encodes the bits using the Manchester encoder


64


and transmits the Manchester encoded data packets to the data multiplexor


50


(shown in

FIG. 7

) for forwarding to the active I/O port


46


. The transmitter block


34


also generates a 20 Mhz clock signal from a 80 Mhz source for use by the Manchester encoder


64


and a 10 Mhz clock for use by the processor when transmitting the data packet.




An exemplary receiver block


36


is shown in block diagram form in FIG.


10


. Received data is received from the I/O port


46


via the data multiplexor. Using a local high-speed clock, the received data is first oversampled, and stored in a small FIFO


66


. Resampling is re-synchronized on each data edges, which will give 3, 4 or 5 samples per data bit. The data is then Manchester decoded via a Manchester decoder


68


, and passed on to the Ethernet MAC along with the RxEN (data present) status.




The present invention provides many advantages and features. An advantage of the present invention over traditional Ethernet switches is that it requires less physical space and uses fewer heat generating components because of the use of fewer analog circuits. In traditional Ethernet switches a lot of physical space is devoted to the analog physical components and to heat dissipation resulting from the analog physical components. For example, traditional Ethernet switches use analog signal treatment methods for signal shaping, filtering, etc. Traditional switches also implement analog phase locked loops (PLLs) for clock recovery and magnetics for isolation. The present invention uses Manchester encoding, like in traditional switches, but eliminates signal shaping and the need for a PLL and magnetics.




Normally, the Ethernet clock is 10 Mhz. On the communication device


15


, since there is no 10 Mhz analog PLL, a simple Digital PLL is implemented using an 8×-oversampling clock, i.e. 80 Mhz. Since data is transmitted via Manchester encoding, the clock and data is combined into a single signal and that signal is transferred as LVDS levels over the backplane. The clock recovery from the combined clock/data signal is via a digital mechanism and not through the use of a PLL. The clock recovery is performed using an ×8 clock (80 Mhz). Essentially, the signal is sampled at 80 Mhz, and converted to 10 Mbit clock by determining the signal transition edges. One advantage is that the clock recovery is entirely digital and can be implemented in a low cost device such as a field programmable gate array (FPGA).




Another advantage of the present invention is that it has a built-in remote processor reset feature. A special pattern (1 Mhz) can be sent from the system processor modules to the line processor modules to cause the line processor modules to reset. The communication devices


15


are configured to activate a reset command when they receive a “special” invalid pattern on the physical link, preferably a 1 Mhz clock. The communication devices


15


will not recognize the special pattern as normal data because it is an invalid signal in Ethernet world, but the communication devices will detect it and reset the processor. In the preferred system, the reset pattern will only be listened for on the link coming from switch A. Any reset patterns received from switch B will be ignored. Also, in the preferred system, the reset “detection” is active at all time. Reset detection is active even when the link status is down. This remote processor reset command allows for the line processor modules to be reset without having to send a technician out to perform this function.




Another advantage of the present invention is redundancy. Each Ethernet interface on the line processor modules has access to two different Ethernet physical links, for redundancy. The two switches


28


and


30


provide the redundancy. When both system processor modules are operational, the line processor modules can communicate with either switches


28


or


30


without any difference in performance. When the link with one of the system processor modules is down, the line processor module will choose to communicate using the other link. Control over which switch the line processor module connects with is implemented using the UseA/B control line as shown in FIG.


7


.




Still another advantage of the present invention is its link active mechanism for keeping track of active links between line processor modules and the switches


28


and


30


. The communication devices


15


are responsible for providing a minimum level of activity on each of the links, regardless of whether the link is the active link or the standby link.




On the transmit side, a link is kept “active” by the transmit section of the I/O port


46


sending a blip signal after one milliseconds of inactivity. On the standby link, the blip will be transmitted every millisecond. On the active link, the blip will start transmitting each 1 millisecond after the last transmission and will continue until traffic resumes. The communication devices


15


will communicate to the on-board processor, the link status with respect to each switch.




On the receive side, if the receive section of the I/O port


46


does not detect activity on the link after 4 milliseconds (complete silence), the link is declared down. It will be declared up and ready for use when activity is detected again.




Having described in detail the preferred embodiment of the present invention, including preferred modes of operation, it is to be understood that the present invention could be carried out with different elements and steps. The preferred embodiment is presented only by way of example and is not meant to limit the scope of the present invention, which is defined by the following claims.



Claims
  • 1. A multiprocessor system having a plurality of processor modules coupled together via a backplane, comprising:a first processor module having a first processor and a switch with a plurality of I/O ports and a plurality of communication paths coupled to the I/O ports of said switch, said switch being operable to route data packets formatted according to an Ethernet MAC protocol; a second processor module having a second processor and a first communication device that is operable to communicate with said switch via a first communication path on the backplane; and a third processor module having a third processor and a second communication device that is operable to communicate with said switch via a second communication path on the backplane; and wherein the switch is operable to route Ethernet MAC protocol data packets from one of said first, second or third processors to another of said first, second or third processors.
  • 2. The system according to claim 1 wherein said first processor module is operable to transmit a reset command to said second processor module via said first communication path and wherein said first processor module is also operable to transmit a reset command to said third processor module via said second communication path.
  • 3. The system according to claim 1 wherein said first and second communication devices each comprise an I/O port, a transmitter block, and a receiver block.
  • 4. The system according to claim 3 wherein said I/O port comprises a transmit section and a receive section, said transmit section including a blip generator and an activity detector for generating a blip after a predetermined period of time worth of inactivity on the communication path, said receive section including a second activity detector for monitoring a communication path and generating a link status indication signal.
  • 5. The system according to claim 4 wherein the blip is a Manchester encoded digital one signal.
  • 6. The system according to claim 3 wherein said I/O port further comprises a differential transmitter for transmitting a low voltage differential signal onto the communication path.
  • 7. The system according to claim 3 wherein said I/O port further comprises a differential receiver for receiving a low voltage differential signal from the communication path.
  • 8. The system according to claim 3 wherein the transmitter block comprises a Manchester encoder for Manchester encoding a data packet to be transmitted on a communication path.
  • 9. The system according to claim 3 wherein the receiver block comprises a Manchester decoder for decoding Manchester encoded data packets received from the communication path.
  • 10. The system according to claim 3 wherein the receiver block comprises a digital phases lock loop circuit for recovering a receiver clock from the data packets received from the communication path.
  • 11. The system according to claim 10 wherein the digital phase locked loop comprises a clock source having a higher frequency than the frequency of the received data and means for oversampling the received data to recover the receiver clock.
  • 12. A multiprocessor system having a plurality of processor modules coupled together via a backplane, comprising:a first processor module having a first processor and a first switch with a plurality of I/O ports and a plurality of communication paths coupled to the I/O ports of said first switch, said first switch being operable to route data packets; a second processor module having a second processor and a second switch with a plurality of I/O ports and a plurality of communication paths coupled to the I/O ports of said second switch, said second switch being operable to route data packets; a third processor module having a third processor and a first communication device that is operable to communicate with said first switch via a first communication path on the backplane and operable to communicate with said second switch via a second communication path on the backplane; and a fourth processor module having a fourth processor and a second communication device that is operable to communicate with said first switch via a third communication path on the backplane and operable to communicate with said second switch via a fourth communication path on the backplane; and wherein said first switch is operable to route data packets from one of said first, second, third or fourth processors to another of said first, second, third or fourth processors; and wherein said second switch is operable to route data packets from one of said first, second, third or fourth processors to another of said first, second, third or fourth processors.
  • 13. The system according to claim 12 where the data packets are Ethernet MAC protocol data packets.
  • 14. The system according to claim 12 wherein said first processor module is operable to transmit a reset command to said second processor module via said first communication path and wherein said first processor module is also operable to transmit a reset command to said third processor module via said second communication path.
  • 15. The system according to claim 12 wherein said first and second communication devices each comprise a first I/O port, a second I/O port, a transmitter block, and a receiver block and data multiplexor.
  • 16. The system according to claim 15 wherein said first and second I/O ports each comprises a transmit section and a receive section, said transmit section including a blip generator and an activity detector for generating a blip after a predetermined period of time worth of inactivity on the communication path, said receive section including a second activity detector for monitoring a communication path and generating a link status indication signal.
  • 17. The system according to claim 16 wherein the blip is a Manchester encoded digital one signal.
  • 18. The system according to claim 15 wherein said I/O ports further comprises a differential transmitter for transmitting a low voltage differential signal onto the communication path.
  • 19. The system according to claim 15 wherein said I/O ports further comprises a differential receiver for receiving a low voltage differential signal from the communication path.
  • 20. The system according to claim 15 wherein the transmitter block comprises a Manchester encoder for Manchester encoding a data packet to be transmitted on a communication path.
  • 21. The system according to claim 15 wherein the receiver block comprises a Manchester decoder for decoding Manchester encoded data packets received from the communication path.
  • 22. The system according to claim 15 wherein the receiver block comprises a digital phases lock loop circuit for recovering a receiver clock from the data packets received from the communication path.
  • 23. The system according to claim 22 wherein the digital phase locked loop comprises a clock source having a higher frequency than the frequency of the received data and means for oversampling the received data to recover the receiver clock.
  • 24. The system according to claim 15 wherein said data multiplexor is operable to select one of said first or second I/O ports for transmitting data over a communication path.
  • 25. The system according to claim 15 wherein said data multiplexor is operable to route data received from a communication path via said first or second I/O ports to said receiver block.
  • 26. The system according to claim 12 wherein said first and said second switches each comprise a data multiplexor and a plurality of I/O ports.
  • 27. The system according to claim 26 wherein said data multiplexor is operable to route data packet received from one of said I/O ports to another of said I/O ports.
  • 28. The system according to claim 27 wherein each of said I/O ports is coupled via a distinct communication path to distinct I/O port on one of said communication devices.
  • 29. The system according to claim 12 wherein the microprocessor system is a multiple services carrier node.
  • 30. A system for facilitating communication between a plurality of processor modules in a multi-processor system, comprising:a backplane that provides a plurality of communication paths for coupling the processor modules, a first processor module having a first processor and a first switch with a plurality of I/O ports and a plurality of communication paths coupled to the I/O ports of said first switch, said first switch being operable to route data packets; a second processor module having a second processor and a second switch with a plurality of I/O ports and a plurality of communication paths coupled to the I/O ports of said second switch, said second switch being operable to route data packets; a third processor module having a third processor and a first communication device that is operable to communicate with said first switch via a first communication path on the backplane and operable to communicate with said second switch via a second communication path on the backplane; and a fourth processor module having a fourth processor and a second communication device that is operable to communicate with said first switch via a third communication path on the backplane and operable to communicate with said second switch via a fourth communication path on the backplane; and wherein said first switch is operable to route data packets from one of said first, second, third or fourth processors to another of said first, second, third or fourth processors; and wherein said second switch is operable to route data packets from one of said first, second, third or fourth processors to another of said first, second, third or fourth processors.
  • 31. The system according to claim 30 where the data packets are Ethernet MAC protocol data packets.
CROSS REFERENCE TO RELATED APPLICATION

This application claims priority from the following application: U.S. application Ser. No.: 60/221417 filed Jul. 28, 2000.

US Referenced Citations (12)
Number Name Date Kind
5058110 Beach et al. Oct 1991 A
5345447 Noel Sep 1994 A
5428806 Pocrass Jun 1995 A
5671249 Andersson et al. Sep 1997 A
5754800 Lentz et al. May 1998 A
5777996 Chan et al. Jul 1998 A
5781549 Dai Jul 1998 A
5802278 Isfeld et al. Sep 1998 A
5926473 Gridley Jul 1999 A
6347345 Cheon Feb 2002 B1
6396841 Co et al. May 2002 B1
6611526 Chinnaswamy et al. Aug 2003 B1
Foreign Referenced Citations (1)
Number Date Country
0952702 Oct 1999 EP
Non-Patent Literature Citations (1)
Entry
International Search Report dated Apr. 22, 2002, for PCT/US01/41220 entitled: Protected Ethernet Backplane Communication.
Provisional Applications (1)
Number Date Country
60/221417 Jul 2000 US