This application relates generally to memory devices. More specifically, this application relates to a circuit for reducing short circuits in a removable memory device.
Non-volatile memory systems, such as flash memory, have been widely adopted for use in consumer products. Flash memory may be found in different forms, for example in the form of a portable/removable memory card that can be carried between host devices or as a solid state disk (SSD) embedded in a host device. An improper connection of the removable memory with a host device may result in a short circuit that can damage the card. Utilizing a poly resistor that is wide enough along with a metal interconnect that can withstand the short circuit requires more area on the card. An approach to prevent a short circuit without using additional area on the card may be beneficial as product designs become smaller.
By way of introduction, the embodiments described below include circuitry and methods for reducing short circuits in removable/connectable media. The media may be any device or component with connections to another device. The media may be referred to as a media device, peripheral device, and/or memory device. In one example, a host device may connect with the media through connectors (which may include a plurality of pads) that facilitate a connection. The connection may be for the flow of data or power. If the connection between the host device and the media is improper or misaligned because the respective connectors/pads do not connect properly, then there may be a short circuit.
As described below, the connectable media may be removable memory, such as flash memory that includes a memory card (e.g. SD card, USB memory stick, etc.).
A removable memory device or memory card is merely one example of a device that is connected and can utilize the short detection and/or short protection features described below.
Examples of host systems include, but are not limited to, personal computers (PCs), such as desktop or laptop and other portable computers, tablets, mobile devices, cellular telephones, smartphones, personal digital assistants (PDAs), gaming devices, digital still cameras, digital movie cameras, and portable media players. For portable memory card applications, a host may include a built-in receptacle for one or more types of memory cards or flash drives, or a host may require adapters into which a memory card is plugged. The memory system may include its own memory controller and drivers but there may also be some memory-only systems that are instead controlled by software executed by the host to which the memory is connected. In some memory systems containing the controller, especially those embedded within a host, the memory, controller and drivers are often formed on a single integrated circuit chip. The host may communicate with the memory card using any communication protocol such as but not limited to Secure Digital (SD) protocol, Memory Stick (MS) protocol and Universal Serial Bus (USB) protocol.
The controller 102 (which may be a flash memory controller) can take the form of processing circuitry, a microprocessor or processor, and a computer-readable medium that stores computer-readable program code (e.g., software or firmware) executable by the (micro)processor, logic gates, switches, an application specific integrated circuit (ASIC), a programmable logic controller, and an embedded microcontroller, for example. The controller 102 can be configured with hardware and/or firmware to perform the various functions described below and shown in the flow diagrams. Also, some of the components shown as being internal to the controller can also be stored external to the controller, and other components can be used. Additionally, the phrase “operatively in communication with” could mean directly in communication with or indirectly (wired or wireless) in communication with through one or more components, which may or may not be shown or described herein.
As used herein, a flash memory controller is a device that manages data stored on flash memory and communicates with a host, such as a computer or electronic device. A flash memory controller can have various functionality in addition to the specific functionality described herein. For example, the flash memory controller can format the flash memory to ensure the memory is operating properly, map out bad flash memory cells, and allocate spare cells to be substituted for future failed cells. Some part of the spare cells can be used to hold firmware to operate the flash memory controller and implement other features. In operation, when a host needs to read data from or write data to the flash memory, it will communicate with the flash memory controller. If the host provides a logical address to which data is to be read/written, the flash memory controller can convert the logical address received from the host to a physical address in the flash memory. (Alternatively, the host can provide the physical address). The flash memory controller can also perform various memory management functions, such as, but not limited to, wear leveling (distributing writes to avoid wearing out specific blocks of memory that would otherwise be repeatedly written to) and garbage collection (after a block is full, moving only the valid pages of data to a new block, so the full block can be erased and reused).
Non-volatile memory die 104 may include any suitable non-volatile storage medium, including NAND flash memory cells and/or NOR flash memory cells. The memory cells can take the form of solid-state (e.g., flash) memory cells and can be one-time programmable, few-time programmable, or many-time programmable. The memory cells can also be single-level cells (SLC), multiple-level cells (MLC), triple-level cells (TLC), or use other memory cell level technologies, now known or later developed. Also, the memory cells can be fabricated in a two-dimensional or three-dimensional fashion. The interface between controller 102 and non-volatile memory die 104 may be any suitable flash interface, such as Toggle Mode 200, 400, or 800. In one embodiment, memory system 100 may be a card based system, such as a secure digital (SD) or a micro secure digital (micro-SD) card. In an alternate embodiment, memory system 100 may be part of an embedded memory system. For example, the flash memory may be embedded within the host, such as in the form of a solid state disk (SSD) drive installed in a personal computer.
Although in the example illustrated in
Modules of the controller 102 may include a short circuit detection module 112 present on the die of the controller 102. The short circuit detection module may also be referred to as a short circuit protection module. As explained in more detail below in conjunction with
Referring again to modules of the controller 102, a buffer manager/bus controller 114 manages buffers in random access memory (RAM) 116 and controls the internal bus arbitration of controller 102. A read only memory (ROM) 118 stores system boot code. Although illustrated in
Front end module 108 includes a host interface 120 and a physical layer interface (PHY) 122 that provide the electrical interface with the host or next level storage controller. The choice of the type of host interface 120 can depend on the type of memory being used. Examples of host interfaces 120 include, but are not limited to, SATA, SATA Express, SAS, Fibre Channel, USB, PCIe, and NVMe. The host interface 120 typically facilitates transfer for data, control signals, and timing signals.
Back end module 110 includes an error correction controller (ECC) engine 124 that encodes the data bytes received from the host, and decodes and error corrects the data bytes read from the non-volatile memory. A command sequencer 126 generates command sequences, such as program and erase command sequences, to be transmitted to non-volatile memory die 104. A RAID (Redundant Array of Independent Drives) module 128 manages generation of RAID parity and recovery of failed data. The RAID parity may be used as an additional level of integrity protection for the data being written into the non-volatile memory system 100. In some cases, the RAID module 128 may be a part of the ECC engine 124. A memory interface 130 provides the command sequences to non-volatile memory die 104 and receives status information from non-volatile memory die 104. In one embodiment, memory interface 130 may be a double data rate (DDR) interface, such as a Toggle Mode 200, 400, or 800 interface. A flash control layer 132 controls the overall operation of back end module 110.
Additional components of system 100 illustrated in
The FTL or MML 138 may be integrated as part of the flash management that may handle flash errors and interfacing with the host. In particular, MML may be a module in flash management and may be responsible for the internals of NAND management. In particular, the MML 138 may include an algorithm in the memory device firmware which translates writes from the host into writes to the flash memory 104. The MML 138 may be needed because: 1) the flash memory may have limited endurance; 2) the flash memory 104 may only be written in multiples of pages; and/or 3) the flash memory 104 may not be written unless it is erased as a block. The MML 138 understands these potential limitations of the flash memory 104 which may not be visible to the host. Accordingly, the MML 138 attempts to translate the writes from host into writes into the flash memory 104. As described below, erratic bits may be identified and recorded using the MML 138. This recording of erratic bits can be used for evaluating the health of blocks.
An electrical connection between host device 402 and peripheral device 400 may be realized by inserting or sliding the connector 404 of peripheral device 400 into the corresponding receptive connector 422 of host device 402, thereby causing the contact surface of the pads of connector 404 to slide-ably make contact with the contact surface of the pads of connector 422. An aligned connection is realized when each of the pads of connector 404 makes contact with a corresponding intended pad of connector 422 to facilitate the transfer of electrical signals between the host device 402 and the peripheral device 400 to allow for the intended operation of the resulting system consisting of the host device 402 and the peripheral device 400. For example, an aligned connection may be when pads 406, 408, 410 and 412 of the (peripheral) connector 404 make a respective exclusive connection with pads 414, 416, 418 and 420 of the (host) connector 422. In contrast, a misaligned connection occurs when a pad of one connector makes an unintended electrical contact with an unintended pad of the other connector or with more than one pad of the other connector. A misaligned connection may occur when a user slides peripheral device 400 at an incorrect angle into the corresponding receptive connector 422 of the host device 402.
In one embodiment, the host device 404 powers the peripheral device 400. Power may be transferred from the host device 404 to the peripheral device 400 via one or more electrical pads when the electrical pads of connector 404 of the peripheral device 400 make contact with the electrical pads of receptive connector 422. One or more of the electrical pads of connector 422 may be connected to power supply componentry of the host device 402. For example, electrical pad 414 may be connected to a power source of the host device 402 and electrical pad 420 may be connected to ground. Ground is generally at a logic low level or 0 volts (V). Electrical pad 414 may be referred to as a power terminal. The host device 404 may power a suitable voltage level (e.g. 3.3 V or 5 V) at the power terminal. The electrical pad 406 of the peripheral device 400 may be configured to receive power that is used to power the peripheral device 400 and electrical pad 412 may be configured to be connected to ground. In this configuration, an aligned connection requires electrical pad 406 to make electrical contact with electrical pad 414 and for electrical pad 412 to make contact with electrical pad 420. The other electrical pads may be connected to internal circuitry adapted to allow for the communication of commands and data between the host device 402 and the peripheral device 404. These electrical pads may be referred to as data pads and the electrical lines connecting the data pads to internal circuitry may be referred to as data lines. Still other electrical pads may be connected to control circuitry that controls the exchange of information via the data lines. These pads may be referred to as control pads and the electrical lines connecting the control pads to the control circuitry may be referred to as control lines.
Based on the direction of flow of electrical signals corresponding to the control signals, commands, and data, the data lines and control lines may be bidirectional or unidirectional. A unidirectional line may communicate electrical signals from the host device 402 to the peripheral device 400 or vice versa and the electrical pad connected with the line may be referred to as a unidirectional pad. From the perspective of the peripheral device, if electrical signals are received by the peripheral device 400 via a unidirectional line, the line is an input line. Likewise, if electrical signals are transmitted by the peripheral device 400 via a unidirectional line, the line is an output line. A bidirectional line is connected to circuitry that is adapted to both receive and transmit electrical signals at different times. An electrical pad connected to a bidirectional pad may be referred to as a bidirectional pad.
The tristate input buffer 506 includes an input buffer input line 506-1, an input buffer output line 506-2, and an input enable (IE) line 506-3. The input buffer output line 506-2 may be connected to circuitry in the peripheral device. Tristate output buffer 508 may include an output buffer input line 508-1, an output buffer output line 508-2, and an output enable (OE) line 508-3. The output buffer input line 508-1 may be connected to circuitry in the peripheral device. The output buffer output line 508-2 and the input buffer output line 506-2 may be connected to the bidirectional line 502 which may be connected with bidirectional pad 504 in one embodiment.
Control circuitry connected to OE 508-3 and IE 506-3 controls whether bidirectional line 502 is an input or an output. For example, to configure the bidirectional line 502 as an input line, control circuitry may activate line IE 506-3 and deactivate OE 508-3. Because OE 508-3 is inactive, the output buffer output line 508-2 is driven to a high impedance state and the output buffer 508 is disconnected from the bi-directional line 502. At the same time, because IE 506-3 is active, the input buffer output line 506-2 reflects the logic state of the input buffer input line 506-1. Thus any electrical signal generated by circuitry connected to an electrical pad of the host device that is in electrical contact with pad 502 is reflected at the input buffer input line 506-1.
To configure the bidirectional line 502 as an output line, control circuitry may deactivate line IE 506-3 and activate OE 508-3. Because IE 506-3 is inactive, the input buffer output line 506-2 is driven to a high impedance state and circuitry connected with the input buffer output line 506-2 is disconnected from the bi-directional line 502. At the same time, because OE 508-3 is active, the output buffer output line 508-2 reflects the logic state of the output buffer input line 508-1. Thus any electrical signal generated by circuitry connected to the output buffer input line 508-1 may be reflected at pad 502.
In an alternative embodiment, a similar arrangement of buffers may be utilized for a unidirectional line connected with a unidirectional pad. In this embodiment, the tristate buffers may be replaced with logic buffers. A logic buffer may not have an enable line and therefore may not have a high impedance state of a tristate buffer. Accordingly, the logic state of the output of a logic buffer is equal to the logic state of the input provided to the logic buffer. For example, if the input is set to logic high, the logic state of the output is logic high. This may occur when the tristate output buffer 508 and the tristate input buffer 506 are replaced with an output logic buffer and an input logic buffer.
The output 508-3 of output buffer 508 may be adapted with an over-current protection circuit. When the bidirectional line 502 is configured as an output line, the over-current protection circuit limits the amount of current that may flow in and out of the output buffer 508. For example, when the logic level at the output buffer output line 508-3 is low or binary 0, the over-current protection circuit limits the amount of current that may be sunk into the output buffer. When the logic level at the output buffer output line 508-3 is high or logic 1, the over-current protection circuit limits the amount of current that may be sourced by the output buffer 508.
In case of a misaligned connection, the bidirectional pad 504 of the peripheral device 400 may contact a power terminal (e.g. electrical pad 414 of the host device 404). In this scenario, when bidirectional line 502 is configured as an output line and when a misaligned connection occurs, a low resistance current path is created between the power terminal and the output of the output buffer 508. This low resistance current path may be referred to as a short circuit. If the input 508-1 of the output buffer 508 is driven to a logic low state, a current corresponding to the over-current limit may be caused to flow into the output 508-2 of output buffer 508. This current level may cause heating of the pad and a process called electro migration may cause erosion of the electrical pad. This scenario is illustrated in
The operation of short circuit detector 802 may be controlled by signals provided at inputs OE_in 804, IE_in 806 and I_in of the short circuit detector 802. As previously described, the electrical pad 504 may be short circuited to the power pad (
To detect a short circuit to a ground pad, the short circuit detector 802 may enable the input buffer 506 and the output buffer 508 by means of a respective enable signal produced at IE_out and OE_out. In an exemplary embodiment, the short circuit detector 802 may set line I_in the input 508-1 of the output buffer 508 to a logic 1. Because both buffers are enabled, the logic level at the output 506-2 of the input buffer 506 must be equal to the logic level at the input 506-1 of the input buffer 506 which in turn must be equal to the logic level at the input 508-1 of the output buffer 508. The short circuit detector 802 may read the logic level at the output 506-2 of the input buffer 506 and compare the read logic level with the logic level set at the input 508-1 of the output buffer 508. If the logic levels are equal, the short circuit detector 802 may conclude that there is no short circuit to the power pad. However, as explained with respect to
The prot_en is input to the finite state machine (FSM). When prot_en is 1, the protection circuit will be enabled. If prot_en is 0, then the protection circuit remains disabled. The system may keep prot_en at 1 during power-up and may be kept at 0 at other times. The signal det_en is the output of the first AND gate. The short circuit detector may be enabled when OE_in and IE_in are 1 (i.e. when both output buffer and input buffer are enabled) as shown in Table 5 below:
A potential short circuit may be detected when I_in and O_in are different, in which case, the diff signal goes to 1. This detection of a potential short circuit by the diff signal is shown in Table 6 below:
The FSM may be a counter that counts the number of clock cycles at which the diff signal is at 1. The count may also count when prot_en signal is enabled. The output ctr signal of this counter may be at a default value of 0 except when it has counted 10 clock cycles, the ctr output goes to 1. The oe_gate gates OE and when oe_gate is 0 it drives OE_out to 0 instead of propagating OE_in to OE_out. This means the output buffer is tristated. Only when diff, det_en and ctr are 1 then oe_gate goes to 0. This is shown in Table 7 below:
In the present application, semiconductor memory devices such as those described in the present application may include volatile memory devices, such as dynamic random access memory (“DRAM”) or static random access memory (“SRAM”) devices, non-volatile memory devices, such as resistive random access memory (“ReRAM”), electrically erasable programmable read only memory (“EEPROM”), flash memory (which can also be considered a subset of EEPROM), ferroelectric random access memory (“FRAM”), and magneto-resistive random access memory (“MRAM”), and other semiconductor elements capable of storing information. Each type of memory device may have different configurations. For example, flash memory devices may be configured in a NAND or a NOR configuration.
The memory devices can be formed from passive and/or active elements, in any combinations. By way of non-limiting example, passive semiconductor memory elements include ReRAM device elements, which in some embodiments include a resistivity switching storage element, such as an anti-fuse, phase change material, etc., and optionally a steering element, such as a diode, etc. Further by way of non-limiting example, active semiconductor memory elements include EEPROM and flash memory device elements, which in some embodiments include elements containing a charge storage region, such as a floating gate, conductive nanoparticles, or a charge storage dielectric material.
Multiple memory elements may be configured so that they are connected in series or so that each element is individually accessible. By way of non-limiting example, flash memory devices in a NAND configuration (NAND memory) typically contain memory elements connected in series. A NAND memory array may be configured so that the array is composed of multiple strings of memory in which a string is composed of multiple memory elements sharing a single bit line and accessed as a group. Alternatively, memory elements may be configured so that each element is individually accessible, e.g., a NOR memory array. NAND and NOR memory configurations are exemplary, and memory elements may be otherwise configured.
The semiconductor memory elements located within and/or over a substrate may be arranged in two or three dimensions, such as a two dimensional memory structure or a three dimensional memory structure. In a two dimensional memory structure, the semiconductor memory elements are arranged in a single plane or a single memory device level. Typically, in a two dimensional memory structure, memory elements are arranged in a plane (e.g., in an x-z direction plane) which extends substantially parallel to a major surface of a substrate that supports the memory elements. The substrate may be a wafer over or in which the layer of the memory elements are formed or it may be a carrier substrate which is attached to the memory elements after they are formed. As a non-limiting example, the substrate may include a semiconductor such as silicon.
The memory elements may be arranged in the single memory device level in an ordered array, such as in a plurality of rows and/or columns. However, the memory elements may be arrayed in non-regular or non-orthogonal configurations. The memory elements may each have two or more electrodes or contact lines, such as bit lines and word lines.
A three dimensional memory array is arranged so that memory elements occupy multiple planes or multiple memory device levels, thereby forming a structure in three dimensions (i.e., in the x, y and z directions, where the y direction is substantially perpendicular and the x and z directions are substantially parallel to the major surface of the substrate). As a non-limiting example, a three dimensional memory structure may be vertically arranged as a stack of multiple two dimensional memory device levels. As another non-limiting example, a three dimensional memory array may be arranged as multiple vertical columns (e.g., columns extending substantially perpendicular to the major surface of the substrate, i.e., in the y direction) with each column having multiple memory elements in each column. The columns may be arranged in a two dimensional configuration, e.g., in an x-z plane, resulting in a three dimensional arrangement of memory elements with elements on multiple vertically stacked memory planes. Other configurations of memory elements in three dimensions can also constitute a three dimensional memory array.
By way of non-limiting example, in a three dimensional NAND memory array, the memory elements may be coupled together to form a NAND string within a single horizontal (e.g., x-z) memory device levels. Alternatively, the memory elements may be coupled together to form a vertical NAND string that traverses across multiple horizontal memory device levels. Other three dimensional configurations can be envisioned wherein some NAND strings contain memory elements in a single memory level while other strings contain memory elements which span through multiple memory levels. Three dimensional memory arrays may also be designed in a NOR configuration and in a ReRAM configuration.
Typically, in a monolithic three dimensional memory array, one or more memory device levels are formed above a single substrate. Optionally, the monolithic three dimensional memory array may also have one or more memory layers at least partially within the single substrate. As a non-limiting example, the substrate may include a semiconductor such as silicon. In a monolithic three dimensional array, the layers constituting each memory device level of the array are typically formed on the layers of the underlying memory device levels of the array. However, layers of adjacent memory device levels of a monolithic three dimensional memory array may be shared or have intervening layers between memory device levels.
Then again, two dimensional arrays may be formed separately and then packaged together to form a non-monolithic memory device having multiple layers of memory. For example, non-monolithic stacked memories can be constructed by forming memory levels on separate substrates and then stacking the memory levels atop each other. The substrates may be thinned or removed from the memory device levels before stacking, but as the memory device levels are initially formed over separate substrates, the resulting memory arrays are not monolithic three dimensional memory arrays. Further, multiple two dimensional memory arrays or three dimensional memory arrays (monolithic or non-monolithic) may be formed on separate chips and then packaged together to form a stacked-chip memory device.
Associated circuitry is typically required for operation of the memory elements and for communication with the memory elements. As non-limiting examples, memory devices may have circuitry used for controlling and driving memory elements to accomplish functions such as programming and reading. This associated circuitry may be on the same substrate as the memory elements and/or on a separate substrate. For example, a controller for memory read-write operations may be located on a separate controller chip and/or on the same substrate as the memory elements.
One of skill in the art will recognize that this invention is not limited to the two dimensional and three dimensional exemplary structures described but cover all relevant memory structures within the spirit and scope of the invention as described herein and as understood by one of skill in the art.
A “computer-readable medium,” “machine readable medium,” “propagated-signal” medium, and/or “signal-bearing medium” may comprise any device that includes, stores, communicates, propagates, or transports software for use by or in connection with an instruction executable system, apparatus, or device. The machine-readable medium may selectively be, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. A non-exhaustive list of examples of a machine-readable medium would include: an electrical connection “electronic” having one or more wires, a portable magnetic or optical disk, a volatile memory such as a Random Access Memory “RAM”, a Read-Only Memory “ROM”, an Erasable Programmable Read-Only Memory (EPROM or Flash memory), or an optical fiber. A machine-readable medium may also include a tangible medium upon which software is printed, as the software may be electronically stored as an image or in another format (e.g., through an optical scan), then compiled, and/or interpreted or otherwise processed. The processed medium may then be stored in a computer and/or machine memory. In an alternative embodiment, dedicated hardware implementations, such as application specific integrated circuits, programmable logic arrays and other hardware devices, can be constructed to implement one or more of the methods described herein. Applications that may include the apparatus and systems of various embodiments can broadly include a variety of electronic and computer systems. One or more embodiments described herein may implement functions using two or more specific interconnected hardware modules or devices with related control and data signals that can be communicated between and through the modules, or as portions of an application-specific integrated circuit. Accordingly, the present system encompasses software, firmware, and hardware implementations.
The illustrations of the embodiments described herein are intended to provide a general understanding of the structure of the various embodiments. The illustrations are not intended to serve as a complete description of all of the elements and features of apparatus and systems that utilize the structures or methods described herein. Many other embodiments may be apparent to those of skill in the art upon reviewing the disclosure. Other embodiments may be utilized and derived from the disclosure, such that structural and logical substitutions and changes may be made without departing from the scope of the disclosure. Additionally, the illustrations are merely representational and may not be drawn to scale. Certain proportions within the illustrations may be exaggerated, while other proportions may be minimized. Accordingly, the disclosure and the figures are to be regarded as illustrative rather than restrictive.
It is intended that the foregoing detailed description be understood as an illustration of selected forms that the invention can take and not as a definition of the invention. It is only the following claims, including all equivalents that are intended to define the scope of the claimed invention. Finally, it should be noted that any aspect of any of the preferred embodiments described herein can be used alone or in combination with one another.