Protecting a textile process liquid before application to a filament

Information

  • Patent Grant
  • 5425227
  • Patent Number
    5,425,227
  • Date Filed
    Tuesday, March 23, 1993
    31 years ago
  • Date Issued
    Tuesday, June 20, 1995
    29 years ago
Abstract
In a textile-processing operation wherein a filament is displaced longitudinally continuously past a treatment station and a liquid is applied to the moving filament at the station, a supply of the liquid is held in a container spaced from the station and connected via a conduit to an applicator at the station. Space above the liquid in the container is filled with a gas that is devoid of free oxygen and that is in direct contact with the liquid. This gas above the liquid is pressurized in the container to controlledly force the liquid from the container through the conduit to the applicator at the station. The liquid is kept out of contact with oxygen until it actually has been applied to the filament. In fact the filament is passed over a small-diameter orifice formed in a guide and the liquid is forced from the orifice. The filament directly engages the guide at the orifice and covers the orifice so that the liquid does not contact the ambient air until after it is applied to the filament.
Description

FIELD OF THE INVENTION
The present invention relates to a textile process. More particularly this invention concerns a method of protecting a liquid used in such a process.
BACKGROUND OF THE INVENTION
In many textile processes, for instance spinning and drawing, it is necessary to apply to a filament a process liquid that degrades rapidly when exposed to free oxygen or that can support bacterial life. Hence it is necessary in such processes to clean the equipment frequently and to work with small supplies of the processing liquid in order to ensure that it is used up before it spoils.
OBJECTS OF THE INVENTION
It is therefore an object of the present invention to provide an improved textile-processing method that avoids such spoiling of the process liquid.
Another object is the provision of such an improved textile-processing method which overcomes the above-given disadvantages, that is which allows a relatively large quantity to be used over a relatively long time without spoiling.
SUMMARY OF THE INVENTION
In a textile-processing operation wherein a filament is displaced longitudinally continuously past a treatment station and a liquid is applied to the moving filament at the station, a supply of the liquid is held in a container spaced from the station and connected via a conduit to an applicator at the station. Space above the liquid in the container is filled with a gas that is devoid of free oxygen and that is in direct contact with the liquid. This gas above the liquid is pressurized in the container to controlledly force the liquid from the container through the conduit to the applicator at the station.
Thus the liquid is kept out of contact with oxygen until it actually has been applied to the filament. In fact according to this invention the filament is passed over a small-diameter orifice formed in a guide and the liquid is forced from the orifice. The filament directly engages the guide at the orifice and covers the orifice so that the liquid does not contact the ambient air until after it is applied to the filament.
The gas according to the invention can be carbon dioxide or an inert gas. The pressure of the gas can be varied in the container.





BRIEF DESCRIPTION OF THE DRAWING
The above and other objects, features, and advantages will become more readily apparent from the following, reference being made to the accompanying drawing in which:
FIG. 1 is a largely schematic diagram illustrating the method and apparatus of this invention;
FIG. 2 is a large-scale view of the liquid applicator according to the invention; and
FIG. 3 is a top view of the applicator of FIG. 2.





SPECIFIC DESCRIPTION
As seen in FIG. 1 a drafting/spinning machine 1 has a pair of textile filaments 2 that are each fed in through input pinch rolls 3 to a feeder 4 whence it passes through a guide eye 5 to a rotating core 6 where it is wound up as a yarn package 7. This equipment is all standard.
Juxtaposed with each filament 2 between the feeder 4 and the eye 5 is a liquid .applicator 8 connected via a conduit 9 to a bottle 10 holding a supply 11 of the liquid to be applied by the applicators 8 to the filaments 2. This container 10 is kept full by a pump 26 drawing more of the liquid 11 out of a big supply container 20. The liquid 11 can be sizing or a lubricant.
According to the invention the container 10 is pressurized above the liquid 11 with a head 14 of a gas delivered from a gas supply 12 through a pressure-regulating valve 13. This gas can be a relatively inert gas, for instance nitrogen, or a gas devoid of free oxygen, for instance carbon dioxide, or can contain a bactericide, for instance ethylene. Excess liquid is caught at 15 and channeled off via conduits 17 to a catch vessel 16.
Thus with the arrangement of the present invention the liquid 11 is protected against oxidation and/or bacteria growth.
FIGS. 2 and 3 illustrate the applicator according to the invention. It has a hard ceramic guide 18 forming a V-groove 19 into the base of which opens a tiny orifice (less than l mm in diameter) at the downstream end of the conduit 9. The process liquid is therefore applied directly to the filament 2 in very small quantities as it moves continuously at relatively high speed through the applicator. The application rate is less than 1%, that is 1 g of process liquid for 10,000 m of filament weighing 100 g. The process liquid is about 95% water and contains at most 0.05% oil. Any excess liquid is caught at 20 and conducted away via the conduit 17. This type of applicator is described in German patent document 3,003,389.
Claims
  • 1. In a textile-processing operation wherein a filament is displaced longitudinally continuously past a treatment station and a liquid is applied to the moving filament at the station, a method comprising the steps of:
  • passing the filament at the station across a small-diameter orifice formed in a guide with the filament in direct contact with the guide at the orifice and with the filament substantially completely covering the orifice;
  • holding a supply of the liquid in a container spaced from the station and connected via a conduit to the orifice at the station;
  • filling space above the liquid in the container with a gas that is devoid of free oxygen and that is in direct contact with the liquid; and
  • pressurizing the gas above the liquid in the container and thereby controlledly forcing the liquid from the container through the conduit and from the orifice at the station, whereby the filament is wetted by the liquid as it passes across the orifice from which the liquid is forced and the liquid does not contact the ambient air until after it is applied to the filament.
  • 2. The method defined in claim 1 wherein the gas is carbon dioxide.
  • 3. The method defined in claim 1 wherein the gas is an inert gas.
  • 4. The method defined in claim 1, further comprising the step of
  • varying the pressure of the gas in the container.
Priority Claims (1)
Number Date Country Kind
40 20 890.7 Jun 1990 DEX
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of patent application Ser. No. 07/710,530 (now abandoned) filed 04 Jun. 1991 with a claim to the priority of German patent application P 4,020,890 filed 29 Jun. 1990.

US Referenced Citations (18)
Number Name Date Kind
1964658 Bongrand et al. Jun 1934
2080193 Bakker May 1937
2781021 Schmitz Feb 1957
3028257 Svrchek et al. Apr 1962
3233585 Majette Feb 1966
3429113 Nimtz et al. Feb 1969
3955254 Delarue et al. May 1976
3983723 Ameling Oct 1976
4051651 Wahlen et al. Oct 1977
4052521 Ferrari Oct 1977
4055937 Latus et al. Nov 1977
4087242 Frank et al. May 1978
4165623 Negola et al. Aug 1979
4397913 Fahey Aug 1983
4470252 Brodmann Sep 1984
4487157 Bergeron et al. Dec 1984
4532154 Hartemann Jul 1985
4746565 Bafford et al. May 1988
Foreign Referenced Citations (3)
Number Date Country
480762 Jul 1929 DEX
3003389 Jan 1980 DEX
2072054 Sep 1991 GBX
Continuation in Parts (1)
Number Date Country
Parent 710530 Jun 1991