The accompanying drawings are included to provide a further understanding of the invention, and are incorporated in and constitute a part of this specification. The drawings illustrate embodiments of the invention and, together with the description, serve to explain the principles of the invention.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the description to refer to the same or like parts.
The temperature detection module 202 is configured to generate a first voltage signal V+ and a second voltage signal V−, wherein the first and second voltage signals having positive and negative temperature coefficient characteristics, respectively. When the temperature detection module 202 outputs the first and second voltage signals V+ and V− to the comparator unit 204, the comparator unit 204 compares the first voltage signal with the second voltage signal and generates the protection signal SD according to the comparison result to control the electronic system 220.
It can be clearly seen in
On the other hand, when the environment temperature is smaller than the critical temperature T1, after the comparator unit 204 compares the first voltage signal V+with the second voltage signal V−, a negative comparing value is obtained, and the electronic system 220 maintains normal operation. It should be noted that, although the protection signal SD is a positive comparing value in this embodiment, it is not limited to this. In another embodiments, the protection signal SD may also be a negative comparing value. Whether the comparing value is positive or negative may be determined in terms of the signal required by the electronic system 200. If a negative protection signal SD is desired, the protection apparatus 200 may include a phase-inverter electrically coupled to the comparator unit 204.
Referring to
One end of the first temperature detection element R1 and one end of the second temperature detection element R2 are commonly grounded, and another end of the first second temperature detection element R1 and another end of the second temperature detection element R2 receive a first current signal I1 and a second current signal 12 generated by the current mirror circuit 402 to generate the first voltage signal V+ and the second voltage signal V− respectively. The first voltage signal V+ and the second voltage signal V− are sent to the comparator unit 204. In an exemplary process of fabricating the IC chip, the first temperature detection element R1 may be a positive temperature coefficient resistor, such as, for example, a resistor made of P+ material, and the second temperature detection element R2 may be a negative temperature coefficient resistor, such as, for example, a resistor made of HR POLY1 material. In addition, in this embodiment, when the ambient temperature does not reach the critical temperature T1, the resistance value of the second temperature detection element R2 is greater than that of the first temperature detection element R1.
In the present embodiment, the current mirror circuit 402 includes two PMOS transistors 404 and 406. The sources of the PMOS transistors 404 and 406 are commonly coupled to a voltage source, and the gates thereof are connected together and electrically coupled to a control unit 403 for applying a voltage to the gates of the PMOS transistor 404 and 406 so that the value of the first current signal I1 and the second current signal 12 are substantially the same. In addition, the drain of the PMOS transistor 404 is electrically coupled to one end of the first temperature detection element R1, and the drain of the PMOS transistor 406 is electrically coupled to one end of the second temperature detection element R2. Therefore, the electrical currents flowing through the first and second temperature detection elements R1 and R2 are the same.
Furthermore, the comparator unit 204 employs a hysteresis comparator, which generally has good noise-reduction function, thus minimizing the affects of errors during the fabrication of the first and second temperature detection elements R1 and R2.
Referring to
In addition, signals noise entering into the protection apparatus system via the voltage source or grounding terminals may cause problems in the operation of the electronic system. To address this problem, in the protection apparatus 200 of this embodiment, the first temperature detection element R1 and the second temperature detection element R2 receive the noise signals at the same time, the noise signals can therefore be considered as a pair of common-mode noise signals which can be filtered by the comparator unit 204. Thus, the protection apparatus 200 has good noise-filtration function.
Referring to
In addition, referring to
Referring to
Next, in Step S603, a comparator unit 204 compares the first voltage signal V+with the second voltage signal V−, wherein the value of the second voltage signal V− is subtracted from value of the first voltage signal V+.
Next, in Step S605, whether or not the difference between the first and second voltage signals V+ and V− is greater than a predetermined voltage is determined. If the difference is greater than the predetermined voltage, then the thermal shutdown method enters the Step S607, otherwise the method enters the Step S609.
wherein, in Step S607, the comparator unit 204 outputs a protection signal SD for ceasing the operation of the electronic system. In Step S609, the electronic system maintains normal operation.
Furthermore, the present invention also discloses a structure of a chip including a protection apparatus and a control apparatus, wherein the protection apparatus has the same elements as the above-described protection apparatus 200, and the detail description will not be repeated hereinafter. In this embodiment, when the ambient temperature is too high, the protection apparatus generates a protection signal and transmits to the control apparatus for controlling the chip to cease operation, thus providing thermal protection to the chip.
To sum up, the present invention has at least the following advantages:
1. By using the temperature detection elements to generate voltage signals with positive temperature coefficient and negative temperature coefficient, effective thermal protection may be provided to an electronic system.
2. Since the protection apparatus of the present invention employs a hysteresis comparator to realize the function of the comparator unit, noise due to errors in fabrication of the components may be effectively eliminated.
3. Since the present invention uses common mode input technology, and therefore the interference caused by noise signals may be effectively reduced. That is, the present invention has good noise-filtration function.
It will be apparent to those skilled in the art that various modifications and variations can be made to the structure of the present invention without departing from the scope or spirit of the invention. In view of the foregoing, it is intended that the present invention cover modifications and variations of this invention provided they fall within the scope of the following claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
95135924 | Sep 2006 | TW | national |