The present invention relates to active and passive protection devices and more particularly to the stem of an active or passive protection device.
Climbers generally use clean protection devices for two distinct purposes. First, a clean protection device may be used as a form of safety protection for protecting a climber in the event of a fall and second, a clean protection device may intentionally be used to artificially support a climber's weight. Clean protection devices cam or wedge into a crack, hole, gap, orifice, taper, or recess in order to support an outward force. The area or surface within which the clean protection device supports the outward force is considered the protection surface. The protection surface can consist of natural materials such as rock or may consist of artificial materials such as concrete.
Clean protection devices are generally divided into active and passive categories. Passive protection devices include a single object, which contacts the protection surface to support an outward force. For example, a wedge is a passive protection device because it has a single head with a fixed shape. There are numerous types of passive protection devices including nuts, hexes, tri-cams, wedges, rocks, and chocks. Active protection devices include at least two movable objects that can move relative to one another to create a variety of shapes. For example, a slidable chock or slider nut is considered an active protection device because it includes two wedges that move relative to one another to wedge into various shaped crevices. When the two wedges of the slider nut are positioned adjacent to one another, the overall width of the protection device is significantly larger than if the two wedges are positioned on top of one another. The two wedges must make contact with the protection surface in order to actively wedge the device within the protection surface. A further subset of active protection devices is camming devices. These devices translate rotational displacement into linear displacement. Therefore, a slider chock would not be an active camming device because the two wedges simply slide relative to one another and do not rotate. Camming devices include two, three, and four cam lobe devices. The cam lobes on an active camming device are generally spring biased into an expanded position and are able to rotate or pivot about an axle to retract. In operation, at least one cam lobe on either side of the unit must make contact with the protection surface for the device to be able to actively support an outward force. Some active protection devices can also be used passively to support outward forces as well.
Active protection devices are generally preferable to passive protection devices because of their ability to cam into a variety of features. For example, a standard four-cam unit has a particular camming range that allows it to cam into features within a particular size range. Whereas, a passive protection device is limited to a single shape and can therefore only cam or wedge into features that conform to that particular shape. Unfortunately, the largest disadvantage of active protection devices is their considerable weight in relation to passive protection devices. One of the heavier components of an active protection device is the connection system. The connection system connects the camming objects to some form of clip-in point. The two most common connection systems used in three and four cam units are single stem and double stem systems. Double stem systems include a U-shaped cable that attaches independently to two cable terminals on either end of the head of the protection device. The clip-in point of a double stem system is simply the bottom of the U-shaped cable. Single stem systems include a single cable that is attached to a single cable terminal located at the center of the head of the protection device. The single stem system generally includes some form of clip-in loop attached to the single cable. Alternatively, a clip-in loop can be created by coupling the single cable back to itself with some form of swage. Single stem connection systems are generally preferable for larger cams because they are less likely to obstruct particular camming placements.
Existing single stem connection systems for use with active protection devices possess many limitations. One of the main problems associated with conventional single stem systems is their weight. Weight is an extremely important factor in climbing equipment because any unnecessary weight requires a climber to expend additional energy in making upward progress up a particular climb. In addition, climbers must often carry their protection devices long distances before a climb begins causing the climber to expel even more energy if a protection device includes unnecessary weight. Alternatively, if a particular protection device is perceived to include unnecessary weight a climber is unlikely to use it. From a business standpoint, climbers are unlikely to purchase protection devices that are perceived to possess unnecessary weight. Therefore, there is a need in the industry for a single stem connection system compatible with active protection devices that minimizes weight but maintains the existing benefits.
In addition, a second problem associated with conventional single stem systems is their high manufacturing costs. Single stem systems are generally more expensive to manufacture than double stem systems because of the additional clip-in loop that must be attached to the stem. As discussed above, conventional single stem systems do not automatically possess a clip-in point. Therefore, a clip-in point or loop must be connected to the single stem or created by coupling the single stem back to itself. The clip-in point or loop is generally a metal or plastic piece that must be independently manufactured. The connection between the clip-in point and the single stem or the single stem and itself must also be performed as part of the assembly process. These additional steps and parts unnecessarily raise the manufacturing cost of producing single stem systems. Therefore, there is a need in the industry for a single stem system that is less expensive to manufacture but maintains the benefits of existing single stem systems.
The present invention relates to a connection system for use with an active or passive protection device that minimizes weight. In accordance with the present invention, a single stem connection system for use with an active protection device includes a single bent cable that is attached to the single cable terminal of the active protection device. A stem tube is fitted over a portion of the bent cable giving the appearance and benefits of a single stem. However, a portion of the bent cable is left separated thereby automatically forming a clip-in point for the entire active protection device. Unlike conventional single stem connection systems, the single stem system in accordance with the present invention only requires coupling the cable to the cable terminal thereby reducing manufacturing cost and minimizing overall weight. Alternatively, a similar connection system can be used with a passive protection device to provide many of the same benefits.
In one embodiment, the connection system includes coupling the cable to the cable terminal by extending the two ends of the cable through a single hole in the cable terminal and then coupling the ends of the cable to a ball wedge. The ball wedge is shaped in a substantially conical manner that prevents the ball wedge from extending back down through the cable terminal.
In an alternative embodiment, the single cable terminal is actually two independent cable terminals adjacent to one another. The two ends of the cable are then independently coupled to each of the two cable terminals.
In yet another alternative embodiment, the cable terminal includes a lower member within which the cable is coupled. Therefore, rather than extending the cable through a recess between the axle holes of the cable terminal, the cable is coupled to the cable terminal at the lower member.
In yet another alternative embodiment, the cable is coupled directly to the cable terminal. The cable is extended through a hole or recess between the axle holes and is then directly coupled to the cable terminal with a coupling technique such as compression swaging.
In yet another alternative embodiment, a terminal member is used that integrates both a cable terminal and an axle into one member. The terminal member is coupled to the cable either internally or externally as described in the other embodiments. Because the axle is integrated with the cable terminal it is not necessary to provide axle holes.
In yet another alternative embodiment, the cable is coupled to a camming head to form a passive protection device. The two ends of the cable are extended into the camming head through a single hole or recess. The ends of the cable are directly coupled to the camming head or externally coupled by coupling to a member such as a ball wedge.
The embodiments described above may also be combined in any manner to create additional embodiments. The foregoing and other features, utilities, and advantages of the invention will be apparent from the following detailed description of the invention with reference to the accompanying drawings.
The accompanying drawings illustrate various embodiments of the present invention and are a part of the specification. The illustrated embodiments are merely examples of the present invention and do not limit the scope of the invention.
Throughout the drawings, identical reference numbers designate similar, but not necessarily identical, elements.
Reference will now be made to the drawings to describe presently preferred embodiments of the invention. It is to be understood that the drawings are diagrammatic and schematic representations of the presently preferred embodiments, and are not limiting of the present invention, nor are they necessarily drawn to scale.
The present invention relates to a connection system for use with an active or passive protection device that minimizes weight. In accordance with the present invention, a single stem connection system for use with an active protection device includes a single bent cable that is attached to the single cable terminal of the active protection device. A stem tube is fitted over a portion of the bent cable giving the appearance and benefits of a single stem. However, a portion of the bent cable is left separated thereby automatically forming a clip-in point for the entire active protection device. Unlike conventional single stem connection systems, the single stem system in accordance with the present invention only requires coupling the cable to the cable terminal thereby reducing manufacturing cost and minimizing overall weight. Alternatively, a similar connection system can be used with a passive protection device to provide many of the same benefits. Also, while embodiments of the present invention are described in the context of a connection system for use with a protection device, and a method of manufacturing, it will be appreciated that the teachings of the present invention are applicable to other applications as well.
Reference is initially made to
The retraction system includes the various components to retract the cam lobes 150 into a retracted position. The retraction system includes a trigger 125 and four trigger wires 170. The trigger 125 further includes two trigger wire holes 129, a stem hole 128, and a body 127. The trigger 125 is configured to be slidable with respect to the stem such that a user can retract the trigger away from the cable terminal 135. The trigger 125 is independently coupled to each of the cam lobes 150 via the trigger wires 170. The trigger wires 170 hook into the trigger holes 152 in the cam lobes 150 and the trigger wire holes 129 on the trigger 125. The distance between the trigger and the cable terminal 135 must be precisely measured in order to maintain proper retraction ergonomics while minimizing overall device weight. For example, if the distance between the trigger 125 and cable terminal 135 is too short, it is possible for the cam lobes 150 to touch or rub a user's hand during retraction. Likewise, if the distance between the trigger 125 and the cable terminal 135 is too long, the device includes unnecessary weight. Therefore, the trigger 125 must be optimally positioned a particular distance from the cable terminal 135. However, by swooping or bending the body 127 of the trigger 125, as shown in
The connection system is designed to provide a system by which a user can connect the camming system to a rope or other device. The connection system in accordance with the embodiment illustrated in
The connection system illustrated in
Reference is next made to
Reference is next made to
Reference is next made to
Reference is next made to
Reference is next made to
Reference is next made to
Reference is next made to
While this invention has been described with reference to certain specific embodiments and examples, it will be recognized by those skilled in the art that many variations are possible without departing from the scope and spirit of this invention. For example, the teachings of one embodiment may be combined with the teachings of another and remain consistent with the scope and spirit of this invention. The invention, as defined by the claims, is intended to cover all changes and modifications of the invention which do not depart from the spirit of the invention. The words “including” and “having,” as used in the specification, including the claims, shall have the same meaning as the word “comprising.”
This application claims priority to U.S. Provisional Application Ser. No. 60/538,406 filed Jan. 22, 2004, entitled “PROTECTION DEVICE STEM DESIGN”.
Number | Name | Date | Kind |
---|---|---|---|
2903291 | Barthule | Sep 1959 | A |
2979297 | Suozzo | Apr 1961 | A |
2985480 | Otley | May 1961 | A |
3371663 | Apgar | Mar 1968 | A |
RE26704 | Norton | Nov 1969 | E |
3592502 | Bolliger | Jul 1971 | A |
3776585 | Bridgehouse | Dec 1973 | A |
3877679 | Lowe | Apr 1975 | A |
4044976 | Campbell | Aug 1977 | A |
4184657 | Jardine | Jan 1980 | A |
4526164 | Bihl | Jul 1985 | A |
4565342 | Grow | Jan 1986 | A |
4572464 | Phillips | Feb 1986 | A |
4575032 | Taylor | Mar 1986 | A |
4643377 | Christianson | Feb 1987 | A |
4643378 | Guthrie et al. | Feb 1987 | A |
4645149 | Lowe | Feb 1987 | A |
4781346 | Banner | Nov 1988 | A |
4832239 | Andersson | May 1989 | A |
4923160 | Waggoner | May 1990 | A |
6119993 | Youngblood et al. | Sep 2000 | A |
6736359 | Murray | May 2004 | B2 |
7040588 | Lowe | May 2006 | B2 |
20040035992 | Watts | Feb 2004 | A1 |
20050037023 | Field, Jr. | Feb 2005 | A1 |
20050218282 | Phillips | Oct 2005 | A1 |
Number | Date | Country |
---|---|---|
398167 | Oct 1994 | AT |
398167 | Oct 1994 | AT |
3517741 | Jan 1986 | DE |
3517741 | Jan 1986 | DE |
2369068 | May 2002 | GB |
2380949 | Apr 2003 | GB |
Number | Date | Country | |
---|---|---|---|
20050161565 A1 | Jul 2005 | US |
Number | Date | Country | |
---|---|---|---|
60538406 | Jan 2004 | US |