Protection of distributed antenna systems

Information

  • Patent Grant
  • 9509133
  • Patent Number
    9,509,133
  • Date Filed
    Friday, June 27, 2014
    10 years ago
  • Date Issued
    Tuesday, November 29, 2016
    8 years ago
Abstract
A protection circuit may be configured for detecting electrical power of downlink radio frequency (RF) signals, and diverting a substantial portion of the downlink RF signals away from a downlink RF interface of a distributed antenna system DAS in response to the detected electrical power being equal to or greater than a predetermined electrical power. The downlink RF signals diverted away from the downlink RF interface may be routed to an electrical load. The protection circuit may include hysteresis.
Description
BACKGROUND

Field of the Disclosure


This disclosure relates generally to distributed antenna systems and, more particularly, to protecting distributed antenna systems from being electrically over powered.


Technical Background


A distributed antenna system (DAS) typically includes a plurality of spaced apart antennas configured for extending radio frequency (RF) antenna coverage of an associated system. For example, a DAS may be associated with a cellular system, a “wireless fidelity” or “WiFi” system, or a wireless local area network (WLAN) by coupling the DAS to a base transceiver station (BTS) that may be in the form of a cellular base station, a WiFi base station, or a WLAN base station. As one specific example, when cellular service is not available within the interior of a building, a DAS may be installed in the interior of the building and coupled to the antenna port or ports of a cellular BTS that may be installed in the building, for providing cellular service within the interior of the building.


In active DAS networks, the DAS being coupled to a BTS typically comprises a downlink interface being used for interfacing the BTS to the DAS. The downlink interface usually includes devices such as duplexers, amplifiers and variable attenuators. A typical downlink interface can withstand power levels of only up to few watts, and the normal operation range of the downlink interface is usually below one watt (30 dBm). However, the maximum output power of a standard cellular BTS may reach twenty Watts (43 dBm) or even more. Therefore, a cellular BTS interfaced to an active DAS is typically configured to operate with low output power to match the operational range of the downlink interface, which is usually lower than one watt (30 dBm). However, due to human mistakes or technical failures, the BTS might start transmitting its maximum output power and the downlink interface may be damaged.


SUMMARY

An embodiment of this disclosure relates at least one circuit for protecting at least one device of a DAS from being over powered by downlink RF signals that may originate from a BTS. The DAS may include at least one downlink RF interface configured to receive the downlink RF signals and distribute the downlink RF signals over at least one downlink communications medium to one or more remote antenna units (RAUs). The at least one protection circuit may be communicatively coupled to the at least one downlink RF interface. The at least one protection circuit may be configured for detecting electrical power of at least a portion of (e.g., a sample portion of) the downlink RF signals, and diverting a substantial portion of the downlink RF signals away from the at least one downlink RF interface in response to the detected electrical power being equal to or greater than a predetermined electrical power.


The downlink RF signals diverted away from the at least one downlink RF interface may be routed to an electrical load (e.g., “dummy load”). The predetermined electrical power may be indicative of electrical power of the downlink RF signals being in a range from about 0.1 watts to about 100 watts, or more specifically about 0.5 watts to about 20 watts, although other predetermined electrical powers are within the scope of this disclosure. The at least one protection circuit may be configured for handling/diverting up to about 100 watts away from the at least one downlink RF interface in response to the detected electrical power being equal to or greater than the predetermined electrical power. The at least one protection circuit may include hysteresis, wherein the diverting mechanism is activated in response to a detected electrical power being equal or higher than a first predetermined electrical power, but once the diverting mechanism is activated it will not be released until the detected electrical power goes below a second predetermined electrical power that is less than the first predetermined electrical power.


The at least one protection circuit may include at least one power detector for detecting the electrical power of the at least a portion of the downlink RF signals, at least one comparator operatively associated with the at least one power detector for determining whether the detected electrical power is equal to or greater than the predetermined electrical power, and at least one RF switch operatively associated with the at least one comparator for diverting the downlink RF signals away from the at least one downlink RF interface in response to the at least one comparator determining that the detected electrical power is equal to or greater than the predetermined electrical power. A digital to analog converter may be coupled to a first port of the comparator, and the power detector may be coupled to a second port of the comparator. The at least one protection circuit may further include coupler(s), combiners(s) and/or other suitable features.


An embodiment of this disclosure comprises a method of operating a distributed antenna apparatus. The method may include receiving downlink RF signals, detecting electrical power of at least a portion of the downlink RF signals, and distributing a substantial portion of the downlink RF signals over at least one downlink communications medium to one or more RAUs in response to the detected electrical power being less than a predetermined electrical power. This and/or another method may further include not distributing the downlink RF signals over at least one downlink communications medium to one or more RAUs in response to the detected electrical power being equal to or greater than the predetermined electrical power or another suitable amount of electrical power. The step of not distributing may comprise diverting a substantial portion of the downlink RF signals away from the at least one device of the distributed antenna apparatus. The substantial portion of the downlink RF signals may be diverted to an electrical load.


Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings.


It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram that schematically illustrates a system including a DAS coupled to a BTS, wherein the DAS includes a protection circuit, in accordance with an embodiment of this disclosure.



FIG. 2 is a block diagram that schematically illustrates at least the protection circuit of FIG. 1, in accordance with an embodiment of this disclosure.



FIG. 3 schematically illustrates hysteresis features associated with a comparator of the protection circuit, in accordance with an embodiment of this disclosure.





DETAILED DESCRIPTION

Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.



FIG. 1 illustrates a composite electrical system 10 including a DAS 12 electrically coupled to both a conventional, cellular, base transceiver station BTS 14 and a conventional dummy load 16, in accordance with an embodiment of this disclosure. Except for having a protection circuit 18 associated therewith, the DAS 12 or a substantial portion of the DAS may be conventional. The protection circuit 18 is configured for protecting the DAS 12 from being over powered by the BTS 14. Generally described and in accordance with one embodiment, the protection circuit 18 is configured for identifying a situation in which the BTS 14 transmits sufficiently high electrical power (e.g., greater than or equal to predetermined electrical power) for at least potentially over powering (e.g., damaging) at least one sensitive device of the DAS 12, wherein in response to that situation the protection circuit diverts the high power from the BTS to the dummy load 16 instead of allowing the high power from the BTS to reach the at least one sensitive device of the DAS 12. The at least one sensitive device of the DAS 12 may be an RF downlink interface 30, as will be discussed in greater detail below


The DAS 12 of the embodiment shown the drawings may be an optical fiber-based DAS configured to create one or more antenna coverage areas 20 for establishing RF wireless communications with wireless devices 22 located in the RF range of the antenna coverage areas. Each of the wireless devices 22 may be any suitable device capable of receiving and/or transmitting wireless RF communication signals. As an example, a device 22 may be a conventional cellular phone having a combination of features including an antenna 24, wherein the combination of features is adapted to receive and/or send electromagnetic RF signals. Whereas the embodiment shown in the drawings is discussed in this Detailed Description section of this disclosure primarily in the context of the DAS 12 being coupled to the cellular BTS 14, alternatively the DAS may be coupled to a WiFi BTS, a WLAN BTS and/or any other suitable BTS.


With continued reference to FIG. 1, features of the optical fiber-based DAS 12 that may be conventional can include one or more RAUs 26 coupled by one or more optical fiber communications mediums 28 to at least one RF downlink interface 30 and at least one RF uplink interface 32. The downlink and uplink interfaces 30, 32 may be referred to as head-end equipment or parts of a head-end unit. The RAU 26 is a type of remote communications unit. In general, a remote communications unit may support wireless communications, wired communications, or both. Accordingly, the RAU 26 can support wireless communications and may also support wired communications. As shown in FIG. 1, the RAU 26 includes an antenna 34 for providing the antenna coverage area 20. Alternatively or more generally, the downlink and uplink communications medium(s) 28 may be any mediums, including but not limited to electrical conductor, optical fiber, and air (i.e., wireless transmission). As more specific examples regarding features of the DAS, each of U.S. Pat. No. 8,548,330 and US 2014/0050482 is incorporated herein by reference in its entirety.


The protection circuit 18 may also be characterized as being head-end equipment or part of a head-end unit. On the other hand, the protection circuit 18 may be characterized as being a separate feature from the head-end equipment or unit. Similarly, whereas the protection circuit 18 is schematically shown in FIG. 1 as being part of or encompassed by the DAS 12, the protection circuit may alternatively be characterized as being, or may be positioned so as to be, outside of the DAS.


Generally described, the downlink interface 30 receives downlink electrical RF signals from the BTS 14 by way of the protection circuit 18, and the protection circuit is configured in a manner that seeks to prevent the downlink interface 30 from being over powered by the BTS 14, as will be discussed in greater detail below. In one embodiment, the downlink interface 30 is configured to convert the downlink electrical RF signals it receives into corresponding downlink optical RF signals and provide those downlink optical RF signals to the RAU 26 over at least one of the optical fiber communication mediums 28. Conversely and in the same embodiment, the uplink interface 32 is configured to receive uplink optical RF signals from the RAU 26 over at least one of the optical fiber communication mediums 28, and convert the uplink optical RF signals it receives into uplink electrical RF signals. The uplink interface 32 is configured to provide the uplink electrical RF signals to the BTS 14 at least partially by way of an electrical communication path 36, as will be discussed in greater detail below.


The downlink interface 30 may include devices such as duplexers, amplifiers, variable attenuators and/or other suitable features for interfacing the BTS 14 to the DAS 12. The downlink interface 30 may be able to withstand power levels of only up to few watts, and the operation range of the downlink interface may be below one watt (30 dBm), although differently configured interfaces are within the scope of this disclosure. In contrast, if unrestricted, the maximum output power of the BTS 14 may reach twenty Watts (43 dBm) or even more, although differently configured BTSs are within the scope of this disclosure. Accordingly, the protection circuit 18 seeks to protect the downlink interface 30 from being electrically over powered by the BTS 14. More specifically, the protection circuit 18 may be configured for identifying a situation in which the BTS 14 transmits electrical power greater than or equal to predetermined electrical power that may potentially over power the downlink interface 30, wherein in response to that situation the protection circuit diverts the downlink electrical RF signals to the dummy load 16. The predetermined electrical power/power at which the protection circuit 18 diverts the downlink electrical RF signals to the dummy load 16 may be in a range from about 0.1 watts to about 100 watts, a range from about 0.5 watts to about 20 watts, or any other subranges therebetween. In one specific example, the protection circuit 18 is configured so that it is capable of diverting downlink electrical RF signals of up to about 100 watts to the dummy load 16, although other maximum downlink electrical RF signals are within the scope of this disclosure.


Optionally such as for redundancy, protecting features in addition to the protection circuit 18 may be included in the composite system 10 in an effort to prevent the downlink interface 30 from being electrically over powered. For example, one or more electrical attenuators 38 may be interposed between the BTS 14 and the downlink interface 30 in a manner that seeks to prevent the downlink interface from being electrically over powered and/or the BTS 14 may be configured to operate with low output power in a manner that seeks to prevent the downlink interface 30 from being electrically over powered. However, one or more of the optional other protecting features may be omitted from the composite system 10, such as in response to equipment failure or human error.


More specifically regarding the electrical connections between the BTS 14 and the DAS 12, as shown in FIG. 1 the BTS may have one or more RF ports 40, 42 that respectively provide downlink electrical RF signals to one or more RF ports 44, 46 of the DAS 12 by way of one or more respective electrical communication paths 48, 50. One of the BTS' ports 40, 42 may be a duplexed port 40 that provides downlink electrical RF signals to the DAS 12 and receives at the same port the uplink electrical RF signals from the DAS 12. The other of the BTS' ports 40, 42 may be a DL simplex port 42 that provides downlink electrical RF signals to the DAS 12 without receiving uplink electrical RF signals from the DAS 12. One of the DAS' ports 44, 46 may be a duplex port 44 that receives the respective downlink electrical RF signals and provides the respective uplink electrical RF signals. The other of the DAS' ports 44, 46 may be a simplex port 46 that that receives the respective downlink electrical RF signals. If the one or more attenuators 38 are present, they may be respectively incorporated into the electrical communication paths 48, 50.


The DAS' ports 44, 46 may be respectively electrically coupled to ports of the protection circuit 18 and/or the DAS' ports 44, 46 may be characterized as being the ports 44, 46 of the protection circuit, or the like. The electrical communication path 36 from the DAS' uplink interface 32 may be coupled to the protection circuit's duplex port 102, or the uplink electrical RF signals from the DAS' uplink interface 32 may be provided to the BTS 14 in any other suitable manner.


The protection circuit 18 may further include an RF pass-through port 52 coupled by an electrical communication path 54 to a respective RF input port of the downlink interface 30. The protection circuit 18 may further include an RF diversion port 56 coupled by an electrical communication path 58 to an RF port of the dummy load 16. The dummy load 16 may be a conventional electrical load. More specifically, the dummy load 16 may provide a fifty Ohm resistive load, or any other suitable load. The dummy load 16 may also be referred to a high power termination, or more specifically a high power fifty Ohm termination.


In the embodiment shown in the drawings, the protection circuit 18 is positioned between the DAS' ports 44, 46 and the downlink interface 30 so that the protection circuit may be characterized as protecting both of the DAS' ports 44, 46. Alternatively although not shown in the drawings, the protection circuit 18 may be configured for protecting only one of the DAS' ports 44, 46, and/or a first protection circuit 18 may be configured for protecting only the DAS' duplex port 44 and a second protection circuit 18 may be configured for protecting only the DAS' simplex port 46.


As shown in FIG. 2, the protection circuit 18 includes RF directional couplers 62, 60 configured for splitting off a portion or sample (e.g., sample portion) of the downlink electrical RF signals, and passing on the remainder (e.g., remainder portion) of the downlink electrical RF signals. The ports 44, 46 may be respectively electrically coupled to ports of the couplers 60, 62 and/or the DAS' ports 44, 46 may be characterized as respectively being the input ports 44, 46 of the couplers 60, 62. The coupled ports of the couplers 60, 62 are respectively coupled to RF input ports of an RF electrical combiner 64 by electrical communication paths 66, 68, for respectively providing first and second portions (e.g., sample portions) of the downlink electrical RF signals to the electrical combiner 64. The RF transmitted ports of the couplers 60, 62 are respectively coupled to RF input ports of an RF electrical combiner 70 by electrical communication paths 71, 72, 74 and duplexer 75 for providing third and fourth portions (e.g., remainder portions) of the downlink electrical RF signals to the electrical combiner 70.


The RF output port of the electrical combiner 64 is coupled to an RF input port of a power detector 76 by an electrical communication path 78, for providing the respective sample portion of the downlink electrical RF signals to the power detector. The output of the power detector 76 is a voltage that is relative to (e.g., may be proportional to) the input power (i.e., both the power of the respective sample portion of the downlink electrical RF signals supplied to the input port of the power detector 76, and the total power of the downlink electrical RF signals provided by the BTS 14). When the input power supplied to the power detector 76 increases, the output voltage of the power detector increases proportionally.


The output port of the power detector 76 is coupled to a negative input port of an analog comparator 82 by an electrical path 80. The comparator 82 may more specifically be an operational amplifier voltage comparator. A digital to analog converter (D/A converter) 84 may be coupled to a positive port of the comparator 82 by an electrical communication path 86. The D/A converter 84 is for providing a voltage to the positive port of the comparator 82 by way of the electrical communication path 86.


The D/A converter 84 is configured to produce a voltage proportional to the maximum electrical power that can safely be received at the RF input port of the downlink interface 30, or a voltage proportional to a percentage of the maximum electrical power that can safely be received at the RF input port of the downlink interface, wherein the percentage may be based upon factors related to operability of the DAS 12 and the amount of risk that the responsible person(s) are willing to take with regard to the possibility of overpowering the DAS. The voltage provided by the D/A converter 84 may be adjustable. Although this example is based on providing a reference voltage to the comparator 82 by means of a D/A converter 84, this reference voltage can be obtained using other suitable means, such as a potentiometer.


The output of the comparator 82 is coupled to a control port of an RF switch 90 (e.g., a solid state relay) by an electrical communication path 88, so that the output of the comparator is the control input of the switch. The RF output port of the electrical combiner 70 is coupled to an RF input port of the switch 90 by an electrical communication path 91, for providing the incoming power from the BTS 14, or more specifically the remainder portion of the downlink electrical RF signals from the electrical combiner 70, to the switch. Each of the above-discussed electrical communication paths of the system 10 and protection circuit 18 typically comprises, consists essentially of, or consists of electrical conductor(s) for communicatively coupling respective devices, although any suitable communication paths and/or communicative couplings may be used.


In one embodiment, the couplers 60, 62 are configured so that the respective sample portion of the downlink electrical RF signals is a relatively small percentage of the downlink electrical RF signals provided by the BTS 14, and the remainder portion of the downlink electrical RF signals is a relatively large percentage of the downlink electrical RF signals provided by the BTS. Accordingly, the remainder portion of the downlink electrical RF signals may be a substantial portion of the downlink electrical RF signals provided by the BTS 14. In one example, the respective sample portion of the downlink electrical RF signals provided to the combiner 64 may be may be about 1% of the downlink electrical RF signals provided by the BTS 14, such that the remainder portion of the downlink electrical RF signals provided to the combiner 70 is about 99% of the downlink electrical RF signals provided by the BTS 14.


Generally described and in accordance with an embodiment of this disclosure, the couplers 60, 62 sample the power (i.e., the downlink electrical RF signals) from the BTS 14, and the sampled power is provided to the power detector 76. The power detector 76 generates an output voltage that is proportional to the sampled power. The analog comparator 82 compares the output voltage from the power detector 76 to a predetermined threshold voltage, wherein the predetermined threshold voltage is provided by the D/A converter 84 and represents, reflects and/or is indicative of the maximum allowed power from the BTS 14. Although this example is based on providing a reference voltage to the comparator 82 by means of a D/A converter 84, this reference voltage can be obtained using other suitable means, such as a potentiometer. For example, the output voltage from the power detector 76 may vary proportionally to the power of the downlink electrical RF signals provided by the BTS 14. If the sampled power is higher than the threshold, or more specifically if the output voltage from the power detector 76 is higher than the predetermined threshold voltage provided by the D/A converter 84, then the comparator 82 activates the RF switch 90 so that the switch diverts the power (i.e., the downlink electrical RF signals) to the dummy load 16 rather than allowing the power to reach the downlink interface 30 of the DAS 12, as will be discussed in greater detail below.


More specifically regarding the switch 90, it has at least two states and at least two corresponding RF output ports. The RF output ports of the switch 90 may be respectively electrically coupled to the output ports 52, 56 of the protection circuit 18 and/or the output ports of the switch may be characterized as being the protection circuit's output ports 52, 56. Referring to FIGS. 1 and 2, in one state of the switch 90, which may be referred to as a first state or a pass-through state, the incoming power from the BTS 14, or more specifically the remainder portion of the downlink electrical RF signals from the electrical combiner 70, is routed to the pass-through port 52 and from there to the RF input port of the downlink interface 30 of the DAS 12 by way of the electrical communication path 54. In another state of the switch 90, which may be referred to as a second state or a diversion state, the incoming power from the BTS 14, or more specifically the remainder portion of the downlink electrical RF signals from the electrical combiner 70, is routed to the diversion port 56 and from there to the RF port of the dummy load 16 by way of the electrical communication path 58.


In accordance with an embodiment of this disclosure, the protection circuit 18 is configured so that as long as the output voltage of the power detector 76 is lower than the voltage provided by the D/A converter 84, the output of the comparator 82 “commands” the switch 90 to route the incoming power, or more specifically the remainder portion of the downlink electrical RF signals from the electrical combiner 70, to the RF input port of the downlink interface 30. In contrast, if the output voltage of power detector 76 is higher than the voltage provided by the D/A converter 84, then the input power from the BTS 14 is higher than allowed and the comparator 82 will change its output state and will command the switch 90 to change its state and route the incoming power from the BTS, or more specifically the remainder portion of the downlink electrical RF signals from the electrical combiner 70, to the dummy load 16. In addition to controlling the switch 90, the output of the comparator 82 may also activate an alarm in response to the output voltage of power detector 76 being higher than the voltage provided by the D/A converter 84 (i.e., in response to the input power from the BTS 14 being higher than allowed), wherein the alarm that may be communicated to a control center to inform a maintenance team, or the like, that the BTS 14 is providing higher than expected power, or the like.


The threshold voltage provided by the D/A converter 84 to the positive port of the comparator 82 may be configured by the installer of the DAS 12, or by the installer of the protection circuit 18, or the like, based upon the capabilities of the downlink interface 30 or other considerations. For example and at least partially reiterating from above, the D/A converter 84 is typically configured so that the voltage it provides may be proportional to the maximum electrical power that can safely be received at the RF input port of the downlink interface 30, or the voltage from the D/A converter may be proportional to a percentage of the maximum electrical power that can safely be received at the RF input port of the downlink interface, wherein the percentage may be based upon factors related to operability of the DAS 12 and the amount of risk that the responsible person(s) are willing to take with regard to the possibility of overpowering the DAS. The DAS 12 may also be referred to as a distributed antenna apparatus.


The comparator 82 may be configured to comprise or otherwise be associated with a hysteresis mechanism that seeks to avoid overly frequent cycling of the switch 90 between the pass-through and diversion states discussed above. More specifically, the hysteresis mechanism of or associated with the comparator 82 seeks to avoid an overly frequent cycling of the switch 90 in a situation in which the incoming power from the BTS 14 stabilizes at the threshold level such that any small change in the incoming power from the BTS 14 might cause the switch to toggle to another state.


The structure and operativeness of the hysteresis features are schematically illustrated by FIG. 3. FIG. 3 is chart illustrating a Cartesian or rectangular coordinate system, wherein the X axis represents the voltage supplied from the power detector 76 and input to the negative input port of the analog comparator 82, and the Y axis represents the voltage output from the comparator 82. In FIG. 3, “VoL” represents a relatively low value for the voltage output from the comparator 82, and “VoH” represents a relatively high value for the voltage output from the comparator 82. In the embodiment of this disclosure that is least partially schematically represented by FIG. 3, and as best understood with reference to FIGS. 2 and 3, the switch 90 is in its pass-through state while the voltage output from the comparator is VoL, and the switch 90 is in its diversion state while the voltage output from the comparator is Vox.


Regarding the voltage supplied from the power detector 76, in FIG. 3 “VinL” represents a relatively low value for the voltage input to the negative input port of the analog comparator 82, and “VinH” represents a relatively high value for the voltage input to the negative input port of the analog comparator 82. The difference between the lower-level trip value VinL and the higher-level trip value VinH equals the hysteresis voltage.


Referring to FIGS. 2 and 3, the hysteresis features of the comparator 82 of an embodiment of this disclosure are configured in a manner so that:

    • 1) while the voltage being output from the comparator 82 is at or below the relative low value VoL (and the voltage supplied by the D/A converter 84 to the positive input port of the comparator remains constant), the voltage being output from the comparator will transition to the relatively high value VoH only in response to the voltage input to the negative input of the comparator rising above the relative high value VinH; and
    • 2) while the voltage being output from the comparator 82 is at or above the relatively high value VoH (and the voltage supplied by the D/A converter 84 to the positive input port of the comparator remains constant), the voltage being output from the comparator will transition to the relatively low value VoL only in response to the voltage input to the negative input of the comparator falling below the relative low value VinL.


      Accordingly, the hysteresis features of the comparator 82 are schematically illustrated by the hysteresis loop 92 of FIG. 3.


Described differently, the hysteresis features of the comparator 82 of an embodiment of this disclosure are configured in a manner so that:

    • 1) as long as the output voltage of the power detector 76/the input voltage at the negative input port of the analog comparator 82 is less than VinH, the output of the comparator 82 is at VoL, and as a result the switch 90 is in its pass-through state for routing the power from the BTS 14 (e.g., at least the reminder portions of the downlink electrical RF signals) to the downlink interface 30 of the DAS 12;
    • 2) when the output voltage of power detector 76/the input voltage at the negative input port of the analog comparator 82 becomes greater than VinH, the output of the comparator 82 moves to VoH, and as a result the switch 90 is toggled to its diversion state for routing the power from the BTS 14 (e.g., at least the reminder portions of the downlink electrical RF signals) to the dummy load 16, wherein the output of the comparator 82 remains at Vox and the switch 90 remains in its diversion state as long as the output voltage of power detector 76/the input voltage at the negative input port of the analog comparator 82 is higher than VinL; and
    • 3) then only when the output voltage of power detector 76/the input voltage at the negative input port of the analog comparator 82 gets below VinL will the output of the comparator 82 change back to VoH to cause the switch 90 to toggle back to its pass-through state for routing the power from the BTS 14 (e.g., at least the reminder portions of the downlink electrical RF signals) to the downlink interface 30 of the DAS 12.


In the embodiment shown in the drawings, at least a portion of the protection circuit 18 may be characterized as being a relatively fast and reliable analog circuit that operates without the involvement of a relatively slow microcontroller or other type of computer and associated software. Alternatively, the protection circuit 18 may be configured differently than shown in the drawings.


It is also noted that the operational steps described in any of the exemplary embodiments herein are described to provide examples and discussion. The operations described may be performed in numerous different sequences other than the illustrated sequences. Furthermore, operations described in a single operational step may actually be performed in a number of different steps. Additionally, one or more operational steps discussed in the exemplary embodiments may be combined. It is to be understood that the operational steps illustrated in any flow chart diagrams, or the like, may be subject to numerous different modifications as will be readily apparent to one of skill in the art. Those of skill in the art would also understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.


Many modifications and other embodiments of the embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.

Claims
  • 1. A distributed antenna apparatus, comprising: at least one downlink radio frequency (RF) interface configured to receive downlink RF signals and distribute the downlink RF signals over at least one downlink communications medium to one or more remote antenna units (RAUs);at least one protection circuit communicatively coupled to the at least one downlink RF interface, the at least one protection circuit being configured for detecting electrical power of at least a portion of the downlink RF signals, anddiverting a remainder portion of the downlink RF signals away from the at least one downlink RF interface in response to the detected electrical power being equal to or greater than a predetermined electrical power, wherein the remainder portion is a portion of the downlink RF signals that does not include the at least a portion of the downlink RF signals;wherein the at least one protection circuit comprises: at least one power detector for detecting the detected electrical power of the at least a portion of the downlink RF signals;at least one comparator operatively associated with the at least one power detector for determining whether the detected electrical power is equal to or greater than the predetermined electrical power;at least one RF switch operatively associated with the at least one comparator for diverting at least the remainder portion of the downlink RF signals away from the at least one downlink RF interface in response to the at least one comparator determining that the detected electrical power being equal to or greater than the predetermined electrical power; andat least one coupler operatively associated with both the at least one power detector and the at least one RF switch, wherein: the at least one coupler is configured for splitting the at least a portion of the downlink RF signals and the remainder portion of the downlink electrical RF signals from one another,the at least one coupler being operatively associated with the at least one power detector comprises the at least one power detector receiving the at least a portion of the downlink electrical RF signals, andthe at least one coupler being operatively associated with the at least one RF switch comprises the at least one RF switch receiving the remainder portion of the downlink electrical RF signals.
  • 2. The distributed antenna system apparatus of claim 1, wherein: the at least a portion of the downlink RF signals is a sample portion of the downlink RF signals, andthe predetermined electrical power is indicative of electrical power of the downlink RF signals being in a range from 0.1 watts to 100 watts.
  • 3. The distributed antenna system apparatus of claim 1, wherein the at least one protection circuit is configured for diverting up to 100 watts away from the at least one downlink RF interface in response to the detected electrical power being equal to or greater than the predetermined electrical power.
  • 4. The distributed antenna system apparatus of claim 1, wherein: the predetermined electrical power is a first predetermined electrical power; andthe at least one protection circuit comprises hysteresis so that the at least one protection circuit is configured for allowing the remainder portion of the downlink RF signals to pass through to the at least one downlink RF interface in response to the detected electrical power being equal to or less than a second predetermined electrical power that is less than the first predetermined electrical power.
  • 5. The distributed antenna system apparatus of claim 1 in combination with a base transceiver station (BTS) for providing the downlink RF signals, wherein the at least one protection circuit is communicatively coupled to the BTS such that the at least one protection circuit is positioned between the BTS and the at least one downlink RF interface.
  • 6. The distributed antenna system apparatus of claim 1 in combination with an electrical load, wherein the at least one protection circuit is communicatively coupled to the electrical load, and the at least one protection circuit is configured for diverting the remainder portion of the downlink RF signals to the electrical load in response to the detected electrical power being equal to or greater than the predetermined electrical power.
  • 7. The distributed antenna system apparatus of claim 1, further comprising at least one uplink RF interface configured to receive uplink RF signals over at least one uplink communications medium from the one or more RAUs.
  • 8. The distributed antenna system apparatus of claim 7, wherein the at least one downlink communications medium and the at least one uplink communications medium includes at least one optical fiber medium.
  • 9. The distributed antenna system apparatus of claim 1, further comprising a digital to analog converter coupled to a first port of the comparator, and the power detector being coupled to a second port of the comparator.
  • 10. The distributed antenna system apparatus of claim 1, wherein the at least one RF switch comprises a solid state relay.
US Referenced Citations (422)
Number Name Date Kind
4449246 Seiler et al. May 1984 A
4665560 Lange May 1987 A
4939852 Brenner Jul 1990 A
4972346 Kawano et al. Nov 1990 A
5056109 Gilhousen et al. Oct 1991 A
5187803 Sohner et al. Feb 1993 A
5206655 Caille et al. Apr 1993 A
5208812 Dudek et al. May 1993 A
5278989 Burke et al. Jan 1994 A
5280472 Gilhousen et al. Jan 1994 A
5381459 Lappington Jan 1995 A
5396224 Dukes et al. Mar 1995 A
5420863 Taketsugu et al. May 1995 A
5432838 Purchase et al. Jul 1995 A
5436827 Gunn et al. Jul 1995 A
5519830 Opoczynski May 1996 A
5534854 Bradbury et al. Jul 1996 A
5559831 Keith Sep 1996 A
5598314 Hall Jan 1997 A
5606725 Hart Feb 1997 A
5668562 Cutrer et al. Sep 1997 A
5682256 Motley et al. Oct 1997 A
5708681 Malkemes et al. Jan 1998 A
5726984 Kubler et al. Mar 1998 A
5765099 Georges et al. Jun 1998 A
5790536 Mahany et al. Aug 1998 A
5802173 Hamilton-Piercy et al. Sep 1998 A
5809395 Hamilton-Piercy et al. Sep 1998 A
5809431 Bustamante et al. Sep 1998 A
5818883 Smith et al. Oct 1998 A
5839052 Dean et al. Nov 1998 A
5862460 Rich Jan 1999 A
5867763 Dean et al. Feb 1999 A
5889469 Mykytiuk et al. Mar 1999 A
5953670 Newson Sep 1999 A
5969837 Farber et al. Oct 1999 A
5983070 Georges et al. Nov 1999 A
6006069 Langston Dec 1999 A
6011980 Nagano et al. Jan 2000 A
6014546 Georges et al. Jan 2000 A
6037898 Parish et al. Mar 2000 A
6060879 Mussenden May 2000 A
6069721 Oh et al. May 2000 A
6118767 Shen et al. Sep 2000 A
6122529 Sabat, Jr. et al. Sep 2000 A
6125048 Loughran et al. Sep 2000 A
6128477 Freed Oct 2000 A
6157810 Georges et al. Dec 2000 A
6163266 Fasullo et al. Dec 2000 A
6188876 Kim Feb 2001 B1
6192216 Sabat, Jr. et al. Feb 2001 B1
6194968 Winslow Feb 2001 B1
6212397 Langston et al. Apr 2001 B1
6222503 Gietema Apr 2001 B1
6223201 Reznak Apr 2001 B1
6236863 Waldroup et al. May 2001 B1
6275990 Dapper et al. Aug 2001 B1
6279158 Geile et al. Aug 2001 B1
6295451 Mimura Sep 2001 B1
6307869 Pawelski Oct 2001 B1
6317599 Rappaport et al. Nov 2001 B1
6330241 Fort Dec 2001 B1
6330244 Swartz et al. Dec 2001 B1
6334219 Hill et al. Dec 2001 B1
6336021 Nukada Jan 2002 B1
6336042 Dawson et al. Jan 2002 B1
6340932 Rodgers et al. Jan 2002 B1
6353600 Schwartz et al. Mar 2002 B1
6370203 Boesch et al. Apr 2002 B1
6374124 Slabinski Apr 2002 B1
6389010 Kubler et al. May 2002 B1
6400318 Kasami et al. Jun 2002 B1
6400418 Wakabayashi Jun 2002 B1
6405018 Reudink et al. Jun 2002 B1
6415132 Sabat, Jr. Jul 2002 B1
6421327 Lundby Jul 2002 B1
6448558 Greene Sep 2002 B1
6452915 Jorgensen Sep 2002 B1
6480702 Sabat, Jr. Nov 2002 B1
6496290 Lee Dec 2002 B1
6519449 Zhang et al. Feb 2003 B1
6535330 Lelic et al. Mar 2003 B1
6535720 Kintis et al. Mar 2003 B1
6551065 Lee Apr 2003 B2
6580402 Navarro et al. Jun 2003 B2
6580905 Naidu et al. Jun 2003 B1
6587514 Wright et al. Jul 2003 B1
6598009 Yang Jul 2003 B2
6615074 Mickle et al. Sep 2003 B2
6628732 Takaki Sep 2003 B1
6657535 Magbie et al. Dec 2003 B1
6658269 Golemon et al. Dec 2003 B1
6665308 Rakib et al. Dec 2003 B1
6670930 Navarro Dec 2003 B2
6678509 Skarman et al. Jan 2004 B2
6704298 Matsumiya et al. Mar 2004 B1
6745013 Porter et al. Jun 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6785558 Stratford et al. Aug 2004 B1
6801767 Schwartz et al. Oct 2004 B1
6823174 Masenten et al. Nov 2004 B1
6826163 Mani et al. Nov 2004 B2
6836660 Wala Dec 2004 B1
6836673 Trott Dec 2004 B1
6842433 West et al. Jan 2005 B2
6850510 Kubler Feb 2005 B2
6876056 Tilmans et al. Apr 2005 B2
6882311 Walker et al. Apr 2005 B2
6885344 Mohamadi Apr 2005 B2
6919858 Rofougaran Jul 2005 B2
6931659 Kinemura Aug 2005 B1
6934511 Lovinggood et al. Aug 2005 B1
6934541 Miyatani Aug 2005 B2
6941112 Hasegawa Sep 2005 B2
6961312 Kubler et al. Nov 2005 B2
6977502 Hertz Dec 2005 B1
7015826 Chan et al. Mar 2006 B1
7020488 Bleile et al. Mar 2006 B1
7024166 Wallace et al. Apr 2006 B2
7039399 Fischer May 2006 B2
7043271 Seto et al. May 2006 B1
7050017 King et al. May 2006 B2
7053838 Judd May 2006 B2
7069577 Geile et al. Jun 2006 B2
7072586 Aburakawa et al. Jul 2006 B2
7103119 Matsuoka et al. Sep 2006 B2
7103377 Bauman et al. Sep 2006 B2
7110795 Doi Sep 2006 B2
7142125 Larson et al. Nov 2006 B2
7142535 Kubler et al. Nov 2006 B2
7142619 Sommer et al. Nov 2006 B2
7144255 Seymour Dec 2006 B2
7171244 Bauman Jan 2007 B2
7184728 Solum Feb 2007 B2
7190748 Kim et al. Mar 2007 B2
7194023 Norrell et al. Mar 2007 B2
7199443 Elsharawy Apr 2007 B2
7269311 Kim et al. Sep 2007 B2
7315735 Graham Jan 2008 B2
7359647 Faria et al. Apr 2008 B1
7359674 Markki et al. Apr 2008 B2
7366151 Kubler et al. Apr 2008 B2
7369526 Lechleider et al. May 2008 B2
7388892 Nishiyama et al. Jun 2008 B2
7392025 Rooyen et al. Jun 2008 B2
7412224 Kotola et al. Aug 2008 B2
7450853 Kim et al. Nov 2008 B2
7451365 Wang et al. Nov 2008 B2
7454171 Palin et al. Nov 2008 B2
7460507 Kubler et al. Dec 2008 B2
7469105 Wake et al. Dec 2008 B2
7483711 Burchfiel Jan 2009 B2
7486782 Roos Feb 2009 B1
7505747 Solum Mar 2009 B2
7512419 Solum Mar 2009 B2
7515526 Elkayam et al. Apr 2009 B2
7539509 Bauman et al. May 2009 B2
7542452 Penumetsa Jun 2009 B2
7546138 Bauman Jun 2009 B2
7548138 Kamgaing Jun 2009 B2
7551641 Pirzada et al. Jun 2009 B2
7557758 Rofougaran Jul 2009 B2
7580384 Kubler et al. Aug 2009 B2
7586861 Kubler et al. Sep 2009 B2
7587559 Brittain et al. Sep 2009 B2
7599420 Forenza et al. Oct 2009 B2
7610046 Wala Oct 2009 B2
7619535 Chen et al. Nov 2009 B2
7630690 Kaewell, Jr. et al. Dec 2009 B2
7633934 Kubler et al. Dec 2009 B2
7639982 Wala Dec 2009 B2
7646743 Kubler et al. Jan 2010 B2
7646777 Hicks, III et al. Jan 2010 B2
7653397 Pernu et al. Jan 2010 B2
7668565 Ylänen et al. Feb 2010 B2
7688811 Kubler et al. Mar 2010 B2
7693486 Kasslin et al. Apr 2010 B2
7697467 Kubler et al. Apr 2010 B2
7715375 Kubler et al. May 2010 B2
7751374 Donovan Jul 2010 B2
7751838 Ramesh et al. Jul 2010 B2
7760703 Kubler et al. Jul 2010 B2
7768951 Kubler et al. Aug 2010 B2
7773573 Chung et al. Aug 2010 B2
7778603 Palin et al. Aug 2010 B2
7809012 Ruuska et al. Oct 2010 B2
7812766 Leblanc et al. Oct 2010 B2
7817969 Castaneda et al. Oct 2010 B2
7835328 Stephens et al. Nov 2010 B2
7848316 Kubler et al. Dec 2010 B2
7848770 Scheinert Dec 2010 B2
7852228 Teng et al. Dec 2010 B2
7853234 Afsahi Dec 2010 B2
7870321 Rofougaran Jan 2011 B2
7881755 Mishra et al. Feb 2011 B1
7894423 Kubler et al. Feb 2011 B2
7899007 Kubler et al. Mar 2011 B2
7907972 Walton et al. Mar 2011 B2
7912043 Kubler et al. Mar 2011 B2
7916706 Kubler et al. Mar 2011 B2
7917177 Bauman Mar 2011 B2
7920553 Kubler et al. Apr 2011 B2
7920858 Sabat, Jr. et al. Apr 2011 B2
7924783 Mahany et al. Apr 2011 B1
7936713 Kubler et al. May 2011 B2
7949364 Kasslin et al. May 2011 B2
7957777 Vu et al. Jun 2011 B1
7962111 Solum Jun 2011 B2
7969009 Chandrasekaran Jun 2011 B2
7969911 Mahany et al. Jun 2011 B2
7970428 Lin et al. Jun 2011 B2
7990925 Tinnakornsrisuphap et al. Aug 2011 B2
7996020 Chhabra Aug 2011 B1
8018907 Kubler et al. Sep 2011 B2
8036157 Hanabusa et al. Oct 2011 B2
8036308 Rofougaran Oct 2011 B2
8082353 Huber et al. Dec 2011 B2
8086192 Rofougaran et al. Dec 2011 B2
8155525 Cox Apr 2012 B2
8270838 Cox Sep 2012 B2
8306563 Zavadsky et al. Nov 2012 B2
8328145 Smith Dec 2012 B2
8406941 Smith Mar 2013 B2
8417979 Maroney Apr 2013 B2
8457562 Zavadsky et al. Jun 2013 B2
8514092 Cao et al. Aug 2013 B2
8532492 Palanisamy et al. Sep 2013 B2
8548330 Berlin et al. Oct 2013 B2
8588614 Larsen Nov 2013 B2
8620375 Kim et al. Dec 2013 B2
8649684 Casterline et al. Feb 2014 B2
8744390 Stratford Jun 2014 B2
8831428 Kobyakov et al. Sep 2014 B2
8831593 Melester et al. Sep 2014 B2
8930736 James Jan 2015 B2
9160449 Heidler et al. Oct 2015 B2
20010036199 Terry Nov 2001 A1
20020051434 Ozluturk et al. May 2002 A1
20020097031 Cook et al. Jul 2002 A1
20020123365 Thorson et al. Sep 2002 A1
20030111909 Liu et al. Jun 2003 A1
20030146765 Darshan et al. Aug 2003 A1
20030147353 Clarkson et al. Aug 2003 A1
20040095907 Agee et al. May 2004 A1
20040146020 Kubler et al. Jul 2004 A1
20040151164 Kubler et al. Aug 2004 A1
20040160912 Kubler et al. Aug 2004 A1
20040160913 Kubler et al. Aug 2004 A1
20040165573 Kubler et al. Aug 2004 A1
20040203704 Ommodt et al. Oct 2004 A1
20040230846 Mancey et al. Nov 2004 A1
20050047030 Lee Mar 2005 A1
20050147071 Karaoguz et al. Jul 2005 A1
20050226625 Wake et al. Oct 2005 A1
20050272439 Picciriello et al. Dec 2005 A1
20060053324 Giat et al. Mar 2006 A1
20060084379 O'Neill Apr 2006 A1
20060192434 Vrla et al. Aug 2006 A1
20060274704 Desai et al. Dec 2006 A1
20070004467 Chary Jan 2007 A1
20070058332 Canterbury et al. Mar 2007 A1
20070060045 Prautzsch Mar 2007 A1
20070060055 Desai et al. Mar 2007 A1
20070076649 Lin et al. Apr 2007 A1
20070224954 Gopi Sep 2007 A1
20070286599 Sauer et al. Dec 2007 A1
20070291732 Todd et al. Dec 2007 A1
20070297005 Montierth et al. Dec 2007 A1
20080002614 Hanabusa et al. Jan 2008 A1
20080043714 Pernu Feb 2008 A1
20080044186 George et al. Feb 2008 A1
20080045271 Azuma Feb 2008 A1
20080070502 George et al. Mar 2008 A1
20080080863 Sauer et al. Apr 2008 A1
20080098203 Master et al. Apr 2008 A1
20080118014 Reunamaki et al. May 2008 A1
20080129634 Pera et al. Jun 2008 A1
20080134194 Liu Jun 2008 A1
20080166094 Bookbinder et al. Jul 2008 A1
20080167931 Gerstemeier et al. Jul 2008 A1
20080186143 George et al. Aug 2008 A1
20080207253 Jaakkola et al. Aug 2008 A1
20080251071 Armitstead et al. Oct 2008 A1
20080253351 Pernu et al. Oct 2008 A1
20080261656 Bella et al. Oct 2008 A1
20080268833 Huang et al. Oct 2008 A1
20080272725 Bojrup et al. Nov 2008 A1
20080279137 Pernu et al. Nov 2008 A1
20080280569 Hazani et al. Nov 2008 A1
20080291830 Pernu et al. Nov 2008 A1
20080292322 Daghighian et al. Nov 2008 A1
20090007192 Singh Jan 2009 A1
20090022304 Kubler et al. Jan 2009 A1
20090028087 Nguyen et al. Jan 2009 A1
20090028317 Ling et al. Jan 2009 A1
20090059903 Kubler et al. Mar 2009 A1
20090061796 Arkko et al. Mar 2009 A1
20090073916 Zhang et al. Mar 2009 A1
20090149221 Liu et al. Jun 2009 A1
20090169163 Abbott, III et al. Jul 2009 A1
20090175214 Sfar et al. Jul 2009 A1
20090218407 Rofougaran Sep 2009 A1
20090218657 Rofougaran Sep 2009 A1
20090245084 Moffatt et al. Oct 2009 A1
20090245153 Li et al. Oct 2009 A1
20090245221 Piipponen Oct 2009 A1
20090252136 Mahany et al. Oct 2009 A1
20090252205 Rheinfelder et al. Oct 2009 A1
20090258652 Lambert et al. Oct 2009 A1
20090280854 Khan et al. Nov 2009 A1
20090285147 Subasic et al. Nov 2009 A1
20100002626 Schmidt et al. Jan 2010 A1
20100027443 LoGalbo et al. Feb 2010 A1
20100054746 Logan Mar 2010 A1
20100056184 Vakil et al. Mar 2010 A1
20100056200 Tolonen Mar 2010 A1
20100080154 Noh et al. Apr 2010 A1
20100080182 Kubler et al. Apr 2010 A1
20100091475 Toms et al. Apr 2010 A1
20100118864 Kubler et al. May 2010 A1
20100127937 Chandrasekaran et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100148373 Chandrasekaran Jun 2010 A1
20100156721 Alamouti et al. Jun 2010 A1
20100188998 Pernu et al. Jul 2010 A1
20100190509 Davis Jul 2010 A1
20100202326 Rofougaran et al. Aug 2010 A1
20100225413 Rofougaran et al. Sep 2010 A1
20100225556 Rofougaran et al. Sep 2010 A1
20100225557 Rofougaran et al. Sep 2010 A1
20100232323 Kubler et al. Sep 2010 A1
20100246558 Harel Sep 2010 A1
20100255774 Kenington Oct 2010 A1
20100258949 Henderson et al. Oct 2010 A1
20100260063 Kubler et al. Oct 2010 A1
20100290355 Roy et al. Nov 2010 A1
20100290787 Cox Nov 2010 A1
20100309049 Reunamäki et al. Dec 2010 A1
20100311472 Rofougaran et al. Dec 2010 A1
20100311480 Raines et al. Dec 2010 A1
20100322206 Hole et al. Dec 2010 A1
20100329161 Ylanen et al. Dec 2010 A1
20100329166 Mahany et al. Dec 2010 A1
20110007724 Mahany et al. Jan 2011 A1
20110007733 Kubler et al. Jan 2011 A1
20110021146 Pernu Jan 2011 A1
20110021224 Koskinen et al. Jan 2011 A1
20110055861 Covell et al. Mar 2011 A1
20110065450 Kazmi Mar 2011 A1
20110069668 Chion et al. Mar 2011 A1
20110071734 Van Wiemeersch et al. Mar 2011 A1
20110086614 Brisebois et al. Apr 2011 A1
20110105110 Carmon et al. May 2011 A1
20110116572 Lee et al. May 2011 A1
20110126071 Han et al. May 2011 A1
20110149879 Noriega et al. Jun 2011 A1
20110158298 Djadi et al. Jun 2011 A1
20110172841 Forbes, Jr. Jul 2011 A1
20110182230 Ohm et al. Jul 2011 A1
20110194475 Kim et al. Aug 2011 A1
20110201368 Faccin et al. Aug 2011 A1
20110204504 Henderson et al. Aug 2011 A1
20110211439 Manpuria et al. Sep 2011 A1
20110215901 Van Wiemeersch et al. Sep 2011 A1
20110222415 Ramamurthi et al. Sep 2011 A1
20110222434 Chen Sep 2011 A1
20110222619 Ramamurthi et al. Sep 2011 A1
20110227795 Lopez et al. Sep 2011 A1
20110244887 Dupray et al. Oct 2011 A1
20110249715 Choi et al. Oct 2011 A1
20110256878 Zhu et al. Oct 2011 A1
20110266999 Yodfat et al. Nov 2011 A1
20110268033 Boldi et al. Nov 2011 A1
20110268446 Cune et al. Nov 2011 A1
20110268449 Berlin et al. Nov 2011 A1
20110268452 Beamon et al. Nov 2011 A1
20110274021 He et al. Nov 2011 A1
20110281536 Lee et al. Nov 2011 A1
20120009926 Hevizi et al. Jan 2012 A1
20120033676 Mundra et al. Feb 2012 A1
20120099448 Matsuo et al. Apr 2012 A1
20120106442 Xiao May 2012 A1
20120120995 Wurth May 2012 A1
20120122405 Gerber et al. May 2012 A1
20120163829 Cox Jun 2012 A1
20120196611 Venkatraman et al. Aug 2012 A1
20120214538 Kim et al. Aug 2012 A1
20120289224 Hallberg et al. Nov 2012 A1
20120293390 Shoemaker et al. Nov 2012 A1
20120307876 Trachewsky et al. Dec 2012 A1
20130017863 Kummetz et al. Jan 2013 A1
20130035047 Chen et al. Feb 2013 A1
20130040676 Kang et al. Feb 2013 A1
20130049469 Huff et al. Feb 2013 A1
20130094425 Soriaga et al. Apr 2013 A1
20130102309 Chande et al. Apr 2013 A1
20130132683 Ajanovic et al. May 2013 A1
20130188959 Cune et al. Jul 2013 A1
20130225182 Singh et al. Aug 2013 A1
20130225183 Meshkati et al. Aug 2013 A1
20130235726 Frederiksen et al. Sep 2013 A1
20130249292 Blackwell, Jr. et al. Sep 2013 A1
20130295980 Reuven et al. Nov 2013 A1
20130330086 Berlin et al. Dec 2013 A1
20130337750 Ko Dec 2013 A1
20140024402 Singh Jan 2014 A1
20140037294 Cox et al. Feb 2014 A1
20140050482 Berlin et al. Feb 2014 A1
20140075217 Wong et al. Mar 2014 A1
20140087742 Brower et al. Mar 2014 A1
20140089688 Man et al. Mar 2014 A1
20140097846 Lemaire et al. Apr 2014 A1
20140146692 Hazani et al. May 2014 A1
20140148214 Sasson May 2014 A1
20140153919 Casterline et al. Jun 2014 A1
20140169246 Chui et al. Jun 2014 A1
20140233442 Atias et al. Aug 2014 A1
20140293894 Saban et al. Oct 2014 A1
20140308043 Heidler et al. Oct 2014 A1
20140308044 Heidler et al. Oct 2014 A1
20150098350 Mini Apr 2015 A1
20150249513 Schwab Sep 2015 A1
Foreign Referenced Citations (33)
Number Date Country
101030162 Sep 2007 CN
101232179 Jul 2008 CN
101803246 Aug 2010 CN
101876962 Nov 2010 CN
0851618 Jul 1998 EP
0924881 Jun 1999 EP
1227605 Jul 2002 EP
1347584 Sep 2003 EP
1954019 Aug 2008 EP
2275834 Sep 1994 GB
58055770 Apr 1983 JP
2002353813 Dec 2002 JP
20040053467 Jun 2004 KR
1031619 Apr 2011 KR
9603823 Feb 1996 WO
0072475 Nov 2000 WO
0184760 Nov 2001 WO
03024027 Mar 2003 WO
2005117337 Dec 2005 WO
2006077569 Jul 2006 WO
2006077570 Jul 2006 WO
2008083317 Jul 2008 WO
2009014710 Jan 2009 WO
2009145789 Dec 2009 WO
2010090999 Aug 2010 WO
2010132292 Nov 2010 WO
2011123314 Oct 2011 WO
2012051227 Apr 2012 WO
2012051230 Apr 2012 WO
2012064333 May 2012 WO
2012071367 May 2012 WO
2012103822 Aug 2012 WO
2015049671 Apr 2015 WO
Non-Patent Literature Citations (61)
Entry
Patent Cooperation Treaty, International Search Report for PCT/IL2015/050656, dated Oct. 8, 2015, 9 pages.
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3.
Author Unknown, “INT6400/INT1400: HomePlug AV Chip Set,” Product Brief, Atheros Powerline Technology, 27003885 Revision 2, Atheros Communications, Inc., 2009, 2 pages.
Author Unknown, “MegaPlug AV: 200 Mbps Ethernet Adapter,” Product Specifications, Actiontec Electronics, Inc., 2010, 2 pages.
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages.
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3.
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5.
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2.
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2.
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8.
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design.
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages.
International Preliminary Report on Patentability for PCT/US2011/061761 mailed May 28, 2013, 8 pages.
International Search Report for PCT/US2011/061761 mailed Jan. 26, 2012, 3 pages.
International Search Report for PCT/US2010/056458 mailed Aug. 2, 2011, 4 pages.
International Preliminary Report on Patentability for PCT/US2010/056458 mailed May 23, 2013, 9 pages.
Non-final Office Action for U.S. Appl. No. 13/410,916 mailed Jul. 18, 2012, 13 pages.
Notice of Allowance for U.S. Appl. No. 13/410,916 mailed Aug. 9, 2012, 9 pages.
Author Unknown, “MDS SDx Packaged Stations,” Technical Manual, MDS 05-6312A01, Revision B, May 2011, GE MDS, LLC, Rochester, New York, 44 pages.
Author Unknown, “Quad Integrated IEEE 802.3at PSE Controller and Power Management System with up to 30W per Port Capabilities,” Product Brief, BCM59103, Broadcom Corporation, Oct. 12, 2009, 2 pages.
Author Unknown, “Quad IEEE 802.3at Power Over Ethernet Controller,” Product Brief, LTC4266, Linear Technology Corporation, 2009, 2 pages.
Author Unknown, “Single IEEE 802.3at Power Over Ethernet Controller,” Product Brief, LTC4274, Linear Technology Corporation, 2009, 2 pages.
Author Unknown, “TPS23841: High-Power, Wide Voltage Range, Quad-Port Ethernet Power Sourcing Equipment Manager,” Texas Instruments Incorporated, Nov. 2006, Revised May 2007, 48 pages.
International Search Report for PCT/US2010/034005 mailed Aug. 12, 2010, 4 pages.
International Preliminary Report on Patentability for PCT/US2010/034005 mailed Nov. 24, 2011, 7 pages.
International Search Report for PCT/US2011/055858 mailed Feb. 7, 2012, 4 pages.
International Preliminary Report on Patentability for PCT/US2011/055858 mailed Apr. 25, 2013, 8 pages.
International Search Report for PCT/US2011/055861 mailed Feb. 7, 2012, 4 pages.
International Preliminary Report on Patentability for PCT/US2011/055861 mailed Apr. 25, 2013, 9 pages.
International Preliminary Report on Patentability for PCT/US2011/061761 mailed Jun. 6, 2013, 9 pages.
Translation of the the First Office Action for Chinese Patent Application No. 201180059270.4 issued May 13, 2015, 19 pages.
International Search Report for PCT/US2013/058937 mailed Jan. 14, 2014, 4 pages.
International Preliminary Report on Patentability for PCT/US2013/058937 mailed Apr. 9, 2015, 7 pages.
Non-final Office Action for U.S. Appl. No. 13/626,371 mailed Dec. 13, 2013, 15 pages.
Non-final Office Action for U.S. Appl. No. 13/626,371 mailed Jun. 25, 2014, 16 pages.
Notice of Allowance for U.S. Appl. No. 13/626,371 mailed Nov. 25, 2014, 7 pages.
Notice of Allowance for U.S. Appl. No. 13/626,371 mailed Aug. 3, 2015, 7 pages.
Non-final Office Action for U.S. Appl. No. 13/859,985 mailed Feb. 27, 2015, 15 pages.
Final Office Action for U.S. Appl. No. 13/859,985 mailed Jul. 22, 2015, 8 pages.
Non-final Office Action for U.S. Appl. No. 13/860,017 mailed Feb. 27, 2015, 15 pages.
Final Office Action for U.S. Appl. No. 13/860,017 mailed Jul. 23, 2015, 8 pages.
Non-Final Office Action for U.S. Appl. No. 13/950,397, mailed Mar. 17, 2015, 6 pages.
Notice of Allowance for U.S. Appl. No. 13/950,397, mailed Jun. 10, 2015, 7 pages.
Non-Final Office Action for U.S. Appl. No. 13/771,756 mailed Sep. 10, 2014, 26 pages.
Final Office Action for U.S. Appl. No. 13/771,756 mailed Apr. 30, 2015, 38 pages.
International Search Report for PCT/IL2013/050976, mailed Mar. 18, 2014, 3 pages.
Translation of the First Office Action for Chinese Patent Application No. 201180053270.3 issued May 26, 2015, 17 pages.
Translation of the First Office Action for Chinese Patent Application No. 201180052537.7 issued Jun. 25, 2015, 9 pages.
Non-final Office Action for U.S. Appl. No. 13/687,457 mailed Jul. 30, 2015, 12 pages.
Advisory Action for U.S. Appl. No. 13/771,756, mailed Aug. 21, 2015, 4 pages.
Non-final Office Action for U.S. Appl. No. 13/899,118, mailed Jan. 6, 2016, 10 pages.
Non-final Office Action for U.S. Appl. No. 14/845,768, mailed Nov. 19, 2015, 12 pages.
Non-final Office Action for U.S. Appl. No. 14/845,946, mailed Dec. 17, 2015, 11 pages.
The Second Office Action for Chinese Patent Application No. 201180059270.4, mailed Jan. 28, 2016, 42 pages.
Final Office Action for U.S. Appl. No. 13/687,457, mailed Feb. 12, 2016, 22 pages.
Notice of Allowance for U.S. Appl. No. 13/771,756, mailed Jan. 29, 2016, 14 pages.
Author Unknown, “Equivalent Circuits—(Thevenin and Norton),” Bucknell Lecture Notes, Wayback Machine, Mar. 25, 2010, http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Source/Source2.html, 15 pages.
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 13/687,457, mailed May 13, 2016, 5 pages.
Non-final Office Action for U.S. Appl. No. 13/687,457, mailed Jun. 27, 2016, 30 pages.
Non-final Office Action for U.S. Appl. No. 13/899,118, mailed Jun. 30, 2016, 11 pages.
Notice of Allowance for U.S. Appl. No. 14/845,946, mailed Jun. 8, 2016, 7 pages.
Related Publications (1)
Number Date Country
20150380928 A1 Dec 2015 US