Field of the Disclosure
This disclosure relates generally to distributed antenna systems and, more particularly, to protecting distributed antenna systems from being electrically over powered.
Technical Background
A distributed antenna system (DAS) typically includes a plurality of spaced apart antennas configured for extending radio frequency (RF) antenna coverage of an associated system. For example, a DAS may be associated with a cellular system, a “wireless fidelity” or “WiFi” system, or a wireless local area network (WLAN) by coupling the DAS to a base transceiver station (BTS) that may be in the form of a cellular base station, a WiFi base station, or a WLAN base station. As one specific example, when cellular service is not available within the interior of a building, a DAS may be installed in the interior of the building and coupled to the antenna port or ports of a cellular BTS that may be installed in the building, for providing cellular service within the interior of the building.
In active DAS networks, the DAS being coupled to a BTS typically comprises a downlink interface being used for interfacing the BTS to the DAS. The downlink interface usually includes devices such as duplexers, amplifiers and variable attenuators. A typical downlink interface can withstand power levels of only up to few watts, and the normal operation range of the downlink interface is usually below one watt (30 dBm). However, the maximum output power of a standard cellular BTS may reach twenty Watts (43 dBm) or even more. Therefore, a cellular BTS interfaced to an active DAS is typically configured to operate with low output power to match the operational range of the downlink interface, which is usually lower than one watt (30 dBm). However, due to human mistakes or technical failures, the BTS might start transmitting its maximum output power and the downlink interface may be damaged.
An embodiment of this disclosure relates at least one circuit for protecting at least one device of a DAS from being over powered by downlink RF signals that may originate from a BTS. The DAS may include at least one downlink RF interface configured to receive the downlink RF signals and distribute the downlink RF signals over at least one downlink communications medium to one or more remote antenna units (RAUs). The at least one protection circuit may be communicatively coupled to the at least one downlink RF interface. The at least one protection circuit may be configured for detecting electrical power of at least a portion of (e.g., a sample portion of) the downlink RF signals, and diverting a substantial portion of the downlink RF signals away from the at least one downlink RF interface in response to the detected electrical power being equal to or greater than a predetermined electrical power.
The downlink RF signals diverted away from the at least one downlink RF interface may be routed to an electrical load (e.g., “dummy load”). The predetermined electrical power may be indicative of electrical power of the downlink RF signals being in a range from about 0.1 watts to about 100 watts, or more specifically about 0.5 watts to about 20 watts, although other predetermined electrical powers are within the scope of this disclosure. The at least one protection circuit may be configured for handling/diverting up to about 100 watts away from the at least one downlink RF interface in response to the detected electrical power being equal to or greater than the predetermined electrical power. The at least one protection circuit may include hysteresis, wherein the diverting mechanism is activated in response to a detected electrical power being equal or higher than a first predetermined electrical power, but once the diverting mechanism is activated it will not be released until the detected electrical power goes below a second predetermined electrical power that is less than the first predetermined electrical power.
The at least one protection circuit may include at least one power detector for detecting the electrical power of the at least a portion of the downlink RF signals, at least one comparator operatively associated with the at least one power detector for determining whether the detected electrical power is equal to or greater than the predetermined electrical power, and at least one RF switch operatively associated with the at least one comparator for diverting the downlink RF signals away from the at least one downlink RF interface in response to the at least one comparator determining that the detected electrical power is equal to or greater than the predetermined electrical power. A digital to analog converter may be coupled to a first port of the comparator, and the power detector may be coupled to a second port of the comparator. The at least one protection circuit may further include coupler(s), combiners(s) and/or other suitable features.
An embodiment of this disclosure comprises a method of operating a distributed antenna apparatus. The method may include receiving downlink RF signals, detecting electrical power of at least a portion of the downlink RF signals, and distributing a substantial portion of the downlink RF signals over at least one downlink communications medium to one or more RAUs in response to the detected electrical power being less than a predetermined electrical power. This and/or another method may further include not distributing the downlink RF signals over at least one downlink communications medium to one or more RAUs in response to the detected electrical power being equal to or greater than the predetermined electrical power or another suitable amount of electrical power. The step of not distributing may comprise diverting a substantial portion of the downlink RF signals away from the at least one device of the distributed antenna apparatus. The substantial portion of the downlink RF signals may be diverted to an electrical load.
Additional features and advantages will be set forth in the detailed description which follows, and in part will be readily apparent to those skilled in the art from that description or recognized by practicing the embodiments as described herein, including the detailed description that follows, the claims, as well as the appended drawings.
It is to be understood that both the foregoing general description and the following detailed description present embodiments, and are intended to provide an overview or framework for understanding the nature and character of the disclosure. The accompanying drawings are included to provide a further understanding, and are incorporated into and constitute a part of this specification. The drawings illustrate various embodiments, and together with the description serve to explain the principles and operation of the concepts disclosed.
Reference will now be made in detail to the embodiments, examples of which are illustrated in the accompanying drawings, in which some, but not all embodiments are shown. Indeed, the concepts may be embodied in many different forms and should not be construed as limiting herein; rather, these embodiments are provided so that this disclosure will satisfy applicable legal requirements. Whenever possible, like reference numbers will be used to refer to like components or parts.
The DAS 12 of the embodiment shown the drawings may be an optical fiber-based DAS configured to create one or more antenna coverage areas 20 for establishing RF wireless communications with wireless devices 22 located in the RF range of the antenna coverage areas. Each of the wireless devices 22 may be any suitable device capable of receiving and/or transmitting wireless RF communication signals. As an example, a device 22 may be a conventional cellular phone having a combination of features including an antenna 24, wherein the combination of features is adapted to receive and/or send electromagnetic RF signals. Whereas the embodiment shown in the drawings is discussed in this Detailed Description section of this disclosure primarily in the context of the DAS 12 being coupled to the cellular BTS 14, alternatively the DAS may be coupled to a WiFi BTS, a WLAN BTS and/or any other suitable BTS.
With continued reference to
The protection circuit 18 may also be characterized as being head-end equipment or part of a head-end unit. On the other hand, the protection circuit 18 may be characterized as being a separate feature from the head-end equipment or unit. Similarly, whereas the protection circuit 18 is schematically shown in
Generally described, the downlink interface 30 receives downlink electrical RF signals from the BTS 14 by way of the protection circuit 18, and the protection circuit is configured in a manner that seeks to prevent the downlink interface 30 from being over powered by the BTS 14, as will be discussed in greater detail below. In one embodiment, the downlink interface 30 is configured to convert the downlink electrical RF signals it receives into corresponding downlink optical RF signals and provide those downlink optical RF signals to the RAU 26 over at least one of the optical fiber communication mediums 28. Conversely and in the same embodiment, the uplink interface 32 is configured to receive uplink optical RF signals from the RAU 26 over at least one of the optical fiber communication mediums 28, and convert the uplink optical RF signals it receives into uplink electrical RF signals. The uplink interface 32 is configured to provide the uplink electrical RF signals to the BTS 14 at least partially by way of an electrical communication path 36, as will be discussed in greater detail below.
The downlink interface 30 may include devices such as duplexers, amplifiers, variable attenuators and/or other suitable features for interfacing the BTS 14 to the DAS 12. The downlink interface 30 may be able to withstand power levels of only up to few watts, and the operation range of the downlink interface may be below one watt (30 dBm), although differently configured interfaces are within the scope of this disclosure. In contrast, if unrestricted, the maximum output power of the BTS 14 may reach twenty Watts (43 dBm) or even more, although differently configured BTSs are within the scope of this disclosure. Accordingly, the protection circuit 18 seeks to protect the downlink interface 30 from being electrically over powered by the BTS 14. More specifically, the protection circuit 18 may be configured for identifying a situation in which the BTS 14 transmits electrical power greater than or equal to predetermined electrical power that may potentially over power the downlink interface 30, wherein in response to that situation the protection circuit diverts the downlink electrical RF signals to the dummy load 16. The predetermined electrical power/power at which the protection circuit 18 diverts the downlink electrical RF signals to the dummy load 16 may be in a range from about 0.1 watts to about 100 watts, a range from about 0.5 watts to about 20 watts, or any other subranges therebetween. In one specific example, the protection circuit 18 is configured so that it is capable of diverting downlink electrical RF signals of up to about 100 watts to the dummy load 16, although other maximum downlink electrical RF signals are within the scope of this disclosure.
Optionally such as for redundancy, protecting features in addition to the protection circuit 18 may be included in the composite system 10 in an effort to prevent the downlink interface 30 from being electrically over powered. For example, one or more electrical attenuators 38 may be interposed between the BTS 14 and the downlink interface 30 in a manner that seeks to prevent the downlink interface from being electrically over powered and/or the BTS 14 may be configured to operate with low output power in a manner that seeks to prevent the downlink interface 30 from being electrically over powered. However, one or more of the optional other protecting features may be omitted from the composite system 10, such as in response to equipment failure or human error.
More specifically regarding the electrical connections between the BTS 14 and the DAS 12, as shown in
The DAS' ports 44, 46 may be respectively electrically coupled to ports of the protection circuit 18 and/or the DAS' ports 44, 46 may be characterized as being the ports 44, 46 of the protection circuit, or the like. The electrical communication path 36 from the DAS' uplink interface 32 may be coupled to the protection circuit's duplex port 102, or the uplink electrical RF signals from the DAS' uplink interface 32 may be provided to the BTS 14 in any other suitable manner.
The protection circuit 18 may further include an RF pass-through port 52 coupled by an electrical communication path 54 to a respective RF input port of the downlink interface 30. The protection circuit 18 may further include an RF diversion port 56 coupled by an electrical communication path 58 to an RF port of the dummy load 16. The dummy load 16 may be a conventional electrical load. More specifically, the dummy load 16 may provide a fifty Ohm resistive load, or any other suitable load. The dummy load 16 may also be referred to a high power termination, or more specifically a high power fifty Ohm termination.
In the embodiment shown in the drawings, the protection circuit 18 is positioned between the DAS' ports 44, 46 and the downlink interface 30 so that the protection circuit may be characterized as protecting both of the DAS' ports 44, 46. Alternatively although not shown in the drawings, the protection circuit 18 may be configured for protecting only one of the DAS' ports 44, 46, and/or a first protection circuit 18 may be configured for protecting only the DAS' duplex port 44 and a second protection circuit 18 may be configured for protecting only the DAS' simplex port 46.
As shown in
The RF output port of the electrical combiner 64 is coupled to an RF input port of a power detector 76 by an electrical communication path 78, for providing the respective sample portion of the downlink electrical RF signals to the power detector. The output of the power detector 76 is a voltage that is relative to (e.g., may be proportional to) the input power (i.e., both the power of the respective sample portion of the downlink electrical RF signals supplied to the input port of the power detector 76, and the total power of the downlink electrical RF signals provided by the BTS 14). When the input power supplied to the power detector 76 increases, the output voltage of the power detector increases proportionally.
The output port of the power detector 76 is coupled to a negative input port of an analog comparator 82 by an electrical path 80. The comparator 82 may more specifically be an operational amplifier voltage comparator. A digital to analog converter (D/A converter) 84 may be coupled to a positive port of the comparator 82 by an electrical communication path 86. The D/A converter 84 is for providing a voltage to the positive port of the comparator 82 by way of the electrical communication path 86.
The D/A converter 84 is configured to produce a voltage proportional to the maximum electrical power that can safely be received at the RF input port of the downlink interface 30, or a voltage proportional to a percentage of the maximum electrical power that can safely be received at the RF input port of the downlink interface, wherein the percentage may be based upon factors related to operability of the DAS 12 and the amount of risk that the responsible person(s) are willing to take with regard to the possibility of overpowering the DAS. The voltage provided by the D/A converter 84 may be adjustable. Although this example is based on providing a reference voltage to the comparator 82 by means of a D/A converter 84, this reference voltage can be obtained using other suitable means, such as a potentiometer.
The output of the comparator 82 is coupled to a control port of an RF switch 90 (e.g., a solid state relay) by an electrical communication path 88, so that the output of the comparator is the control input of the switch. The RF output port of the electrical combiner 70 is coupled to an RF input port of the switch 90 by an electrical communication path 91, for providing the incoming power from the BTS 14, or more specifically the remainder portion of the downlink electrical RF signals from the electrical combiner 70, to the switch. Each of the above-discussed electrical communication paths of the system 10 and protection circuit 18 typically comprises, consists essentially of, or consists of electrical conductor(s) for communicatively coupling respective devices, although any suitable communication paths and/or communicative couplings may be used.
In one embodiment, the couplers 60, 62 are configured so that the respective sample portion of the downlink electrical RF signals is a relatively small percentage of the downlink electrical RF signals provided by the BTS 14, and the remainder portion of the downlink electrical RF signals is a relatively large percentage of the downlink electrical RF signals provided by the BTS. Accordingly, the remainder portion of the downlink electrical RF signals may be a substantial portion of the downlink electrical RF signals provided by the BTS 14. In one example, the respective sample portion of the downlink electrical RF signals provided to the combiner 64 may be may be about 1% of the downlink electrical RF signals provided by the BTS 14, such that the remainder portion of the downlink electrical RF signals provided to the combiner 70 is about 99% of the downlink electrical RF signals provided by the BTS 14.
Generally described and in accordance with an embodiment of this disclosure, the couplers 60, 62 sample the power (i.e., the downlink electrical RF signals) from the BTS 14, and the sampled power is provided to the power detector 76. The power detector 76 generates an output voltage that is proportional to the sampled power. The analog comparator 82 compares the output voltage from the power detector 76 to a predetermined threshold voltage, wherein the predetermined threshold voltage is provided by the D/A converter 84 and represents, reflects and/or is indicative of the maximum allowed power from the BTS 14. Although this example is based on providing a reference voltage to the comparator 82 by means of a D/A converter 84, this reference voltage can be obtained using other suitable means, such as a potentiometer. For example, the output voltage from the power detector 76 may vary proportionally to the power of the downlink electrical RF signals provided by the BTS 14. If the sampled power is higher than the threshold, or more specifically if the output voltage from the power detector 76 is higher than the predetermined threshold voltage provided by the D/A converter 84, then the comparator 82 activates the RF switch 90 so that the switch diverts the power (i.e., the downlink electrical RF signals) to the dummy load 16 rather than allowing the power to reach the downlink interface 30 of the DAS 12, as will be discussed in greater detail below.
More specifically regarding the switch 90, it has at least two states and at least two corresponding RF output ports. The RF output ports of the switch 90 may be respectively electrically coupled to the output ports 52, 56 of the protection circuit 18 and/or the output ports of the switch may be characterized as being the protection circuit's output ports 52, 56. Referring to
In accordance with an embodiment of this disclosure, the protection circuit 18 is configured so that as long as the output voltage of the power detector 76 is lower than the voltage provided by the D/A converter 84, the output of the comparator 82 “commands” the switch 90 to route the incoming power, or more specifically the remainder portion of the downlink electrical RF signals from the electrical combiner 70, to the RF input port of the downlink interface 30. In contrast, if the output voltage of power detector 76 is higher than the voltage provided by the D/A converter 84, then the input power from the BTS 14 is higher than allowed and the comparator 82 will change its output state and will command the switch 90 to change its state and route the incoming power from the BTS, or more specifically the remainder portion of the downlink electrical RF signals from the electrical combiner 70, to the dummy load 16. In addition to controlling the switch 90, the output of the comparator 82 may also activate an alarm in response to the output voltage of power detector 76 being higher than the voltage provided by the D/A converter 84 (i.e., in response to the input power from the BTS 14 being higher than allowed), wherein the alarm that may be communicated to a control center to inform a maintenance team, or the like, that the BTS 14 is providing higher than expected power, or the like.
The threshold voltage provided by the D/A converter 84 to the positive port of the comparator 82 may be configured by the installer of the DAS 12, or by the installer of the protection circuit 18, or the like, based upon the capabilities of the downlink interface 30 or other considerations. For example and at least partially reiterating from above, the D/A converter 84 is typically configured so that the voltage it provides may be proportional to the maximum electrical power that can safely be received at the RF input port of the downlink interface 30, or the voltage from the D/A converter may be proportional to a percentage of the maximum electrical power that can safely be received at the RF input port of the downlink interface, wherein the percentage may be based upon factors related to operability of the DAS 12 and the amount of risk that the responsible person(s) are willing to take with regard to the possibility of overpowering the DAS. The DAS 12 may also be referred to as a distributed antenna apparatus.
The comparator 82 may be configured to comprise or otherwise be associated with a hysteresis mechanism that seeks to avoid overly frequent cycling of the switch 90 between the pass-through and diversion states discussed above. More specifically, the hysteresis mechanism of or associated with the comparator 82 seeks to avoid an overly frequent cycling of the switch 90 in a situation in which the incoming power from the BTS 14 stabilizes at the threshold level such that any small change in the incoming power from the BTS 14 might cause the switch to toggle to another state.
The structure and operativeness of the hysteresis features are schematically illustrated by
Regarding the voltage supplied from the power detector 76, in
Referring to
Described differently, the hysteresis features of the comparator 82 of an embodiment of this disclosure are configured in a manner so that:
In the embodiment shown in the drawings, at least a portion of the protection circuit 18 may be characterized as being a relatively fast and reliable analog circuit that operates without the involvement of a relatively slow microcontroller or other type of computer and associated software. Alternatively, the protection circuit 18 may be configured differently than shown in the drawings.
It is also noted that the operational steps described in any of the exemplary embodiments herein are described to provide examples and discussion. The operations described may be performed in numerous different sequences other than the illustrated sequences. Furthermore, operations described in a single operational step may actually be performed in a number of different steps. Additionally, one or more operational steps discussed in the exemplary embodiments may be combined. It is to be understood that the operational steps illustrated in any flow chart diagrams, or the like, may be subject to numerous different modifications as will be readily apparent to one of skill in the art. Those of skill in the art would also understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
Many modifications and other embodiments of the embodiments set forth herein will come to mind to one skilled in the art to which the embodiments pertain having the benefit of the teachings presented in the foregoing descriptions and the associated drawings. Therefore, it is to be understood that the description and claims are not to be limited to the specific embodiments disclosed and that modifications and other embodiments are intended to be included within the scope of the appended claims. It is intended that the embodiments cover the modifications and variations of the embodiments provided they come within the scope of the appended claims and their equivalents. Although specific terms are employed herein, they are used in a generic and descriptive sense only and not for purposes of limitation.
Number | Name | Date | Kind |
---|---|---|---|
4449246 | Seiler et al. | May 1984 | A |
4665560 | Lange | May 1987 | A |
4939852 | Brenner | Jul 1990 | A |
4972346 | Kawano et al. | Nov 1990 | A |
5056109 | Gilhousen et al. | Oct 1991 | A |
5187803 | Sohner et al. | Feb 1993 | A |
5206655 | Caille et al. | Apr 1993 | A |
5208812 | Dudek et al. | May 1993 | A |
5278989 | Burke et al. | Jan 1994 | A |
5280472 | Gilhousen et al. | Jan 1994 | A |
5381459 | Lappington | Jan 1995 | A |
5396224 | Dukes et al. | Mar 1995 | A |
5420863 | Taketsugu et al. | May 1995 | A |
5432838 | Purchase et al. | Jul 1995 | A |
5436827 | Gunn et al. | Jul 1995 | A |
5519830 | Opoczynski | May 1996 | A |
5534854 | Bradbury et al. | Jul 1996 | A |
5559831 | Keith | Sep 1996 | A |
5598314 | Hall | Jan 1997 | A |
5606725 | Hart | Feb 1997 | A |
5668562 | Cutrer et al. | Sep 1997 | A |
5682256 | Motley et al. | Oct 1997 | A |
5708681 | Malkemes et al. | Jan 1998 | A |
5726984 | Kubler et al. | Mar 1998 | A |
5765099 | Georges et al. | Jun 1998 | A |
5790536 | Mahany et al. | Aug 1998 | A |
5802173 | Hamilton-Piercy et al. | Sep 1998 | A |
5809395 | Hamilton-Piercy et al. | Sep 1998 | A |
5809431 | Bustamante et al. | Sep 1998 | A |
5818883 | Smith et al. | Oct 1998 | A |
5839052 | Dean et al. | Nov 1998 | A |
5862460 | Rich | Jan 1999 | A |
5867763 | Dean et al. | Feb 1999 | A |
5889469 | Mykytiuk et al. | Mar 1999 | A |
5953670 | Newson | Sep 1999 | A |
5969837 | Farber et al. | Oct 1999 | A |
5983070 | Georges et al. | Nov 1999 | A |
6006069 | Langston | Dec 1999 | A |
6011980 | Nagano et al. | Jan 2000 | A |
6014546 | Georges et al. | Jan 2000 | A |
6037898 | Parish et al. | Mar 2000 | A |
6060879 | Mussenden | May 2000 | A |
6069721 | Oh et al. | May 2000 | A |
6118767 | Shen et al. | Sep 2000 | A |
6122529 | Sabat, Jr. et al. | Sep 2000 | A |
6125048 | Loughran et al. | Sep 2000 | A |
6128477 | Freed | Oct 2000 | A |
6157810 | Georges et al. | Dec 2000 | A |
6163266 | Fasullo et al. | Dec 2000 | A |
6188876 | Kim | Feb 2001 | B1 |
6192216 | Sabat, Jr. et al. | Feb 2001 | B1 |
6194968 | Winslow | Feb 2001 | B1 |
6212397 | Langston et al. | Apr 2001 | B1 |
6222503 | Gietema | Apr 2001 | B1 |
6223201 | Reznak | Apr 2001 | B1 |
6236863 | Waldroup et al. | May 2001 | B1 |
6275990 | Dapper et al. | Aug 2001 | B1 |
6279158 | Geile et al. | Aug 2001 | B1 |
6295451 | Mimura | Sep 2001 | B1 |
6307869 | Pawelski | Oct 2001 | B1 |
6317599 | Rappaport et al. | Nov 2001 | B1 |
6330241 | Fort | Dec 2001 | B1 |
6330244 | Swartz et al. | Dec 2001 | B1 |
6334219 | Hill et al. | Dec 2001 | B1 |
6336021 | Nukada | Jan 2002 | B1 |
6336042 | Dawson et al. | Jan 2002 | B1 |
6340932 | Rodgers et al. | Jan 2002 | B1 |
6353600 | Schwartz et al. | Mar 2002 | B1 |
6370203 | Boesch et al. | Apr 2002 | B1 |
6374124 | Slabinski | Apr 2002 | B1 |
6389010 | Kubler et al. | May 2002 | B1 |
6400318 | Kasami et al. | Jun 2002 | B1 |
6400418 | Wakabayashi | Jun 2002 | B1 |
6405018 | Reudink et al. | Jun 2002 | B1 |
6415132 | Sabat, Jr. | Jul 2002 | B1 |
6421327 | Lundby | Jul 2002 | B1 |
6448558 | Greene | Sep 2002 | B1 |
6452915 | Jorgensen | Sep 2002 | B1 |
6480702 | Sabat, Jr. | Nov 2002 | B1 |
6496290 | Lee | Dec 2002 | B1 |
6519449 | Zhang et al. | Feb 2003 | B1 |
6535330 | Lelic et al. | Mar 2003 | B1 |
6535720 | Kintis et al. | Mar 2003 | B1 |
6551065 | Lee | Apr 2003 | B2 |
6580402 | Navarro et al. | Jun 2003 | B2 |
6580905 | Naidu et al. | Jun 2003 | B1 |
6587514 | Wright et al. | Jul 2003 | B1 |
6598009 | Yang | Jul 2003 | B2 |
6615074 | Mickle et al. | Sep 2003 | B2 |
6628732 | Takaki | Sep 2003 | B1 |
6657535 | Magbie et al. | Dec 2003 | B1 |
6658269 | Golemon et al. | Dec 2003 | B1 |
6665308 | Rakib et al. | Dec 2003 | B1 |
6670930 | Navarro | Dec 2003 | B2 |
6678509 | Skarman et al. | Jan 2004 | B2 |
6704298 | Matsumiya et al. | Mar 2004 | B1 |
6745013 | Porter et al. | Jun 2004 | B1 |
6763226 | McZeal, Jr. | Jul 2004 | B1 |
6785558 | Stratford et al. | Aug 2004 | B1 |
6801767 | Schwartz et al. | Oct 2004 | B1 |
6823174 | Masenten et al. | Nov 2004 | B1 |
6826163 | Mani et al. | Nov 2004 | B2 |
6836660 | Wala | Dec 2004 | B1 |
6836673 | Trott | Dec 2004 | B1 |
6842433 | West et al. | Jan 2005 | B2 |
6850510 | Kubler | Feb 2005 | B2 |
6876056 | Tilmans et al. | Apr 2005 | B2 |
6882311 | Walker et al. | Apr 2005 | B2 |
6885344 | Mohamadi | Apr 2005 | B2 |
6919858 | Rofougaran | Jul 2005 | B2 |
6931659 | Kinemura | Aug 2005 | B1 |
6934511 | Lovinggood et al. | Aug 2005 | B1 |
6934541 | Miyatani | Aug 2005 | B2 |
6941112 | Hasegawa | Sep 2005 | B2 |
6961312 | Kubler et al. | Nov 2005 | B2 |
6977502 | Hertz | Dec 2005 | B1 |
7015826 | Chan et al. | Mar 2006 | B1 |
7020488 | Bleile et al. | Mar 2006 | B1 |
7024166 | Wallace et al. | Apr 2006 | B2 |
7039399 | Fischer | May 2006 | B2 |
7043271 | Seto et al. | May 2006 | B1 |
7050017 | King et al. | May 2006 | B2 |
7053838 | Judd | May 2006 | B2 |
7069577 | Geile et al. | Jun 2006 | B2 |
7072586 | Aburakawa et al. | Jul 2006 | B2 |
7103119 | Matsuoka et al. | Sep 2006 | B2 |
7103377 | Bauman et al. | Sep 2006 | B2 |
7110795 | Doi | Sep 2006 | B2 |
7142125 | Larson et al. | Nov 2006 | B2 |
7142535 | Kubler et al. | Nov 2006 | B2 |
7142619 | Sommer et al. | Nov 2006 | B2 |
7144255 | Seymour | Dec 2006 | B2 |
7171244 | Bauman | Jan 2007 | B2 |
7184728 | Solum | Feb 2007 | B2 |
7190748 | Kim et al. | Mar 2007 | B2 |
7194023 | Norrell et al. | Mar 2007 | B2 |
7199443 | Elsharawy | Apr 2007 | B2 |
7269311 | Kim et al. | Sep 2007 | B2 |
7315735 | Graham | Jan 2008 | B2 |
7359647 | Faria et al. | Apr 2008 | B1 |
7359674 | Markki et al. | Apr 2008 | B2 |
7366151 | Kubler et al. | Apr 2008 | B2 |
7369526 | Lechleider et al. | May 2008 | B2 |
7388892 | Nishiyama et al. | Jun 2008 | B2 |
7392025 | Rooyen et al. | Jun 2008 | B2 |
7412224 | Kotola et al. | Aug 2008 | B2 |
7450853 | Kim et al. | Nov 2008 | B2 |
7451365 | Wang et al. | Nov 2008 | B2 |
7454171 | Palin et al. | Nov 2008 | B2 |
7460507 | Kubler et al. | Dec 2008 | B2 |
7469105 | Wake et al. | Dec 2008 | B2 |
7483711 | Burchfiel | Jan 2009 | B2 |
7486782 | Roos | Feb 2009 | B1 |
7505747 | Solum | Mar 2009 | B2 |
7512419 | Solum | Mar 2009 | B2 |
7515526 | Elkayam et al. | Apr 2009 | B2 |
7539509 | Bauman et al. | May 2009 | B2 |
7542452 | Penumetsa | Jun 2009 | B2 |
7546138 | Bauman | Jun 2009 | B2 |
7548138 | Kamgaing | Jun 2009 | B2 |
7551641 | Pirzada et al. | Jun 2009 | B2 |
7557758 | Rofougaran | Jul 2009 | B2 |
7580384 | Kubler et al. | Aug 2009 | B2 |
7586861 | Kubler et al. | Sep 2009 | B2 |
7587559 | Brittain et al. | Sep 2009 | B2 |
7599420 | Forenza et al. | Oct 2009 | B2 |
7610046 | Wala | Oct 2009 | B2 |
7619535 | Chen et al. | Nov 2009 | B2 |
7630690 | Kaewell, Jr. et al. | Dec 2009 | B2 |
7633934 | Kubler et al. | Dec 2009 | B2 |
7639982 | Wala | Dec 2009 | B2 |
7646743 | Kubler et al. | Jan 2010 | B2 |
7646777 | Hicks, III et al. | Jan 2010 | B2 |
7653397 | Pernu et al. | Jan 2010 | B2 |
7668565 | Ylänen et al. | Feb 2010 | B2 |
7688811 | Kubler et al. | Mar 2010 | B2 |
7693486 | Kasslin et al. | Apr 2010 | B2 |
7697467 | Kubler et al. | Apr 2010 | B2 |
7715375 | Kubler et al. | May 2010 | B2 |
7751374 | Donovan | Jul 2010 | B2 |
7751838 | Ramesh et al. | Jul 2010 | B2 |
7760703 | Kubler et al. | Jul 2010 | B2 |
7768951 | Kubler et al. | Aug 2010 | B2 |
7773573 | Chung et al. | Aug 2010 | B2 |
7778603 | Palin et al. | Aug 2010 | B2 |
7809012 | Ruuska et al. | Oct 2010 | B2 |
7812766 | Leblanc et al. | Oct 2010 | B2 |
7817969 | Castaneda et al. | Oct 2010 | B2 |
7835328 | Stephens et al. | Nov 2010 | B2 |
7848316 | Kubler et al. | Dec 2010 | B2 |
7848770 | Scheinert | Dec 2010 | B2 |
7852228 | Teng et al. | Dec 2010 | B2 |
7853234 | Afsahi | Dec 2010 | B2 |
7870321 | Rofougaran | Jan 2011 | B2 |
7881755 | Mishra et al. | Feb 2011 | B1 |
7894423 | Kubler et al. | Feb 2011 | B2 |
7899007 | Kubler et al. | Mar 2011 | B2 |
7907972 | Walton et al. | Mar 2011 | B2 |
7912043 | Kubler et al. | Mar 2011 | B2 |
7916706 | Kubler et al. | Mar 2011 | B2 |
7917177 | Bauman | Mar 2011 | B2 |
7920553 | Kubler et al. | Apr 2011 | B2 |
7920858 | Sabat, Jr. et al. | Apr 2011 | B2 |
7924783 | Mahany et al. | Apr 2011 | B1 |
7936713 | Kubler et al. | May 2011 | B2 |
7949364 | Kasslin et al. | May 2011 | B2 |
7957777 | Vu et al. | Jun 2011 | B1 |
7962111 | Solum | Jun 2011 | B2 |
7969009 | Chandrasekaran | Jun 2011 | B2 |
7969911 | Mahany et al. | Jun 2011 | B2 |
7970428 | Lin et al. | Jun 2011 | B2 |
7990925 | Tinnakornsrisuphap et al. | Aug 2011 | B2 |
7996020 | Chhabra | Aug 2011 | B1 |
8018907 | Kubler et al. | Sep 2011 | B2 |
8036157 | Hanabusa et al. | Oct 2011 | B2 |
8036308 | Rofougaran | Oct 2011 | B2 |
8082353 | Huber et al. | Dec 2011 | B2 |
8086192 | Rofougaran et al. | Dec 2011 | B2 |
8155525 | Cox | Apr 2012 | B2 |
8270838 | Cox | Sep 2012 | B2 |
8306563 | Zavadsky et al. | Nov 2012 | B2 |
8328145 | Smith | Dec 2012 | B2 |
8406941 | Smith | Mar 2013 | B2 |
8417979 | Maroney | Apr 2013 | B2 |
8457562 | Zavadsky et al. | Jun 2013 | B2 |
8514092 | Cao et al. | Aug 2013 | B2 |
8532492 | Palanisamy et al. | Sep 2013 | B2 |
8548330 | Berlin et al. | Oct 2013 | B2 |
8588614 | Larsen | Nov 2013 | B2 |
8620375 | Kim et al. | Dec 2013 | B2 |
8649684 | Casterline et al. | Feb 2014 | B2 |
8744390 | Stratford | Jun 2014 | B2 |
8831428 | Kobyakov et al. | Sep 2014 | B2 |
8831593 | Melester et al. | Sep 2014 | B2 |
8930736 | James | Jan 2015 | B2 |
9160449 | Heidler et al. | Oct 2015 | B2 |
20010036199 | Terry | Nov 2001 | A1 |
20020051434 | Ozluturk et al. | May 2002 | A1 |
20020097031 | Cook et al. | Jul 2002 | A1 |
20020123365 | Thorson et al. | Sep 2002 | A1 |
20030111909 | Liu et al. | Jun 2003 | A1 |
20030146765 | Darshan et al. | Aug 2003 | A1 |
20030147353 | Clarkson et al. | Aug 2003 | A1 |
20040095907 | Agee et al. | May 2004 | A1 |
20040146020 | Kubler et al. | Jul 2004 | A1 |
20040151164 | Kubler et al. | Aug 2004 | A1 |
20040160912 | Kubler et al. | Aug 2004 | A1 |
20040160913 | Kubler et al. | Aug 2004 | A1 |
20040165573 | Kubler et al. | Aug 2004 | A1 |
20040203704 | Ommodt et al. | Oct 2004 | A1 |
20040230846 | Mancey et al. | Nov 2004 | A1 |
20050047030 | Lee | Mar 2005 | A1 |
20050147071 | Karaoguz et al. | Jul 2005 | A1 |
20050226625 | Wake et al. | Oct 2005 | A1 |
20050272439 | Picciriello et al. | Dec 2005 | A1 |
20060053324 | Giat et al. | Mar 2006 | A1 |
20060084379 | O'Neill | Apr 2006 | A1 |
20060192434 | Vrla et al. | Aug 2006 | A1 |
20060274704 | Desai et al. | Dec 2006 | A1 |
20070004467 | Chary | Jan 2007 | A1 |
20070058332 | Canterbury et al. | Mar 2007 | A1 |
20070060045 | Prautzsch | Mar 2007 | A1 |
20070060055 | Desai et al. | Mar 2007 | A1 |
20070076649 | Lin et al. | Apr 2007 | A1 |
20070224954 | Gopi | Sep 2007 | A1 |
20070286599 | Sauer et al. | Dec 2007 | A1 |
20070291732 | Todd et al. | Dec 2007 | A1 |
20070297005 | Montierth et al. | Dec 2007 | A1 |
20080002614 | Hanabusa et al. | Jan 2008 | A1 |
20080043714 | Pernu | Feb 2008 | A1 |
20080044186 | George et al. | Feb 2008 | A1 |
20080045271 | Azuma | Feb 2008 | A1 |
20080070502 | George et al. | Mar 2008 | A1 |
20080080863 | Sauer et al. | Apr 2008 | A1 |
20080098203 | Master et al. | Apr 2008 | A1 |
20080118014 | Reunamaki et al. | May 2008 | A1 |
20080129634 | Pera et al. | Jun 2008 | A1 |
20080134194 | Liu | Jun 2008 | A1 |
20080166094 | Bookbinder et al. | Jul 2008 | A1 |
20080167931 | Gerstemeier et al. | Jul 2008 | A1 |
20080186143 | George et al. | Aug 2008 | A1 |
20080207253 | Jaakkola et al. | Aug 2008 | A1 |
20080251071 | Armitstead et al. | Oct 2008 | A1 |
20080253351 | Pernu et al. | Oct 2008 | A1 |
20080261656 | Bella et al. | Oct 2008 | A1 |
20080268833 | Huang et al. | Oct 2008 | A1 |
20080272725 | Bojrup et al. | Nov 2008 | A1 |
20080279137 | Pernu et al. | Nov 2008 | A1 |
20080280569 | Hazani et al. | Nov 2008 | A1 |
20080291830 | Pernu et al. | Nov 2008 | A1 |
20080292322 | Daghighian et al. | Nov 2008 | A1 |
20090007192 | Singh | Jan 2009 | A1 |
20090022304 | Kubler et al. | Jan 2009 | A1 |
20090028087 | Nguyen et al. | Jan 2009 | A1 |
20090028317 | Ling et al. | Jan 2009 | A1 |
20090059903 | Kubler et al. | Mar 2009 | A1 |
20090061796 | Arkko et al. | Mar 2009 | A1 |
20090073916 | Zhang et al. | Mar 2009 | A1 |
20090149221 | Liu et al. | Jun 2009 | A1 |
20090169163 | Abbott, III et al. | Jul 2009 | A1 |
20090175214 | Sfar et al. | Jul 2009 | A1 |
20090218407 | Rofougaran | Sep 2009 | A1 |
20090218657 | Rofougaran | Sep 2009 | A1 |
20090245084 | Moffatt et al. | Oct 2009 | A1 |
20090245153 | Li et al. | Oct 2009 | A1 |
20090245221 | Piipponen | Oct 2009 | A1 |
20090252136 | Mahany et al. | Oct 2009 | A1 |
20090252205 | Rheinfelder et al. | Oct 2009 | A1 |
20090258652 | Lambert et al. | Oct 2009 | A1 |
20090280854 | Khan et al. | Nov 2009 | A1 |
20090285147 | Subasic et al. | Nov 2009 | A1 |
20100002626 | Schmidt et al. | Jan 2010 | A1 |
20100027443 | LoGalbo et al. | Feb 2010 | A1 |
20100054746 | Logan | Mar 2010 | A1 |
20100056184 | Vakil et al. | Mar 2010 | A1 |
20100056200 | Tolonen | Mar 2010 | A1 |
20100080154 | Noh et al. | Apr 2010 | A1 |
20100080182 | Kubler et al. | Apr 2010 | A1 |
20100091475 | Toms et al. | Apr 2010 | A1 |
20100118864 | Kubler et al. | May 2010 | A1 |
20100127937 | Chandrasekaran et al. | May 2010 | A1 |
20100134257 | Puleston et al. | Jun 2010 | A1 |
20100148373 | Chandrasekaran | Jun 2010 | A1 |
20100156721 | Alamouti et al. | Jun 2010 | A1 |
20100188998 | Pernu et al. | Jul 2010 | A1 |
20100190509 | Davis | Jul 2010 | A1 |
20100202326 | Rofougaran et al. | Aug 2010 | A1 |
20100225413 | Rofougaran et al. | Sep 2010 | A1 |
20100225556 | Rofougaran et al. | Sep 2010 | A1 |
20100225557 | Rofougaran et al. | Sep 2010 | A1 |
20100232323 | Kubler et al. | Sep 2010 | A1 |
20100246558 | Harel | Sep 2010 | A1 |
20100255774 | Kenington | Oct 2010 | A1 |
20100258949 | Henderson et al. | Oct 2010 | A1 |
20100260063 | Kubler et al. | Oct 2010 | A1 |
20100290355 | Roy et al. | Nov 2010 | A1 |
20100290787 | Cox | Nov 2010 | A1 |
20100309049 | Reunamäki et al. | Dec 2010 | A1 |
20100311472 | Rofougaran et al. | Dec 2010 | A1 |
20100311480 | Raines et al. | Dec 2010 | A1 |
20100322206 | Hole et al. | Dec 2010 | A1 |
20100329161 | Ylanen et al. | Dec 2010 | A1 |
20100329166 | Mahany et al. | Dec 2010 | A1 |
20110007724 | Mahany et al. | Jan 2011 | A1 |
20110007733 | Kubler et al. | Jan 2011 | A1 |
20110021146 | Pernu | Jan 2011 | A1 |
20110021224 | Koskinen et al. | Jan 2011 | A1 |
20110055861 | Covell et al. | Mar 2011 | A1 |
20110065450 | Kazmi | Mar 2011 | A1 |
20110069668 | Chion et al. | Mar 2011 | A1 |
20110071734 | Van Wiemeersch et al. | Mar 2011 | A1 |
20110086614 | Brisebois et al. | Apr 2011 | A1 |
20110105110 | Carmon et al. | May 2011 | A1 |
20110116572 | Lee et al. | May 2011 | A1 |
20110126071 | Han et al. | May 2011 | A1 |
20110149879 | Noriega et al. | Jun 2011 | A1 |
20110158298 | Djadi et al. | Jun 2011 | A1 |
20110172841 | Forbes, Jr. | Jul 2011 | A1 |
20110182230 | Ohm et al. | Jul 2011 | A1 |
20110194475 | Kim et al. | Aug 2011 | A1 |
20110201368 | Faccin et al. | Aug 2011 | A1 |
20110204504 | Henderson et al. | Aug 2011 | A1 |
20110211439 | Manpuria et al. | Sep 2011 | A1 |
20110215901 | Van Wiemeersch et al. | Sep 2011 | A1 |
20110222415 | Ramamurthi et al. | Sep 2011 | A1 |
20110222434 | Chen | Sep 2011 | A1 |
20110222619 | Ramamurthi et al. | Sep 2011 | A1 |
20110227795 | Lopez et al. | Sep 2011 | A1 |
20110244887 | Dupray et al. | Oct 2011 | A1 |
20110249715 | Choi et al. | Oct 2011 | A1 |
20110256878 | Zhu et al. | Oct 2011 | A1 |
20110266999 | Yodfat et al. | Nov 2011 | A1 |
20110268033 | Boldi et al. | Nov 2011 | A1 |
20110268446 | Cune et al. | Nov 2011 | A1 |
20110268449 | Berlin et al. | Nov 2011 | A1 |
20110268452 | Beamon et al. | Nov 2011 | A1 |
20110274021 | He et al. | Nov 2011 | A1 |
20110281536 | Lee et al. | Nov 2011 | A1 |
20120009926 | Hevizi et al. | Jan 2012 | A1 |
20120033676 | Mundra et al. | Feb 2012 | A1 |
20120099448 | Matsuo et al. | Apr 2012 | A1 |
20120106442 | Xiao | May 2012 | A1 |
20120120995 | Wurth | May 2012 | A1 |
20120122405 | Gerber et al. | May 2012 | A1 |
20120163829 | Cox | Jun 2012 | A1 |
20120196611 | Venkatraman et al. | Aug 2012 | A1 |
20120214538 | Kim et al. | Aug 2012 | A1 |
20120289224 | Hallberg et al. | Nov 2012 | A1 |
20120293390 | Shoemaker et al. | Nov 2012 | A1 |
20120307876 | Trachewsky et al. | Dec 2012 | A1 |
20130017863 | Kummetz et al. | Jan 2013 | A1 |
20130035047 | Chen et al. | Feb 2013 | A1 |
20130040676 | Kang et al. | Feb 2013 | A1 |
20130049469 | Huff et al. | Feb 2013 | A1 |
20130094425 | Soriaga et al. | Apr 2013 | A1 |
20130102309 | Chande et al. | Apr 2013 | A1 |
20130132683 | Ajanovic et al. | May 2013 | A1 |
20130188959 | Cune et al. | Jul 2013 | A1 |
20130225182 | Singh et al. | Aug 2013 | A1 |
20130225183 | Meshkati et al. | Aug 2013 | A1 |
20130235726 | Frederiksen et al. | Sep 2013 | A1 |
20130249292 | Blackwell, Jr. et al. | Sep 2013 | A1 |
20130295980 | Reuven et al. | Nov 2013 | A1 |
20130330086 | Berlin et al. | Dec 2013 | A1 |
20130337750 | Ko | Dec 2013 | A1 |
20140024402 | Singh | Jan 2014 | A1 |
20140037294 | Cox et al. | Feb 2014 | A1 |
20140050482 | Berlin et al. | Feb 2014 | A1 |
20140075217 | Wong et al. | Mar 2014 | A1 |
20140087742 | Brower et al. | Mar 2014 | A1 |
20140089688 | Man et al. | Mar 2014 | A1 |
20140097846 | Lemaire et al. | Apr 2014 | A1 |
20140146692 | Hazani et al. | May 2014 | A1 |
20140148214 | Sasson | May 2014 | A1 |
20140153919 | Casterline et al. | Jun 2014 | A1 |
20140169246 | Chui et al. | Jun 2014 | A1 |
20140233442 | Atias et al. | Aug 2014 | A1 |
20140293894 | Saban et al. | Oct 2014 | A1 |
20140308043 | Heidler et al. | Oct 2014 | A1 |
20140308044 | Heidler et al. | Oct 2014 | A1 |
20150098350 | Mini | Apr 2015 | A1 |
20150249513 | Schwab | Sep 2015 | A1 |
Number | Date | Country |
---|---|---|
101030162 | Sep 2007 | CN |
101232179 | Jul 2008 | CN |
101803246 | Aug 2010 | CN |
101876962 | Nov 2010 | CN |
0851618 | Jul 1998 | EP |
0924881 | Jun 1999 | EP |
1227605 | Jul 2002 | EP |
1347584 | Sep 2003 | EP |
1954019 | Aug 2008 | EP |
2275834 | Sep 1994 | GB |
58055770 | Apr 1983 | JP |
2002353813 | Dec 2002 | JP |
20040053467 | Jun 2004 | KR |
1031619 | Apr 2011 | KR |
9603823 | Feb 1996 | WO |
0072475 | Nov 2000 | WO |
0184760 | Nov 2001 | WO |
03024027 | Mar 2003 | WO |
2005117337 | Dec 2005 | WO |
2006077569 | Jul 2006 | WO |
2006077570 | Jul 2006 | WO |
2008083317 | Jul 2008 | WO |
2009014710 | Jan 2009 | WO |
2009145789 | Dec 2009 | WO |
2010090999 | Aug 2010 | WO |
2010132292 | Nov 2010 | WO |
2011123314 | Oct 2011 | WO |
2012051227 | Apr 2012 | WO |
2012051230 | Apr 2012 | WO |
2012064333 | May 2012 | WO |
2012071367 | May 2012 | WO |
2012103822 | Aug 2012 | WO |
2015049671 | Apr 2015 | WO |
Entry |
---|
Patent Cooperation Treaty, International Search Report for PCT/IL2015/050656, dated Oct. 8, 2015, 9 pages. |
Arredondo, Albedo et al., “Techniques for Improving In-Building Radio Coverage Using Fiber-Fed Distributed Antenna Networks,” IEEE 46th Vehicular Technology Conference, Atlanta, Georgia, Apr. 28-May 1, 1996, pp. 1540-1543, vol. 3. |
Author Unknown, “INT6400/INT1400: HomePlug AV Chip Set,” Product Brief, Atheros Powerline Technology, 27003885 Revision 2, Atheros Communications, Inc., 2009, 2 pages. |
Author Unknown, “MegaPlug AV: 200 Mbps Ethernet Adapter,” Product Specifications, Actiontec Electronics, Inc., 2010, 2 pages. |
Cho, Bong Youl et al. “The Forward Link Performance of a PCS System with an AGC,” 4th CDMA International Conference and Exhibition, “The Realization of IMT-2000,” 1999, 10 pages. |
Chu, Ta-Shing et al. “Fiber optic microcellular radio”, IEEE Transactions on Vehicular Technology, Aug. 1991, pp. 599-606, vol. 40, Issue 3. |
Cutrer, David M. et al., “Dynamic Range Requirements for Optical Transmitters in Fiber-Fed Microcellular Networks,” IEEE Photonics Technology Letters, May 1995, pp. 564-566, vol. 7, No. 5. |
Dolmans, G. et al. “Performance study of an adaptive dual antenna handset for indoor communications”, IEE Proceedings: Microwaves, Antennas and Propagation, Apr. 1999, pp. 138-144, vol. 146, Issue 2. |
Ellinger, Frank et al., “A 5.2 GHz variable gain LNA MMIC for adaptive antenna combining”, IEEE MTT-S International Microwave Symposium Digest, Anaheim, California, Jun. 13-19, 1999, pp. 501-504, vol. 2. |
Fan, J.C. et al., “Dynamic range requirements for microcellular personal communication systems using analog fiber-optic links”, IEEE Transactions on Microwave Theory and Techniques, Aug. 1997, pp. 1390-1397, vol. 45, Issue 8. |
Schweber, Bill, “Maintaining cellular connectivity indoors demands sophisticated design,” EDN Network, Dec. 21, 2000, 2 pages, http://www.edn.com/design/integrated-circuit-design/4362776/Maintaining-cellular-connectivity-indoors-demands-sophisticated-design. |
Windyka, John et al., “System-Level Integrated Circuit (SLIC) Technology Development for Phased Array Antenna Applications,” Contractor Report 204132, National Aeronautics and Space Administration, Jul. 1997, 94 pages. |
International Preliminary Report on Patentability for PCT/US2011/061761 mailed May 28, 2013, 8 pages. |
International Search Report for PCT/US2011/061761 mailed Jan. 26, 2012, 3 pages. |
International Search Report for PCT/US2010/056458 mailed Aug. 2, 2011, 4 pages. |
International Preliminary Report on Patentability for PCT/US2010/056458 mailed May 23, 2013, 9 pages. |
Non-final Office Action for U.S. Appl. No. 13/410,916 mailed Jul. 18, 2012, 13 pages. |
Notice of Allowance for U.S. Appl. No. 13/410,916 mailed Aug. 9, 2012, 9 pages. |
Author Unknown, “MDS SDx Packaged Stations,” Technical Manual, MDS 05-6312A01, Revision B, May 2011, GE MDS, LLC, Rochester, New York, 44 pages. |
Author Unknown, “Quad Integrated IEEE 802.3at PSE Controller and Power Management System with up to 30W per Port Capabilities,” Product Brief, BCM59103, Broadcom Corporation, Oct. 12, 2009, 2 pages. |
Author Unknown, “Quad IEEE 802.3at Power Over Ethernet Controller,” Product Brief, LTC4266, Linear Technology Corporation, 2009, 2 pages. |
Author Unknown, “Single IEEE 802.3at Power Over Ethernet Controller,” Product Brief, LTC4274, Linear Technology Corporation, 2009, 2 pages. |
Author Unknown, “TPS23841: High-Power, Wide Voltage Range, Quad-Port Ethernet Power Sourcing Equipment Manager,” Texas Instruments Incorporated, Nov. 2006, Revised May 2007, 48 pages. |
International Search Report for PCT/US2010/034005 mailed Aug. 12, 2010, 4 pages. |
International Preliminary Report on Patentability for PCT/US2010/034005 mailed Nov. 24, 2011, 7 pages. |
International Search Report for PCT/US2011/055858 mailed Feb. 7, 2012, 4 pages. |
International Preliminary Report on Patentability for PCT/US2011/055858 mailed Apr. 25, 2013, 8 pages. |
International Search Report for PCT/US2011/055861 mailed Feb. 7, 2012, 4 pages. |
International Preliminary Report on Patentability for PCT/US2011/055861 mailed Apr. 25, 2013, 9 pages. |
International Preliminary Report on Patentability for PCT/US2011/061761 mailed Jun. 6, 2013, 9 pages. |
Translation of the the First Office Action for Chinese Patent Application No. 201180059270.4 issued May 13, 2015, 19 pages. |
International Search Report for PCT/US2013/058937 mailed Jan. 14, 2014, 4 pages. |
International Preliminary Report on Patentability for PCT/US2013/058937 mailed Apr. 9, 2015, 7 pages. |
Non-final Office Action for U.S. Appl. No. 13/626,371 mailed Dec. 13, 2013, 15 pages. |
Non-final Office Action for U.S. Appl. No. 13/626,371 mailed Jun. 25, 2014, 16 pages. |
Notice of Allowance for U.S. Appl. No. 13/626,371 mailed Nov. 25, 2014, 7 pages. |
Notice of Allowance for U.S. Appl. No. 13/626,371 mailed Aug. 3, 2015, 7 pages. |
Non-final Office Action for U.S. Appl. No. 13/859,985 mailed Feb. 27, 2015, 15 pages. |
Final Office Action for U.S. Appl. No. 13/859,985 mailed Jul. 22, 2015, 8 pages. |
Non-final Office Action for U.S. Appl. No. 13/860,017 mailed Feb. 27, 2015, 15 pages. |
Final Office Action for U.S. Appl. No. 13/860,017 mailed Jul. 23, 2015, 8 pages. |
Non-Final Office Action for U.S. Appl. No. 13/950,397, mailed Mar. 17, 2015, 6 pages. |
Notice of Allowance for U.S. Appl. No. 13/950,397, mailed Jun. 10, 2015, 7 pages. |
Non-Final Office Action for U.S. Appl. No. 13/771,756 mailed Sep. 10, 2014, 26 pages. |
Final Office Action for U.S. Appl. No. 13/771,756 mailed Apr. 30, 2015, 38 pages. |
International Search Report for PCT/IL2013/050976, mailed Mar. 18, 2014, 3 pages. |
Translation of the First Office Action for Chinese Patent Application No. 201180053270.3 issued May 26, 2015, 17 pages. |
Translation of the First Office Action for Chinese Patent Application No. 201180052537.7 issued Jun. 25, 2015, 9 pages. |
Non-final Office Action for U.S. Appl. No. 13/687,457 mailed Jul. 30, 2015, 12 pages. |
Advisory Action for U.S. Appl. No. 13/771,756, mailed Aug. 21, 2015, 4 pages. |
Non-final Office Action for U.S. Appl. No. 13/899,118, mailed Jan. 6, 2016, 10 pages. |
Non-final Office Action for U.S. Appl. No. 14/845,768, mailed Nov. 19, 2015, 12 pages. |
Non-final Office Action for U.S. Appl. No. 14/845,946, mailed Dec. 17, 2015, 11 pages. |
The Second Office Action for Chinese Patent Application No. 201180059270.4, mailed Jan. 28, 2016, 42 pages. |
Final Office Action for U.S. Appl. No. 13/687,457, mailed Feb. 12, 2016, 22 pages. |
Notice of Allowance for U.S. Appl. No. 13/771,756, mailed Jan. 29, 2016, 14 pages. |
Author Unknown, “Equivalent Circuits—(Thevenin and Norton),” Bucknell Lecture Notes, Wayback Machine, Mar. 25, 2010, http://www.facstaff.bucknell.edu/mastascu/elessonsHTML/Source/Source2.html, 15 pages. |
Advisory Action and Applicant-Initiated Interview Summary for U.S. Appl. No. 13/687,457, mailed May 13, 2016, 5 pages. |
Non-final Office Action for U.S. Appl. No. 13/687,457, mailed Jun. 27, 2016, 30 pages. |
Non-final Office Action for U.S. Appl. No. 13/899,118, mailed Jun. 30, 2016, 11 pages. |
Notice of Allowance for U.S. Appl. No. 14/845,946, mailed Jun. 8, 2016, 7 pages. |
Number | Date | Country | |
---|---|---|---|
20150380928 A1 | Dec 2015 | US |