The present technology may be generally described as providing systems and methods that allow for assessment and display of protection statuses for computing devices using graphical user interfaces or other notification methods.
Physical devices such as hard drives are often backed up to remote storage systems, which may also comprise cloud-based storage media. Common methods for backing up physical devices over time include the capturing of mirrors (e.g., snapshots) as well as incremental files that represent changes to files of a physical device that occur between mirror captures. Regardless of backup methodology, it is often difficult for system administrators to effectively monitor the protection statuses of various computing devices within a network.
According to some embodiments, the present technology may be directed to methods that comprise: (a) obtaining a backup status for a first computing device; (b) assigning a protection status for the first computing device based upon a comparison of the backup status and a compliance schema for the first computing device; and (c) transmitting the protection status to a monitoring device utilized by an end user.
According to various embodiments, the present technology may be directed to methods that comprise: (a) assigning a compliance schema to a computing device; (b) obtaining backup information for the computing device; (c) comparing the backup information to the compliance schema; (d) generating a compliance message based upon the comparison; and (e) transmitting the compliance message to a monitoring device.
According to exemplary embodiments, the present technology may be directed to systems that may comprise: (a) one or more processors; and (b) logic encoded in one or more tangible media for execution by the one or more processors and when executed operable to perform operations comprising: (i) obtaining a backup status for a first computing device; (ii) assigning a protection status for the first computing device based upon a comparison of the backup status and a compliance schema for the first computing device; and (iii) generating a graphical user interface that includes the protection status.
According to other embodiments, the present technology may be directed to a non-transitory machine-readable storage medium having embodied thereon a program. In some embodiments the program may be executed by a machine to perform a method for determining a protection status for a computing device. The method may comprise: (a) obtaining a backup status for a first computing device; (b) assigning a protection status for the first computing device based upon a comparison of the backup status and a compliance schema for the first computing device; and (c) transmitting the protection status to a monitoring device utilized by an end user.
Certain embodiments of the present technology are illustrated by the accompanying figures. It will be understood that the figures are not necessarily to scale and that details not necessary for an understanding of the technology or that render other details difficult to perceive may be omitted. It will be understood that the technology is not necessarily limited to the particular embodiments illustrated herein.
While this technology is susceptible of embodiment in many different forms, there is shown in the drawings and will herein be described in detail several specific embodiments with the understanding that the present disclosure is to be considered as an exemplification of the principles of the technology and is not intended to limit the technology to the embodiments illustrated.
It will be understood that like or analogous elements and/or components, referred to herein, may be identified throughout the drawings with like reference characters. It will be further understood that several of the figures are merely schematic representations of the present technology. As such, some of the components may have been distorted from their actual scale for pictorial clarity.
Generally speaking, the present technology may be directed to systems and methods for analyzing and displaying a protection status for one or more end user computing devices. Broadly, a protection status may represent whether backup services for a computing device are being executed in accordance with a compliance schema established for the computing device. A compliance schema may include, for example, a backup schedule which delineates how often a backup (e.g., a snapshot or incrementals) is executed (e.g., obtained) for or from the computing device.
In some embodiments, a compliance schema may be applied to a plurality of computing devices. Alternatively, a custom compliance schema may be applied to one or more computing devices out of the plurality of computing devices. According to some embodiments, a compliance schema may be stored as a template.
The present technology may monitor or obtain a backup status for a computing device and compare the backup status to the compliance schema which is associated with the computing device. This comparison may be referred to as a protection status. As will be described in greater detail below, the protection status may include not only the comparison of the backup status with the compliance schema, but also related information such as network connectivity information, and entitlement capacity information. If the protection status indicates that the computing device has not been backed up in accordance with the compliance schema, these and other types of related information may be utilized to locate or determine an explanation for why the computing device has not been backed up properly. The protection status may be utilized to generate alert messages that are transmitted to system administrators or other responsible parties. Additionally, the present technology may generate graphical user interfaces (GUI) that allow end users to view a protection status(es) of one or more computing devices. A GUI may also be generated that allows the end user to input compliance schema preferences. For example, the end user may be allowed to define a time bounded threshold that represents a maximum period of time in which a backup must be successfully executed before the compliance schema is considered violated.
In some instances, end users may be allowed to set network connectivity thresholds and/or entitlement capacity thresholds. These and other advantages of the present technology will be discussed in greater detail herein.
Referring now to
According to some embodiments, the end user computing device 105 and the replication receiver system 110 may reside on the same machine. Thus, in some instances, the network connection 115 may not be required to communicatively couple the end user computing device 105 and the replication receiver system 110.
In some instances, the replication receiver system 110 may communicatively couple with a plurality of end user computing devices.
Generally speaking, the replication receiver system 110 provides file replication services for files that reside on the end user computing device 105. In some instances, the end user computing device 105 may connect to multiple replication receiver systems. In some instances, the replication receiver system 110 may connect to multiple end user computing devices. In some instances, the replication receiver system 110 may be implemented within a cloud-based computing environment. In general, a cloud-based computing environment is a resource that typically combines the computational power of a large model of processors and/or that combines the storage capacity of a large model of computer memories or storage devices. For example, systems that provide a cloud resource may be utilized exclusively by their owners. In some instances, these systems may be accessible to outside users who deploy applications within the computing infrastructure to obtain the benefit of large computational or storage resources.
The cloud may be formed, for example, by a network of web servers, with each web server (or at least a plurality thereof) providing processor and/or storage resources. These servers may manage workloads provided by multiple users (e.g., cloud resource consumers or other users). Typically, each user places workload demands upon the cloud that vary in real time, sometimes dramatically. The nature and extent of these variations typically depend on the type of business associated with the user.
In greater detail, the replication receiver system 110 may include one or more VPN devices adapted to receive information from the gateway router of the end user computing device 105. In some embodiments, the network connection 115 may include an Ethernet switch operatively coupling the VPN devices to a remote replication receiver system 110 adapted to execute at least a portion of methods for replicating files. The replication receiver system 110 may also include disaster recovery servers, physical media input servers, and one or more virus scanning servers.
It will be understood that the primary storage devices for the replication receiver system 110 may include, for example, RAID redundant storage servers, although other types of servers that would be known to one of ordinary skill in the art with the present disclosure before them are likewise contemplated for use in accordance with the present technology.
In some embodiments, the replication receiver system 110 may comprise one or more processors and logic encoded in one or more tangible media for execution by the one or more processors. Generally described, the replication receiver system 110 may be constructed similarly to the computing device 800 described in greater detail herein relative to
According to some embodiments, the logic may include instructions that when executed by the processor(s) of the replication receiver system 110 perform operations including establishing a compliance schema for one or more computing devices. Again, a compliance schema may be generally described as comprising a time bounded threshold that defines a maximum period of time in which a backup must be successfully executed before the compliance schema is considered violated. For example, a backup threshold of an hour may be established for a computing device, although one of ordinary skill in the art will appreciate that other time frames may also be utilized. Furthermore, the backup threshold may be specific to the day of the week or may be generally applied to each day. For example, an hour threshold may be established for business days (e.g., Monday-Friday), while a second threshold of every eight hours may be established for weekend days (e.g., Saturday and Sunday). It will be understood that the backup threshold may be selectively varied as desired. Thus, a compliance schema may include a single static threshold, a set of static thresholds, or alternatively a dynamic threshold. An exemplary dynamic threshold may be used to selectively modify the compliance schema depending on a variety of factors such as computing device workload and network bandwidth availability, which are both dynamic properties. For example, an increase in workload of a computing device, as detected by the replication receiver system 110 or filter driver may indicate that more frequent changes are occurring to the file system of the computing device. Thus, an increase in workload may be utilized as the basis for selectively decreasing the backup interval for the computing device. That is, backups of the computing device may be obtained more frequently because the file system may be undergoing rapid modifications. Exemplary filter drivers and methods of use that detect changes to the file system of a computing device are described in co-pending U.S. patent application Ser. No. 13/671,498, filed on Nov. 7, 2012, entitled “Efficient File Replication,” which is hereby incorporated by reference herein in its entirety.
Again, it is noteworthy that a compliance schema may include not only the time bounded interval that defines the maximum time between backup executions, but also network connectivity thresholds and entitlement capacity thresholds, or any combinations or permutations thereof. Each of these features will be described in greater detail below with reference to
In some instances, the features of the present technology may be implemented via graphical user interfaces (GUI) that are generated by the replication receiver system 110. Thus, in some instances, the logic may include instructions that when executed by the processor(s) of the replication receiver system 110 perform operations including generating graphical user interfaces that allow an end user to specific compliance schema parameters for a compliance schema.
An alert configuration section 210 is shown as providing indicators 210A-C which represent current levels for the compliance schema in place. For example, level 210A indicates that a maximum time interval for obtaining a backup is eight hours. Stated otherwise, when backup attempts have been at least partially unsuccessful for at least eight hours, the computing device is no longer in compliance with the compliance schema. As illustrated, a red box indicator is shown when the computing device is non-compliant.
Similarly, a network connectivity threshold feature 210B may be set to eight hours. Thus, if network connectivity between the computing device and the replication receiver system 110 is lost for more than eight hours, a yellow diamond indicator may be displayed. In addition, an entitlement capacity feature 210C is set to eighty percent. As reference, if the computing device is allowed to consume a set amount of storage space on the replication receiver system 110, the entitlement capacity threshold relates to the total amount of space available. Thus, a yellow diamond indicator may be displayed when eighty percent of the entitled space available to the computing system has been consumed.
Turning briefly to
Once saved, the compliance schema may be applied to a single computing device, or may be applied to a plurality of computing devices. For example, a compliance schema may be utilized in a corporate setting where the same compliance schema is applied to multiple computing devices within the enterprise. As will be described in greater detail below, in some instances, a compliance schedule may be applied to a plurality of computing devices and one or more custom compliance schedules may be applied to one or more of the plurality of computing devices. Thus, a computing device may be subject to a plurality of compliance schemas.
In some instances, short message service (SMS) or email alerts may be transmitted to an end user, such as a system administrator, a device owner, or another responsible party. Notifications associated with both red and yellow indicators may be transmitted, logged, and displayed in the notification configuration section 215. As with the alert configuration section, the features of the notification configuration section 215 may be selectively adjusted by the end user when notification edit button 220 is selected.
Once the compliance schedule has been applied to the computing device, the logic may include instructions that when executed by the processor(s) of the replication receiver system 110 perform operations including monitoring the backup services or backup status of the computing device and comparing the same to the compliance schema to determine a protection status for the computing device. In some instances, determining a protection status may include interrogating the replication receiver system 110 to determine a backup status for each of the plurality of computing devices. In other instances, determining a protection status may include interrogating a local replication appliance which is communicatively coupled with the replication receiver system 110.
For example, the replication receiver system 110 may determine previous successful or unsuccessful attempts by the replication receiver system 110 to obtain a backup (e.g., snapshot and/or incrementals) from the computing device. In other instances, such as when the computing device (or a local backup appliance) transmits the backup to the replication receiver system 110 according to a backup schedule, the replication receiver system 110 may compare a backup interval (e.g., expected backup data for a given time period) for the computing device to backup data which is actually received by the replication receiver system 110. If an insufficient amount of backup data is received by the replication receiver system 110 when compared to the backup interval, the computing device may be assigned a protection status of non-compliant. Stated otherwise, if a successful backup has not been received within the defined backup interval (see alert configuration section 210, level 210A of
Similarly, if network connectivity has been lost between the computing device and the replication receiver system 110 for a period of time that exceeds the established network connectivity threshold, the protection status for the computing device may be categorized as non-compliant. If a computing device is non-compliant due to network connectivity issues, the protection status may include a yellow indicator associated with network connectivity.
According to some embodiments, if a computing device is non-compliant due to entitlement capacity issues, the protection status may include a yellow indicator associated with entitlement capacity.
Thus, as the compliance schema may be multi-faceted, including backup, connectivity, and/or capacity features, the protection status for a computing device may also be multi-faceted. For example, the protection status for the computing device may indicate that the computing device is compliant with regard to backup data, but is non-compliant as to either (or both) network connectivity and entitlement capacity.
Jobs list 520 includes each backup which has occurred for the computing device. In this instance, the computing device is subject to two backup jobs 520A and 520B, also referred to as compliance schemas. Backup job 520A is shown as being non-compliant, while backup job 520B is shown as compliant. This discrepancy may be due to various issues which prevent backup job 520A from occurring. For example, the replication receiver system associated with backup job 520A may be offline. As mentioned previously, backup job 520A may include a custom compliance schedule, whereas backup job 520B may include a generic compliance schema. Therefore, the computing device is compliant as to the general compliance schema but not the custom compliance schema.
Based upon the non-compliance with backup job 520A, an alert may be transmitted to a system administrator. The system administrator may utilize the alert message to determine that at least a generic backup of the computing device has occurred. Protection status information may be used by the system administrator to quickly and easily identify replication issues within their network, as well as network connectivity and capacity issues.
Selecting the “Troubled” column causes the system to display only computing devices which are non-compliant with at least one compliance schema which has been applied to thereto, as shown in
Thus, it is noteworthy to mention that the backup schedule that applies to the computing device, which indicates how often replication of the computing device should occur, may or may not correspond to the backup interval established for the compliance schema. For example, the end user may desire to backup the computing device more frequently than required by the system administrator, who establishes the compliance schema.
According to some embodiments, the compliance schema may be stored as a template that may be exported for use with various other applications such as a project planning application or other suitable application. Thus, various default compliance schema templates may be provided to an end user and the end user may select an appropriate template. In some instances, the system may provide a template to a second client for use with a second computing device, the second client being different from a first client that owns a first computing device that utilized the same compliance schema.
It is noteworthy that while the preceding described embodiments referred to the replication receiver system 110 as being used to implement various features of the present technology, a separate or standalone compliance and monitoring system which performs the above-described features may also likewise be utilize in accordance with the present technology.
Next, the method 700 may comprise a step 710 of assigning (e.g., associating or applying) a compliance schema to a computing device, as well as a step 715 of obtaining backup information for the computing device. In some instances, backup information may include reviewing a log of successful or unsuccessful backup attempts associated with the computing device over a given period of time. For example, the period of time may include the most recent interval of time that corresponds to the backup threshold interval.
In some instances, the method 700 may comprise a step 720 of comparing the backup information to the compliance schema to determine a protection status for the computing device. Again, the protection status may indicate compliance or non-compliance with the various facets of the compliance schema such as backups, network connectivity, and/or entitlement capacity.
When a computing device is determined to be non-compliant with the compliance schema applied thereto the method 700 may comprise a step 725 of generating a compliance message or “alert message” based upon the comparison. The method may include a step 730 of transmitting the compliance message to a monitoring device. In some instances, the method may include a step 735 of generating a graphical user interface that includes a visual indicator that represents the protection status of the computing device.
It will be understood that the foregoing description contemplates displaying the protection status of a particular computing device; the method may also extend to generating GUIs that allow users to define a compliance schema for each device, as well as a compliance schema against a parent entity, or against all client devices for a user, or even a Site Location.
When the compliance schema is defined against a parent entity, the parent's compliance entity applies to all “child” devices that don't have a compliance schema defined specifically for them.
The components shown in
Mass storage device 830, which may be implemented with a magnetic disk drive, an optical disk drive, and/or a solid-state drive is a non-volatile storage device for storing data and instructions for use by processor unit 810. Mass storage device 830 can store the system software for implementing embodiments of the present technology for purposes of loading that software into main memory 820.
Portable storage device 840 operates in conjunction with a portable non-volatile storage medium, such as a floppy disk, compact disk or digital video disc, to input and output data and code to and from the computing device 800 of
Input devices 860 provide a portion of a user interface. Input devices 860 may include an alphanumeric keypad, such as a keyboard, for inputting alphanumeric and other information, or a pointing device, such as a mouse, a trackball, stylus, or cursor direction keys. Additionally, the computing device 800 as shown in
Graphics display 870 may include a liquid crystal display (LCD) or other suitable display device. Graphics display 870 receives textual and graphical information, and processes the information for output to the display device.
Peripherals 880 may include any type of computer support device to add additional functionality to the computing device. Peripheral device(s) 880 may include a modem or a router.
The components contained in the computing device 800 of
Some of the above-described functions may be composed of instructions that are stored on storage media (e.g., computer-readable medium). The instructions may be retrieved and executed by the processor. Some examples of storage media are memory devices, tapes, disks, and the like. The instructions are operational when executed by the processor to direct the processor to operate in accord with the technology. Those skilled in the art are familiar with instructions, processor(s), and storage media.
It is noteworthy that any hardware platform suitable for performing the processing described herein is suitable for use with the systems and methods provided herein. Computer-readable storage media refer to any medium or media that participate in providing instructions to a central processing unit (CPU), a processor, a microcontroller, or the like. Such media may take forms including, but not limited to, non-volatile and volatile media such as optical or magnetic disks and dynamic memory, respectively. Common forms of computer-readable storage media include a floppy disk, a flexible disk, a hard disk, magnetic tape, any other magnetic storage medium, a CD-ROM disk, digital video disk (DVD), any other optical storage medium, RAM, PROM, EPROM, a FLASHEPROM, any other memory chip or cartridge.
Computer program code for carrying out operations for aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language such as Java, Smalltalk, C++ or the like and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a standalone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be coupled with the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. Exemplary embodiments were chosen and described in order to best explain the principles of the present technology and its practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Aspects of the present invention are described above with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the Figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
While various embodiments have been described above, it should be understood that they have been presented by way of example only, and not limitation. The descriptions are not intended to limit the scope of the technology to the particular forms set forth herein. Thus, the breadth and scope of a preferred embodiment should not be limited by any of the above-described exemplary embodiments. It should be understood that the above description is illustrative and not restrictive. To the contrary, the present descriptions are intended to cover such alternatives, modifications, and equivalents as may be included within the spirit and scope of the technology as defined by the appended claims and otherwise appreciated by one of ordinary skill in the art. The scope of the technology should, therefore, be determined not with reference to the above description, but instead should be determined with reference to the appended claims along with their full scope of equivalents.
Number | Name | Date | Kind |
---|---|---|---|
5574905 | deCarmo | Nov 1996 | A |
6122629 | Walker et al. | Sep 2000 | A |
6205527 | Goshey | Mar 2001 | B1 |
6233589 | Balcha et al. | May 2001 | B1 |
6272492 | Kay | Aug 2001 | B1 |
6411985 | Fujita et al. | Jun 2002 | B1 |
6604236 | Draper et al. | Aug 2003 | B1 |
6629110 | Cane et al. | Sep 2003 | B2 |
6651075 | Kusters et al. | Nov 2003 | B1 |
6971018 | Witt et al. | Nov 2005 | B1 |
7024581 | Wang et al. | Apr 2006 | B1 |
7085904 | Mizuno et al. | Aug 2006 | B2 |
7266655 | Escabi, II et al. | Sep 2007 | B1 |
7401192 | Stakutis et al. | Jul 2008 | B2 |
7406488 | Stager et al. | Jul 2008 | B2 |
7546323 | Timmins et al. | Jun 2009 | B1 |
7620765 | Ohr et al. | Nov 2009 | B1 |
7647338 | Lazier et al. | Jan 2010 | B2 |
7676763 | Rummel | Mar 2010 | B2 |
7730425 | de los Reyes et al. | Jun 2010 | B2 |
7743038 | Goldick | Jun 2010 | B1 |
7752487 | Feeser et al. | Jul 2010 | B1 |
7769731 | O'Brien | Aug 2010 | B2 |
7797582 | Stager et al. | Sep 2010 | B1 |
7809688 | Cisler et al. | Oct 2010 | B2 |
7832008 | Kraemer | Nov 2010 | B1 |
7844850 | Yasuzato | Nov 2010 | B2 |
7873601 | Kushwah | Jan 2011 | B1 |
7930275 | Chen et al. | Apr 2011 | B2 |
7966293 | Owara et al. | Jun 2011 | B1 |
8037345 | Iyer et al. | Oct 2011 | B1 |
8046632 | Miwa et al. | Oct 2011 | B2 |
8060476 | Afonso et al. | Nov 2011 | B1 |
8099391 | Monckton | Jan 2012 | B1 |
8099572 | Arora et al. | Jan 2012 | B1 |
8117163 | Brown et al. | Feb 2012 | B2 |
8200926 | Stringham | Jun 2012 | B1 |
8224935 | Bandopadhyay et al. | Jul 2012 | B1 |
8244914 | Nagarkar | Aug 2012 | B1 |
8245156 | Mouilleseaux et al. | Aug 2012 | B2 |
8260742 | Cognigni et al. | Sep 2012 | B2 |
8279174 | Jee et al. | Oct 2012 | B2 |
8296410 | Myhill et al. | Oct 2012 | B1 |
8321688 | Auradkar et al. | Nov 2012 | B2 |
8332442 | Greene | Dec 2012 | B1 |
8352717 | Campbell et al. | Jan 2013 | B2 |
8381133 | Iwema et al. | Feb 2013 | B2 |
8402087 | O'Shea et al. | Mar 2013 | B2 |
8407190 | Prahlad et al. | Mar 2013 | B2 |
8412680 | Gokhale et al. | Apr 2013 | B1 |
8417674 | Provenzano | Apr 2013 | B2 |
8504785 | Clifford | Aug 2013 | B1 |
8549432 | Warner | Oct 2013 | B2 |
8572337 | Gokhale et al. | Oct 2013 | B1 |
8589350 | Lalonde et al. | Nov 2013 | B1 |
8589913 | Jelvis et al. | Nov 2013 | B2 |
8600947 | Freiheit et al. | Dec 2013 | B1 |
8601389 | Schulz et al. | Dec 2013 | B2 |
8606752 | Beatty et al. | Dec 2013 | B1 |
8639917 | Ben-Shaul et al. | Jan 2014 | B1 |
8676273 | Fujisaki | Mar 2014 | B1 |
8886611 | Caputo | Nov 2014 | B2 |
8924360 | Caputo | Dec 2014 | B1 |
8954544 | Edwards | Feb 2015 | B2 |
9104621 | Caputo | Aug 2015 | B1 |
9110964 | Shilane et al. | Aug 2015 | B1 |
9213607 | Lalonde et al. | Dec 2015 | B2 |
9235474 | Petri et al. | Jan 2016 | B1 |
20010034737 | Cane et al. | Oct 2001 | A1 |
20010056503 | Hibbard | Dec 2001 | A1 |
20020169740 | Korn | Nov 2002 | A1 |
20030011638 | Chung | Jan 2003 | A1 |
20030158873 | Sawdon et al. | Aug 2003 | A1 |
20030208492 | Winiger et al. | Nov 2003 | A1 |
20040044707 | Richard | Mar 2004 | A1 |
20040073560 | Edwards | Apr 2004 | A1 |
20040093474 | Lin et al. | May 2004 | A1 |
20040233924 | Bilak et al. | Nov 2004 | A1 |
20040260973 | Michelman | Dec 2004 | A1 |
20050010835 | Childs et al. | Jan 2005 | A1 |
20050027748 | Kisley | Feb 2005 | A1 |
20050154937 | Achiwa | Jul 2005 | A1 |
20050171979 | Stager et al. | Aug 2005 | A1 |
20050223043 | Randal et al. | Oct 2005 | A1 |
20050278583 | Lennert et al. | Dec 2005 | A1 |
20050278647 | Leavitt et al. | Dec 2005 | A1 |
20060013462 | Sadikali | Jan 2006 | A1 |
20060047720 | Kulkarni | Mar 2006 | A1 |
20060064416 | Sim-Tang | Mar 2006 | A1 |
20060224636 | Kathuria et al. | Oct 2006 | A1 |
20070033301 | Aloni et al. | Feb 2007 | A1 |
20070112895 | Ahrens et al. | May 2007 | A1 |
20070176898 | Suh | Aug 2007 | A1 |
20070180207 | Garfinkle | Aug 2007 | A1 |
20070204166 | Tome et al. | Aug 2007 | A1 |
20070208918 | Harbin et al. | Sep 2007 | A1 |
20070220029 | Jones et al. | Sep 2007 | A1 |
20070226400 | Tsukazaki | Sep 2007 | A1 |
20070233699 | Taniguchi et al. | Oct 2007 | A1 |
20070250302 | Xu et al. | Oct 2007 | A1 |
20070260842 | Faibish et al. | Nov 2007 | A1 |
20070276916 | McLoughlin et al. | Nov 2007 | A1 |
20070283017 | Anand | Dec 2007 | A1 |
20070283343 | Aridor et al. | Dec 2007 | A1 |
20070288525 | Stakutis et al. | Dec 2007 | A1 |
20070288533 | Srivastava et al. | Dec 2007 | A1 |
20070294321 | Midgley et al. | Dec 2007 | A1 |
20080005468 | Faibish et al. | Jan 2008 | A1 |
20080010422 | Suzuki et al. | Jan 2008 | A1 |
20080027998 | Hara | Jan 2008 | A1 |
20080036743 | Westerman et al. | Feb 2008 | A1 |
20080082310 | Sandorfi et al. | Apr 2008 | A1 |
20080141018 | Tanaka et al. | Jun 2008 | A1 |
20080162590 | Kundu et al. | Jul 2008 | A1 |
20080162607 | Torii et al. | Jul 2008 | A1 |
20080201315 | Lazier et al. | Aug 2008 | A1 |
20080229050 | Tillgren | Sep 2008 | A1 |
20080307345 | Hart et al. | Dec 2008 | A1 |
20080307527 | Kaczmarski et al. | Dec 2008 | A1 |
20090164527 | Spektor et al. | Jun 2009 | A1 |
20090185500 | Mower et al. | Jul 2009 | A1 |
20090216973 | Nakajima et al. | Aug 2009 | A1 |
20090309849 | Iwema et al. | Dec 2009 | A1 |
20090319653 | Lorenz et al. | Dec 2009 | A1 |
20090327964 | Mouilleseaux et al. | Dec 2009 | A1 |
20100077165 | Lu et al. | Mar 2010 | A1 |
20100095077 | Lockwood | Apr 2010 | A1 |
20100104105 | Schmidt et al. | Apr 2010 | A1 |
20100107155 | Banerjee et al. | Apr 2010 | A1 |
20100114832 | Lillibridge et al. | May 2010 | A1 |
20100165947 | Taniuchi et al. | Jul 2010 | A1 |
20100179973 | Carruzzo | Jul 2010 | A1 |
20100192103 | Cragun et al. | Jul 2010 | A1 |
20100205152 | Ansari et al. | Aug 2010 | A1 |
20100228999 | Maheshwari et al. | Sep 2010 | A1 |
20100235831 | Dittmer | Sep 2010 | A1 |
20100262637 | Akagawa et al. | Oct 2010 | A1 |
20100268689 | Gates et al. | Oct 2010 | A1 |
20100318748 | Ko et al. | Dec 2010 | A1 |
20100325377 | Lango et al. | Dec 2010 | A1 |
20100332454 | Prahlad et al. | Dec 2010 | A1 |
20110041004 | Miwa et al. | Feb 2011 | A1 |
20110047405 | Marowsky-Bree et al. | Feb 2011 | A1 |
20110055399 | Tung et al. | Mar 2011 | A1 |
20110055471 | Thatcher et al. | Mar 2011 | A1 |
20110055500 | Sasson et al. | Mar 2011 | A1 |
20110082998 | Boldy et al. | Apr 2011 | A1 |
20110106768 | Khanzode et al. | May 2011 | A1 |
20110154268 | Trent, Jr. et al. | Jun 2011 | A1 |
20110218966 | Barnes et al. | Sep 2011 | A1 |
20110238937 | Murotani et al. | Sep 2011 | A1 |
20110264785 | Newman et al. | Oct 2011 | A1 |
20110265143 | Grube et al. | Oct 2011 | A1 |
20110302502 | Hart et al. | Dec 2011 | A1 |
20120013540 | Hogan | Jan 2012 | A1 |
20120065802 | Seeber et al. | Mar 2012 | A1 |
20120084501 | Watanabe | Apr 2012 | A1 |
20120124307 | Ashutosh et al. | May 2012 | A1 |
20120130956 | Caputo | May 2012 | A1 |
20120131235 | Nageshappa et al. | May 2012 | A1 |
20120179655 | Beatty et al. | Jul 2012 | A1 |
20120204060 | Swift et al. | Aug 2012 | A1 |
20120210398 | Triantafillos | Aug 2012 | A1 |
20130018946 | Brown | Jan 2013 | A1 |
20130024426 | Flowers | Jan 2013 | A1 |
20130036095 | Titchener | Feb 2013 | A1 |
20130091183 | Edwards et al. | Apr 2013 | A1 |
20130091471 | Gutt et al. | Apr 2013 | A1 |
20130166511 | Ghatty et al. | Jun 2013 | A1 |
20130238752 | Park et al. | Sep 2013 | A1 |
20130318046 | Clifford et al. | Nov 2013 | A1 |
20140006858 | Helfman et al. | Jan 2014 | A1 |
20140032498 | Lalonde et al. | Jan 2014 | A1 |
20140047081 | Edwards | Feb 2014 | A1 |
20140053022 | Forgette et al. | Feb 2014 | A1 |
20140089619 | Khanna et al. | Mar 2014 | A1 |
20140149358 | Aphale | May 2014 | A1 |
20140189680 | Kripalani | Jul 2014 | A1 |
20140303961 | Leydon et al. | Oct 2014 | A1 |
20150046404 | Caputo | Feb 2015 | A1 |
20150095691 | Edwards | Apr 2015 | A1 |
Entry |
---|
Caputo, “Systems and Methods for Restoring a File”, U.S. Appl. No. 12/895,275, filed Sep. 30, 2010. |
Li et al., “Efficient File Replication,” U.S. Appl. No. 13/671,498, filed Nov. 7, 2012. |