BRIEF DESCRIPTION OF THE DRAWINGS
These and other features and advantages of the present invention will be better understood by reading the following detailed description, taken together with the drawings wherein:
FIG. 1 is an end perspective view of one embodiment of a typical prior art metal stud;
FIG. 2 is a top end perspective view of one embodiment of the protective device according to the present invention in combination with a metal stud;
FIG. 3 is a side perspective view of one embodiment of the protective device according to the present invention;
FIG. 4 is a side plan view of another embodiment of the protective device having a tapered reduced region according to the present invention;
FIG. 5 is a side plan view of another embodiment of the protective device wherein the reduced region includes a threaded outer surface according to the present invention; and
FIG. 6 is a side plan view of another embodiment of the protective device wherein the reduced region includes at least one protrusion or rib according to the present invention.
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
A protective device 20, FIG. 2, is particularly suited for protecting a conduit (such as, but not limited to, an electrical or fluid conduit) or wire 22 disposed through an aperture 10 in a metal stud 1 (as described above) from damage from a screw 9. In the preferred embodiment, the aperture 10 is disposed in the central region 2, though this is not a limitation of the present invention and the aperture 10 may be disposed through the legs 3, 4. The protective device 20 preferably features a body 24, a reduced region, and at least one passageway 28 disposed therethrough.
As used wherein, the thickness of the metal stud is intended to be the length of the metal stud 1 which the protective device 20 passes through. More specifically, in the embodiment wherein the protective device 20 is disposed within an aperture 10 in the central region 2, the thickness is defined to be the length D1 of the legs 3, 4.
Referring specifically to FIG. 3, the passageway 28 preferably extends along a longitudinal axis L of the protective device 20 and includes a first and at least a second opening 30, 32 disposed about generally opposite ends 31, 33 of the protective device 20. The body 24 of the protective device 20 preferably features a length L1 that is equal to or greater than the thickness of the metal stud 1 and is preferably constructed from a very hard material such a metal or the like. Because the body 24 extends at least through the thickness of the metal stud 1, any screws 9 that are accidentally inserted proximate the protective device 20 will contact the body 24 which has sufficient hardness to prevent the screw 9 from penetrating the passageway 28. The body 24 preferably has a generally tubular outer cross-section, though the body 24 may include any other shape known to those skilled in the art.
The reduced region 26 preferably has a length L2 that is equal to or greater than the thickness of the aperture 10. In the preferred embodiment, the reduced region 26 has a length L2 that large enough such that the reduced region 26 extends just past the outer surface of the metal stud 1. The length L2 is preferably less than the length L1 of the body 24. A benefit of this arrangement is that less force is required to insert or secure the protective device 20 within the aperture 10 of the metal stud 1. The reduced region 26 also features an outer cross-section D3 that substantially the same as the cross-section of the aperture 10 and is preferably smaller than the outer cross-section D4 of the body 24. The outer cross-section D3 is preferably large enough to generate enough friction with the aperture 10 to hold the protective device 20 within the aperture 10. Optionally, an adhesive, bonding agent, solder, or the like may be used to secure the reduced region 26 within the aperture 10.
The reduced region 26 preferably has a generally cylindrical or tubular outer shape. Alternatively, the reduced region 26, FIG. 4, may feature a tapered or conical shape and/or may include a threaded outer surface 40, FIG. 5. In the embodiment wherein the protective device 20 includes a threaded outer surface 40, at least a portion of the body 24 preferably includes a non-cylindrical region 42. The non-cylindrical region 42 preferably features a multi-faceted surface adapted to engage a wrench or the like, and is preferably used to rotate the protective device 20 and thread the reduced region 26 into the aperture 10. According to yet another embodiment, the reduced region 26 may include one or more ribs or protrusions 46 that frictionally engage the aperture 10 when the protective device 20 is inserted within the aperture 10.
The interface 36 between the body 24 and the reduced region 26 preferably forms a rim, shoulder, or flanged region 38. Referring to FIG. 2, the reduced region 26 is inserted into the aperture 10 in the metal stud 1 until the rim 38 is substantially against the inner surface 11 of the metal stud 1, preferably the inner surface 11 of the central region 2. Because the reduced region 26 is disposed within the aperture 10, the body 24 extends through the cavity 7 of the metal stud 1 and through the thickness of the metal stud 1. As discussed above, because the length L2 of the reduced region 26 is approximately the same as the thickness of the aperture 10, the force required to insert/secure the protective device 20 within the metal stud 1 is reduced.
The protective device 20, FIGS. 2 and 3, may optionally include a bushing 50 or the like. The bushing 50 is preferably sized and shaped to fit within the second opening of the passageway 28, though it could also be sized and shaped to fit within the first opening 30. Alternatively, the bushing 50 may be sized and shaped to fit over the ends 31, 33 of the protective device 20. In any event, the bushing 50 preferably positively locates the conduit or wires 22 within the passageway 28 and prevents damage to the conduit/wires 22 and may include any bushing design known to those skilled in the art.
Accordingly, the present invention features a protective device that is particularly suited for use with metal studs. The protective device is inexpensive and easy to use and does not require specialized tools or require complex assembly. As mentioned above, the present invention is not intended to be limited to a system or method which must satisfy one or more of any stated or implied object or feature of the invention and should not be limited to the preferred, exemplary, or primary embodiment(s) described herein. The foregoing description of a preferred embodiment of the invention has been presented for purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Obvious modifications or variations are possible in light of the above teachings. The embodiment was chosen and described to provide the best illustration of the principles of the invention and its practical application to thereby enable one of ordinary skill in the art to utilize the invention in various embodiments and with various modifications as is suited to the particular use contemplated. All such modifications and variations are within the scope of the invention as determined by the claims when interpreted in accordance with breadth to which they are fairly, legally and equitably entitled.