Protective barrier for safety glazing

Information

  • Patent Grant
  • 12077037
  • Patent Number
    12,077,037
  • Date Filed
    Friday, September 29, 2023
    a year ago
  • Date Issued
    Tuesday, September 3, 2024
    4 months ago
Abstract
A protective barrier affixable to a curved substrate comprises a stack of two or more lenses, each of the two or more lenses including a polyethylene terephthalate (PET) film, a hard coat on a first side of the PET film, and an adhesive layer on a second side of the PET film opposite the first side. The stack of two or more lenses may have a modulation transfer function that exhibits a contrast value greater than 75% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence. Heat and pressure may be applied to conform the stack of two or more lenses to the shape of the curved substrate.
Description
STATEMENT RE: FEDERALLY SPONSORED RESEARCH/DEVELOPMENT

Not Applicable


BACKGROUND
1. Technical Field

The present disclosure relates generally to safety glazing and, more particularly, to a protective barrier applied to the exterior of a vehicle windshield.


2. Related Art

Currently, vehicle windshields are being manufactured to include opto-electric devices such as cameras, rain sensors, proximity sensors, heads-up displays, defrosters, and antennas. This has increased the cost of replacing a cracked windshield by a factor of 10. In addition, costly calibration procedures must be performed after the installation of a new windshield, further increasing the costs associated with replacing the windshield.


The American National Standards Institute (ANSI) Z26.1-1996 standard, entitled “Safety Glazing Materials for Glazing Motor Vehicles and Motor Vehicle Equipment Operating on Land Highways,” is a standard that specifies the durability and safety requirements to qualify materials for vehicle glazing. Among the various tests mandated by the standard are transmission, humidity, heat, impact, fracturing, penetration, distortion, weathering, haze, and abrasion resistance. Applicable standards such as the Z26.1-1996 standard currently specify sixteen categories of construction for safety glazing allowable in various locations on the vehicle. The most stringent category is for windshields because of the need for visual acuity, impact resistance, and abrasion resistance from pitting and wiper blades, as well as the need to contain glass fragments to prevent them from injuring passengers.


The two basic groups of construction materials for windshields are glass and plastics. Per applicable standards, plastics are relegated to vehicles such as motorcycles, and the windshield is only allowed to be 15 inches higher than the seat so that the rider can look over it. This is because the plastics available today are so soft that they abrade easily, reducing visual acuity of the windshield after only a short service life. Considering their limited use, the abrasion test for plastics (e.g. test 5.17 specified in the ANSI Z26.1-1996 standard) only requires 100 cycles of Taber abrasion. This is 10 times less than the requirement for glass, which is 1,000 cycles of Taber abrasion. On the other hand, plastic could be a preferred material because it does not produce the sharp fragments that glass does with impacts and is half the weight. Although glass is hard and abrasion resistant, its low tensile strength makes it subject to pitting. In addition, on impact it produces dangerous sharp fragments that can injure the passengers. To mitigate this safety issue, glass windshields may be laminated with a soft plastic core to hold the fragments together and improve penetration resistance.


There are no commercially available safety barrier films for windshields that meet applicable requirements for weathering for one year (e.g. test 5.16 specified in the ANSI Z26.1-1996 standard), abrasion of plastics (e.g. test 5.17 specified in the ANSI Z26.1-1996 standard), and abrasion of glass (e.g. test 5.18 specified in the ANSI Z26.1-1996 standard), as shown in the table below:












ANSI Z26 FOR WINDSHIELDS














Initial
Haze after
Taber
Outdoor


Material
Test #
Haze
Weathering
Revolutions
Exposure















Plastic
5.17.3
N/A
15%
  100
1 year


Hard Plastic
5.17.4
1%
10%
  500
1 year


Glass/Plastic
5.17.3
N/A
 4%
  100
Plastic on







Interior


Glass
5.18
N/A
 2%
1,000
1 year









In today's commercial market, the existing polymer safety films for protecting glass windows are mounted to the interior of the building or vehicle. These commercial products would not last more than a few months if mounted to the exteriors, due to the embrittlement of the polyester substrate. This allows fracturing of the hard coating on the surface, and thus a failure of the film. The durability of interior mounted safety films to windows is specified in ANSI Z97.1-2015, entitled “American National Standard for Safety Glazing Materials Used in Buildings—Safety Performance Specifications and Methods of Test.” An example of such an interior mounted safety film is a 3M Scotch-shield safety and security window film Ultra Series, having a thickness of 8 mil, a peel strength of 2,000 g/in, a transmission of greater than 88%, substantially no distortion at 45 degrees angle of incidence, and an abrasion resistance of 5% haze after 100 Taber cycles. While such a film may have a service life of 10 years, it is not manufactured for exterior usage and the abrasion resistance does not qualify for ANSI Z26 windshield usage (e.g. less than 2% haze after 1,000 Taber cycles).


In the case of interior mounting of a safety film such as the above 3M film, the glass window itself may provide protection from portions of the UV and IR spectrum. The addition of UV inhibitors mixed into the mounting adhesive may be enough to provide a long service life (e.g. 10 years) of the film and hard coated surface facing the interior. However, the exterior glass surface remains subject to pitting due to the low tensile strength of the glass.


The only commercially available safety film for exterior use on vehicles operating on land highways is made by Clear-Plex. According to Clear-Plex's published commercial specification and related U.S. Pat. Nos. 7,992,917 and 9,023,162, the Clear-Plex safety film includes a layer of 4 mil thick PET with a hard coat and pressure sensitive adhesive for mounting and has a peel strength of 1,800 g/in, a transmission of greater than 87%, substantially no distortion at 40 degrees angle of incidence, and an abrasion resistance of 0.5% haze after 100 cycles before weathering. Clear-Plex does not claim any testing performed to ANSI Z26 standards. The haze value may be acceptable for plastic, but the commercial specification does not include Taber testing after 1 year of weathering.


There exist other products that may be mounted onto windshield exteriors of vehicles that do not operate on land highways, such as vehicles used in stockcar racing or military vehicles. One such product, by Racing Optics, Inc., is a 4-layer×4 mil safety film (hereinafter “RO 4×4”) having a thickness of 18 mil (4 layers of 4 mil thick PET with a hard coat and pressure sensitive adhesive on each layer), a peel strength of 100 g/in for the upper layers and 400 g/in for the base layer, a transmission of greater than 88%, a Z26 haze test #5.17 result of less than 1.5% haze before weathering, a Z26 abrasion test #5.16 result of less than 5% haze after 100 Taber cycles, and a Z26 weatherability test #5.15 result of less than 4 months per layer (e.g. transmittance noticeably reduced after 3-4 months weathering, resulting in a haze of about 20-50% without Taber testing). Because the RO 4×4 product is designed for a short-term service life (which is renewed as each layer is peeled off during use), it does not have the weather durability or abrasion resistance required to meet the Z26 standard for a windshield of a vehicle operating on land highways.


BRIEF SUMMARY

The present disclosure contemplates various systems and methods for overcoming the above drawbacks accompanying the related art. According to one or more aspects of the present disclosure, an external barrier may be added to both glass and plastic windshields to improve abrasion resistance, pitting, and impact cracking. The external barrier may increase the safety of passengers as well as reduce the number one insurance cost of the national fleet of vehicles, namely windshield damage, all while reducing the carbon footprint of replacing a glass windshield.


One aspect of the embodiments of the present disclosure is a protective barrier affixable to a curved substrate. The protective barrier may comprise a stack of two or more lenses, each of the two or more lenses including a polyethylene terephthalate (PET) film, a hard coat on a first side of the PET film, and an adhesive layer on a second side of the PET film opposite the first side. The stack of two or more lenses may have a modulation transfer function that exhibits a contrast value greater than 75% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence.


The modulation transfer function of the stack of two or more lenses may exhibit a contrast value greater than 70% for a spatial resolution of one line-pair per 0.0003 radians at 70 degrees angle of incidence. The modulation transfer function of the stack of two or more lenses may exhibit a contrast value greater than 85% for a spatial resolution of one line-pair per 0.0003 radians at 55 degrees angle of incidence. The modulation transfer function of the stack of two or more lenses may exhibit a contrast value greater than 90% for a spatial resolution of one line-pair per 0.0003 radians at 45 degrees angle of incidence.


The PET film of each of the two or more lenses may have a modulation transfer function that exhibits a contrast value greater than 80% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence.


Each of the two or more lenses may be 2-4 mil thick.


The PET film of each of the two or more lenses may include UV stabilizers. The hard coat and the adhesive layer of each of the two or more lenses may include UV stabilizers.


The PET film of each of the two or more lenses may have a machine direction shrinkage of 0.6%-1.8% and a transverse direction shrinkage of 0.3%-1.1% at 150° C.


Another aspect of the embodiments of the present disclosure is a method. The method may comprise stacking two or more lenses, each of the two or more lenses including a polyethylene terephthalate (PET) film, a hard coat on a first side of the PET film, and an adhesive layer on a second side of the PET film opposite the first side. The stack of two or more lenses may have a modulation transfer function that exhibits a contrast value greater than 75% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence. The method may comprise placing the stack of two more lenses on a curved substrate with the adhesive of a first lens of the stack in contact with the curved substrate and applying heat and pressure to conform the stack of two or more lenses to the shape of the curved substrate.


The applying of heat and pressure may be performed at least in part prior to the adhesive layer of each of the two or more lenses being fully cured. The applying of heat and pressure may be performed at least in part prior to the adhesive layer of each of the two or more lenses exceeding a peel strength of 25 grams per inch determined as a constant load per unit width needed for peeling.


The method may comprise peeling off an outermost lens of the stack of two or more lenses after the applying of heat and pressure.


The adhesive of the first lens of the stack of two or more lenses may be stronger than the adhesive of an outermost lens of the stack of two or more lenses.


The modulation transfer function of the stack of two or more lenses may exhibit a contrast value greater than 70% for a spatial resolution of one line-pair per 0.0003 radians at 70 degrees angle of incidence.


The PET film of each of the two or more lenses may have a modulation transfer function that exhibits a contrast value greater than 80% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence.


Each of the two or more lenses may be 2-4 mil thick.


The PET film of each of the two or more lenses may include UV stabilizers. The hard coat and the adhesive layer of each of the two or more lenses may include UV stabilizers.


The PET film of each of the two or more lenses may have a machine direction shrinkage of 0.6%-1.8% and a transverse direction shrinkage of 0.3%-1.1% at 150° C.





BRIEF DESCRIPTION OF THE DRAWINGS

These and other features and advantages of the various embodiments disclosed herein will be better understood with respect to the following description and drawings, in which like numbers refer to like parts throughout, and in which:



FIG. 1 is a cross-sectional view of a protective barrier according to an embodiment of the present disclosure;



FIG. 2 is an image and graphical representation of visual distortion in a safety film;



FIG. 3 is a graphical representation of modulation transfer function (MTF) data for five samples at different angles of incidence;



FIG. 4 is a graphical representation of windshield damage velocity for different film thicknesses;



FIG. 5 shows the protective barrier placed on a windshield of a car at the beginning of a process of applying heat and pressure to mold the protective barrier to the shape of the windshield;



FIG. 6 shows the protective barrier on the windshield at the end of the process of applying heat and pressure;



FIG. 7 shows the protective barrier after it has been trimmed to fit the windshield; and



FIG. 8 is an example operational flow according to an embodiment of the present disclosure.





DETAILED DESCRIPTION

The present disclosure encompasses various embodiments of a protective barrier affixable to a curved substrate and methods of manufacture, installation, and use thereof. The detailed description set forth below in connection with the appended drawings is intended as a description of several currently contemplated embodiments and is not intended to represent the only form in which the disclosed invention may be developed or utilized. The description sets forth the functions and features in connection with the illustrated embodiments. It is to be understood, however, that the same or equivalent functions may be accomplished by different embodiments that are also intended to be encompassed within the scope of the present disclosure. It is further understood that relational terms such as first and second and the like are used solely to distinguish one from another entity without necessarily requiring or implying any actual such relationship in order between such entities.



FIG. 1 is a cross-sectional view of a protective barrier 100 according to an embodiment of the present disclosure. The protective barrier 100 may be affixed to a curved substrate 10 such as a windshield of an automobile and may comprise a stack of two or more lenses 110 such as the lenses 110a, 110b, 110c shown in FIG. 1. Each of the lenses 110 may include a polyethylene terephthalate (PET) film 112, a hard coat 114 on a first side of the PET film 112, and an adhesive layer 116 on a second side of the PET film 112 opposite the first side for bonding the lenses 110 together and to the curved substrate 10. The stack of lenses 110 may have a modulation transfer function at 65 degrees angle of incidence that exhibits a contrast value greater than 75% for a spatial resolution of one line-pair per 0.0003 radians, the approximate resolution of the human eye. By controlling the modulation transfer function of the stack of lenses 110 in this way, a protective barrier 100 may be produced that is substantially distortion-free (e.g. less than 0.00045 radians displacement) when viewed at an angle of incidence typical of automobile windshields (e.g. 60-70 degrees), even while the total thickness of the protective barrier 100 is sufficient to resist impact damage at automobile speeds. In this way, the protective barrier 100 can prevent cracking and pitting of the underlying windshield 10 while meeting the durability requirements for windshield use on highways.


Distortion is a visual acuity error caused by a displaced object in the far field (e.g. 40-1,000 feet). Safety glazing can have localized zones which cause object displacements perceived as distortion, where an object may appear to jump from one position to another when viewed from a slightly different position or angle. Conventionally, distortion is only qualitatively determined, for example, by test 5.15 specified in the ANSI Z26.1-1996 standard. This test uses a shadow graph in a long tunnel with a collimated light source and white screen. The technician places a specimen in the light path at normal angle of incidence, 15 inches from the screen. The technician then looks for dark and light artifacts caused by distortion. The test has no quantitative criteria and does not address distortion at the high angle of incidence used in modern car windshields (e.g. 60-70 degrees).


Ideally, the distortion should be minimized to the resolution of the human eye with 20/20 vision, which is about one line-pair per 0.0003 radians. If an object is displaced by 0.0006 radians, for example, then the eye will perceive the location change as distortion. Effectively, then, distortion must be reduced such that any object displacement is below the resolution capability of the human eye in order to be considered distortion-free. Meanwhile, when safety glazing is viewed at high angles of incidence (e.g. 60-70 degrees), the optical thickness increases as a function of the cosine of the angle according to Snell's law. This may cause any distortion effects to be amplified, especially for safety film thicker than around 4 mil as may be needed to resist impact damage at automobile speeds.



FIG. 2 is an image and graphical representation of visual distortion in a safety film 210. In order to quantitatively measure distortion, it is contemplated that the modulation transfer function of a test material such as the safety film 210 may be evaluated at a fixed spatial frequency of 0.0003 radians, corresponding to the resolution of the human eye with 20/20 vision. To this end, as shown in the upper part of FIG. 2, an image of a test pattern 220 such as a checkerboard pattern or target line-pairs spaced by 0.0003 radians may be captured through the film 210 at a desired angle of incidence (e.g. 65 degrees in FIG. 2). The lower part of FIG. 2 shows the corresponding modulation transfer function data representing the contrast as a function of horizontal position for a given cross-section of the data representing a single horizontal slice of the image. As can be seen, the modulation transfer function data exhibits reduced contrast, corresponding to distorted line-pairs, in the area of the test pattern 220 that is viewed through the film 210. In some places, the modulation transfer function data exhibits such low contrast as to amount to complete loss of the image.


A test setup such as that of FIG. 2 may be used to evaluate materials and process parameters for manufacturing the protective barrier 100 described herein. In particular, by using such a test setup and/or test results derivable therefrom, appropriate materials and process parameters may be selected and/or adjusted to control the modulation transfer function of the stack of lenses 110 at one or more desired angles of incidence. In this regard, it is contemplated that the modulation transfer function of the stack of lenses 110 may be controlled according to the methodology described in commonly owned U.S. Provisional Application No. 62/942,943, filed Dec. 3, 2019 and entitled “METHOD AND APPARATUS FOR REDUCING NON-NORMAL INCIDENCE DISTORTION IN GLAZING FILMS,” the entire contents of which is expressly incorporated herein by reference.


For example, at any or all stages of producing the stack of lenses 110 (e.g. during the formation of the PET film 112 by melting a resin, extruding the melted resin through a die to produce a film, and cooling the film, during the applying of the hard coat 114, during the applying of the adhesive layer 116, etc.), one or more images of the test pattern 220 may be captured through the lens 110 or stack of lenses 110 being produced. The image(s) may be captured, for example, by aiming an image capturing device through a roll-to-roll processing web containing the lens 110 or stack of lenses 110 at one or more desired angles of incidence. On the basis of such image(s), a computer may calculate the MTF data and produce an output used for adjusting process parameters that are found to effect the modulation transfer function of the lens 110 or stack of lenses 110, such as a temperature setting of a heater used in melting the resin (e.g. absolute temperature or relative temperatures of a gradient or profile of a plurality of heated regions of an extruder assembly), a rotation speed of an extrusion screw (which may determine melting time as well as degree of mixing of the resin), a rotation speed of one or more rollers (which may determine cooling time and/or a degree of force acting on the polymer film during cooling), a flow speed, deposition speed, or other application speed of the hard coat 114 or adhesive layer 116, and/or a speed at which the lenses 110 are stacked. It is contemplated, for example, that the PET film 112 may in some cases be prefabricated and selected for its known MTF data, whereas the modulation transfer function of the stack of lenses 110 may be actively controlled during the application of the hard coats 114 and/or adhesive layers 116 and the stacking of the lenses 110. In other cases, the PET film 112 may also be manufactured while actively controlling the modulation transfer function thereof. The output of the computer may include, for example, a feedback signal for automatically adjusting the relevant process parameters without user input in either a continuous or batch-to-batch process. As another example, the output may include a visual representation of the data to be interpreted by an operator who will make the necessary adjustments manually.



FIG. 3 is a graphical representation of modulation transfer function data for five samples at different angles of incidence. To produce the example data of FIG. 3, modulation transfer function data as described in FIG. 2 may be taken at angles of incidence from normal (zero degrees) to 70 degrees in increments of 10 degrees. It is contemplated that the data may be normalized to a modulation transfer function value representing a windshield without any protective barrier. Because many car windshields are installed with a slant of 65 degrees, additional data may be captured at 65 degrees, or likewise any other angle of particular interest. As represented in FIG. 3 by the solid line with triangular datapoints, the sample labeled T-11 3×3 may serve as the stack of lenses 110 of the protective barrier 100 described herein, having a modulation transfer function that exhibits a contrast value greater than 75% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence. As noted above, 65 degrees is a typical windshield slant. However, a driver must also observe objects above or below eye level, such that it may also be advantageous to minimize distortion at larger or smaller angles of incidence. To this end, as shown in the example of the sample labeled T-11 3×3, the modulation transfer function of the stack of lenses 110 may further exhibit, for the same spatial resolution of one line-pair per 0.0003 radians, a contrast value greater than 70% at 70 degrees angle of incidence, a contrast value greater than 85% at 55 degrees angle of incidence, and/or a contrast value greater than 90% at 45 degrees angle of incidence. A protective barrier 100 whose modulation transfer function is controlled in this way may be applied to a typical automobile windshield without distorting the positions of objects viewed by the driver.


An example of a prefabricated PET film 112 that may be selected for its known MTF data for use in the stack of lenses 110 is a PET film 112 having a modulation transfer function that itself exhibits a contrast value greater than 80% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence. One such material is a film sold under the name MELINEX® 454 by DuPont Teijin Films, which is represented in FIG. 3 by the solid line with circular datapoints. The dashed line with diamond datapoints represents a sample of a lens 110 made using this film as the PET film 112 thereof, with the hard coat 114 and the adhesive layer 116 having been applied under MTF control as described above. That is, during the processes of applying the hard coat 114 and the adhesive layer 116, one or more process parameters were selected or adjusted (either continuously or batch-to-batch) to control the modulation transfer function at one or more angles of incidence, for example, to maintain a contrast value greater than 75% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence. As can be seen, the MTF data of this sample, which represents only a single lens 110 in accordance with the disclosed subject matter, is substantially similar to that of the sample labeled T-11 3×3, which represents the entire protective barrier 100 including a stack of such lenses 110, despite the increased thickness of the stack. This may be achieved by stacking the lenses 110 under MTF control as described above.


In contrast, the sample labeled T-8 3×3, represented in FIG. 3 by the dash-dot line with square datapoints, was produced without MTF control. Despite being a similarly constructed 3-layer stack, the optical properties are markedly inferior at the high angles of incidence typically used in car windshields. For example, as shown in FIG. 3, the contrast value at 65 degrees angle of incidence is under 60%. Such a product can only be used in applications having an angle of incidence less than 60 degrees, where the contrast value remains above 75%. The sample labeled RO 4×4, represented by the solid line with circular datapoints and corresponding to the RO 4×4 product described above, is a 4-layer stack that was similarly produced without MTF control. This product exhibits even worse MTF data at relevant angles of incidence and can realistically only be used in applications where the angle of incidence is less than 50 degrees, after which the contrast value falls below 75%. It has been found that distortion may become noticeable below a contrast value of 75%.



FIG. 4 is a graphical representation of windshield damage velocity for different film thicknesses. The example data of FIG. 4 is based on the results of a glass fracture study conducted by O'Gara-Hess Armor Company for the U.S. military. Increasingly thick layers of PET were mounted on ballistic glass, and a three-quarters inch steel ball was launched at the glass at different velocities. The data shows the minimum velocity that resulted in glass cracking for each PET film thickness. In light of the data shown in FIG. 4, it is contemplated that the protective barrier 100 described herein should be 8 mil thick or thicker in order to protect a glass windshield at common driving velocities of 45-65 miles per hour, for example, 8 mil to 16 mil thick and preferably 10 mil to 16 mil thick. For example, the protective barrier 100 may include 2-4 lenses 110 (e.g. 3 lenses 110a, 110b, and 110c as shown in FIG. 1), where each of the lenses 110 is 4 mil thick.


In general, the increased thickness needed to protect a glass windshield poses several challenges to the production of the protective barrier 100. As described above, for example, the increased thickness may amplify distortion at high angles of incidence (e.g. 60-70 degrees). This challenge may be overcome by controlling the modulation transfer function of the protective barrier 100 as described above, for example, by producing a stack of lenses 110 having a modulation transfer function that exhibits a contrast value greater than 75% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence. Additional challenges posed by the thickness of the protective barrier 100 include making a product that can be successfully molded to a curved substrate 10 (e.g. an automobile windshield), achieving a high degree of weatherability and abrasion resistance and reduced haze, and maintaining a reasonably long service life. Each of these challenges may be overcome by the disclosed protective battier 100 as described in more detail below.



FIG. 5 shows the protective barrier 100 placed on a windshield 10 of a car 20 at the beginning of a process of applying heat and pressure to mold the protective barrier 100 to the shape of the windshield 10 (the windshield 10 serving as the substrate 10 shown in FIG. 1). The protective barrier 100 may be adhered to the windshield 10 by placing the adhesive layer 116 of a first (bottommost) lens 110a of the stack in contact with the windshield 10 (see FIG. 1). The adhesive layer 116 of the first lens 110a may be a dry mount adhesive as disclosed, for example, in U.S. Pat. No. 9,295,297 to Wilson, issued Mar. 29, 2016 and entitled “Adhesive Mountable Stack of Removable Layers,” the entire contents of which is expressly incorporated herein by reference. Alternatively, a wet mount adhesive may be used as disclosed, for example, in U.S. Pat. No. 9,128,545 to Wilson, issued Sep. 8, 2015 and entitled “Touch Screen Shield,” the entire contents of which is expressly incorporated herein by reference. The adhesive may be an acrylic adhesive such as an acrylic pressure sensitive adhesive (PSA).


The windshields of most cars exhibit a compound curvature, such that the protective barrier 100 will not conform to the windshield 10 without shrinking it in the upper and lower corners. Since the protective barrier 100 may be flat (e.g. having been manufactured in a roll-to-roll process), the stack of two or more lenses 110 may not initially conform to the curved shape of the windshield 10, resulting in regions of greater or less adhesion and pockets/bubbles of air between the stack of lenses 110 and the windshield. Therefore, in order to conform the stack of lenses 110 to the shape of the windshield 10, heat and pressure may be applied using a heater 30 such as a hot air source (e.g. a heat gun or blow dryer) or an infrared heater. At the same time, pressure may be applied to the stack of lenses 110 using a card or squeegee. In some cases, the protective barrier 100 may be applied using a sacrificial layer serving as a female mold cavity to sandwich the stack of lenses 110 between the sacrificial layer and the windshield 10 as described in commonly owned U.S. application Ser. No. 16/778,928, filed Jan. 31, 2020 and entitled “THERMOFORM WINDSHIELD STACK WITH INTEGRATED FORMABLE MOLD,” the entire contents of which is expressly incorporated herein by reference.


As the installer heats and presses down on the stack of lenses 110, the stack of lenses 110 may shrink and stretch to take on the contour of the curved substrate 10 (the windshield). In the case of commercial films having a thickness of only 2 mil, the necessary shrinking may be easy to achieve. On the other hand, a monolithic film of 8 mil or thicker will crease before the film conforms to the windshield, making it unusable. In light of this challenge, the protective barrier 100 described herein uses multiple thin lenses 110 (e.g. 2-4 mil thick each) that individually shrink well. The adhesive layers 116 between the lenses 110 of the stack, which may be the same acrylic adhesive for example, may be only partially cured to produce an extremely low peel strength (e.g. 15-25 g/in) and high elasticity. As such, each individual lens 110 of the stack may “float” in relationship to each other, allowing shrinking to occur without creasing any of the lenses 110. Once the protective barrier 100 is installed and exposed to sunlight, for example, the adhesive layers 116 will cure and increase the peel and bonding strength (e.g. by a factor of 3 to 5), promoting a long service life. The peel strength after initial weathering may be 100-150 g/in, for example.



FIG. 6 shows the protective barrier 100 on the windshield 10 at the end of the process of applying heat and pressure. At this stage, the desired shrinkage has occurred and the stack of lenses 110 of the protective barrier 100 is molded to the curved shape of the windshield 10 without air pockets/bubbles. The technical specifications of PET films include two axes of shrinking with different values, designated as the machine direction (“MD”) and the transverse direction (“TD”). The machine direction refers to the direction of the roll stock in a roll-to-roll process used to produce the PET film, while the transverse direction refers to the direction across the roll direction. It is contemplated that the PET films 112 of the stack of the protective barrier 100 may have a machine direction shrinkage of 0.6%-1.8% (preferably 0.8%-1.0%) and a transverse direction shrinkage of 0.3%-1.1% (preferably 0.5%-0.6%) at 150° C. A PET films that has a machine direction shrinkage below 0.6% or a transverse direction shrinkage below 0.3% will not have enough shrink to conform to a windshield. On the other hand, if the shrinkage is to high, e.g. greater than 1.8% in the machine direction or greater than 1.1% in the transverse direction, it will be too difficult for the installer to control the shrinkage in a hand-operated procedure (e.g. using the heater 30 as described above).



FIG. 7 shows the protective barrier 100 including the stack of lenses 110 after the stack of transparent lenses 110 has been trimmed to fit the windshield 10. The stack of lenses 110 may be trimmed using a knife such as a utility knife or box cutter with a stainless-steel blade (a carbon blade may damage the windshield 10). The resulting trimmed stack of lenses 110 may effectively be invisible as it matches the shape of the windshield 10 beneath (though it may alter the coloring of the windshield as in the case of window tinting).


In addition to improving moldability as described above, the use of multiple thin lenses 110 (e.g. 2-4 mil thick) rather than a single monolithic film may allow for a sufficiently reduced haze to be usable on automobile windshields. In general, haze in a PET film has two components: scattering of incident light at the surface and dispersion of incident light in the bulk material. The latter bulk component increases with the thickness of the PET film, for example, as shown in the table below:
















Thickness
Haze %









 2 mil
0.4



 4 mil
0.6



 7 mil
0.8



10 mil
1.2










However, the effect is not additive when multiple PET films are stacked, with three layers only adding about 0.1-0.2% haze in total. Meanwhile, the surface component of haze is mitigated by the addition of hard coat or adhesive. By structuring the protective barrier 100 as a stack of lenses 110 containing relatively thin PET films 112 rather than a single large PET film, a reduced haze can be achieved even while the protective barrier 100 may be thick enough to resist impact at automobile speeds (e.g. 8 mil or thicker) as described above. In particular, the protective barrier 100 described herein, comprising a stack of two or more lenses 110 each of which includes a PET film 112 with a hard coat 114 and an adhesive layer 116, may achieve an initial (pre-weathering) haze of below 1% (preferably below 0.6%), making it suitable for use on automobile windshields.


Weathering may be defined according to a standard such as the ANSI Z26.1-1996 standard at exposure of one year at around 300 MJ/m2 of ultraviolet radiation (e.g. 301 MJ/m2 or 306 MJ/m2 per applicable standards, or 280 MJ/m2 extrapolated from 70 MJ/m2 per three month period). In order to simulate exposure for one year in an outdoor Arizona climate (Arizona being selected as a weathering benchmark for its high temperatures and high-intensity sunlight), a natural sunlight concentrator may be used such as one that complies with the American Society for Testing and Materials (ASTM) G90 standard, entitled “Standard Practice for Performing Accelerated Outdoor Weathering of Materials Using Concentrated Natural Sunlight.” The haze and abrasion resistance of the protective barrier 100 may be measured before and at the end of the exposure cycle.


In the comparative example of the RO 4×4 product described above, a UV stabilizer such as a UV absorbing compound is mixed into the hard coat and the adhesive of each of the four layers. After only six months of Arizona exposure, the outermost layer becomes unusable because of loss of transmission, increased haze, and loss of hardness. Because there is so much UV inhibitor in the hard coat, the hard coat has reduced hardness and fractures, allowing the underlying PET core of the outermost layer to become yellow and brittle. The resulting haze may exceed 20%.


In contrast to the RO 4×4 product, the protective barrier 100 described herein may be produced with the PET film 112 of each of the two or more lenses 110 including UV stabilizers such as hydroxyphenyl-benzotriazole or hydroxyphenyl-triazine UV absorbers. The hard coat 114 and/or the adhesive layer 116 of each lens 110 may also include UV stabilizers. Because the UV stabilizers are mixed into the PET film 112, a reduced amount of UV stabilizers can be used in the hard coat 114 and adhesive layer 116, allowing the hard coat 114 to maintain its hardness without sacrificing UV stability. Spreading the UV stabilizers across all components allows for a highly weatherable assembly, such that the protective barrier 100 may exceed one year of ANSI G90 exposure in Arizona sun and may look very good with low haze and little if any yellowing after weathering. The protective barrier 100 may, for example, have an abrasion resistance at 1,000 Taber cycles of less than 1% haze before weathering and less than 4% (preferably less than 2%) haze after weathering.


Although the protective barrier 100 may have sufficient weatherability, eventually the outermost lens 110 (e.g. lens 110c in the 3-layer example of FIG. 1) may become damaged. When the outermost lens 110 becomes unacceptably degraded over time during the life of the vehicle windshield or other window (e.g. due to chips, oxidation, etc.), the outermost lens 110 may simply be peeled off and removed, revealing a fresh lens 110 beneath. To this end, the adhesive layer 116 of the innermost lens 110a (see FIG. 1) may be stronger than the adhesive layers 116 used for the other lenses 110 (and in some cases the adhesive layers 116 may have further decreasing strength with each additional lens 110). In this way, the innermost lens 110a may remain adhered to the windshield or other curved substrate 10 while another lens 110 is peeled off. It is contemplated, for example, that the innermost lens 110a may be intended to remain on the curved substrate 10 for the life of the protective barrier 100, with additional lenses 110 being removable as needed. Along the same lines, each such additional lens 110 beyond the first 110a may be provided with a tab or other means for easy peel-away during the life of the protective barrier 100. By allowing for peeling away of the outermost lens 110 of the stack of lenses 110 in this way, the service life of the protective barrier 100 may be extended.



FIG. 8 is an example operational flow according to an embodiment of the present disclosure. The operational flow of FIG. 8 may serve as an example method of manufacturing, installing, and using the protective barrier 100 including the stack of lenses 110 shown in FIG. 1. The operational flow may begin with providing a PET film 112 to be used as the core of each of two or more lenses 110 (step 810). As explained above, the PET film 112 of each of the lenses 110 may be selected for particular MTF data, such as a contrast value greater than 80% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence and may be, for example, a film sold under the name MELINEX® 454 by DuPont Teijin Films. Alternatively, the PET film 112 of each of the lenses 110 may be fabricated while actively monitoring the MTF data in a continuous or batch-to-batch process as described above. In this regard, providing the PET film 112 may include, for example, melting a resin, extruding the melted resin through a die to produce a polymer film, and cooling the polymer film. A hard coat 114 may be deposited on a first side of the PET film 112 (step 820), which is preferably wet deposited but may be applied according to any appropriate methods including spin coating, dip coating, or vacuum deposition. Before or after the hard coat 114 is applied, the PET film 112 may be coated on the opposite side with an adhesive 116 (step 830). These three elements, the PET film 112, hard coat 114, and adhesive 116 may constitute one of the lenses 110 described herein, which may be stacked to produce the protective barrier 100 (step 840).


During any or all of steps 810-840, the operational flow may comprise controlling the MTF of the stack of lenses 110 (step 850). The MTF of the stack of lenses 110 may be controlled, for example, so as to exhibit a contrast value greater than 75% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence. As explained above, such control may be achieved by selecting an appropriate pre-fabricated PET film 112 in step 810. Alternatively, or additionally, the control of the MTF may be achieved by actively monitoring and adjusting process parameters (e.g. roller speed of a roll-to-roll process, etc.) while fabricating a PET film 112 in step 810, depositing the hard coat 114 in step 820, applying the adhesive layer 116 in step 830, and/or stacking the two or more lenses 110 in step 840. It is contemplated that such active monitoring and adjusting of process parameters may include a continuous process including a feedback loop of monitored MTF data and/or a batch-to-batch process with MTF measurements manually or automatically fed back from a preceding batch.


Once the protective barrier 100 comprising the stack of lenses 110 has been assembled, the operational flow may continue with installing the protective barrier 100 on a curved substrate 10 such as the windshield of the car 20 shown in FIGS. 5-7. As explained above, the installing may be done while the adhesive layers 116 are only partially cured in order to allow the lenses 110 to “float” on the adhesive and mold to the shape of the substrate 10 individually, rather than as a unitary structure, to avoid creasing. Referring to the operational flow of FIG. 8, the protective barrier 100, including the stack of lenses 110, may be placed on the windshield or other curved substrate 10 (step 860), with the adhesive layer 116 of the lowermost lens 110a (see FIG. 1) in contact with the curved substrate 10. For easier installation, the protective barrier 100 may be rough cut (e.g. using an electric film cutter) so as not to extend too far outside the windshield 10. The operational flow may continue with applying heat and pressure to conform the stack of two or more lenses 110 to the shape of the curved substrate 10 (step 870) as described in relation to FIGS. 5 and 6. In particular, the applying of heat and pressure may be performed at least in part prior to the adhesive layer 116 of each of the two or more lenses 110 being fully cured, for example, prior to the adhesive layer 116 exceeding a peel strength of 25 grams per inch determined as a constant load per unit width needed for peeling. The protective barrier 100 may be completely conformed to the shape of the curved substrate 10 prior to the adhesive layers 116 being fully cured.


After allowing the protective barrier 100 to cool down, the installation may conclude with performing a final trim as described in relation to FIG. 7. The protective barrier 100 including the stack of lenses 110 is now uniformly formed and affixed to the windshield surface. By having the protective barrier 100 installed in this way, rock strike cracking and abrasion damage to the windshield 10 can be reduced while still complying with applicable standards for windshield transmission, abrasion resistance, haze, and distortion for a vehicle operating on land highways.


As explained above, it is contemplated that a protective barrier 100 having more than one lens 110 may allow for the outermost lens 110 to be peeled off and removed to reveal the unused surface of the lens 110 beneath. In this respect, the operational flow of FIG. 8 may continue during the life of the protective barrier 100 that has been installed on a vehicle 20. When the outermost lens 110 becomes unacceptably degraded over time (e.g. after six months, after a year, after scratching from wiper blades begins to occur, etc.), it may be peeled off to reveal the next lens 110 underneath (step 880). The timing of peeling off the outermost lens 110 may depend on the particular climate where the protective barrier 100 is used, with some climates entailing more exposure to sun and others requiring more frequent use of wiper blades, for example.


The above description is given by way of example, and not limitation. Given the above disclosure, one skilled in the art could devise variations that are within the scope and spirit of the invention disclosed herein. Further, the various features of the embodiments disclosed herein can be used alone, or in varying combinations with each other and are not intended to be limited to the specific combination described herein. Thus, the scope of the claims is not to be limited by the illustrated embodiments.

Claims
  • 1. A protective barrier affixable to a curved substrate, the protective barrier comprising a stack of two or more lenses, each of the two or more lenses including a polyethylene terephthalate (PET) film and a hard coat on a first side of the PET film, the stack of two or more lenses having a modulation transfer function that exhibits a contrast value greater than 70% for a spatial resolution of one line-pair per 0.0003 radians at 70 degrees angle of incidence.
  • 2. The protective barrier of claim 1, wherein each of the two or more lenses further includes an adhesive layer on a second side of the PET film opposite the first side.
  • 3. The protective barrier of claim 2, wherein the adhesive layer of each of the two or more lenses includes UV stabilizers.
  • 4. The protective barrier of claim 1, wherein the modulation transfer function of the stack of two or more lenses exhibits a contrast value greater than 85% for a spatial resolution of one line-pair per 0.0003 radians at 55 degrees angle of incidence.
  • 5. The protective barrier of claim 4, wherein the modulation transfer function of the stack of two or more lenses exhibits a contrast value greater than 90% for a spatial resolution of one line-pair per 0.0003 radians at 45 degrees angle of incidence.
  • 6. The protective barrier of claim 1, wherein the PET film of each of the two or more lenses has a modulation transfer function that exhibits a contrast value greater than 80% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence.
  • 7. The protective barrier of claim 1, wherein each of the two or more lenses is 2-4 mil thick.
  • 8. The protective barrier of claim 1, wherein the PET film of each of the two or more lenses includes UV stabilizers.
  • 9. The protective barrier of claim 1, wherein the hard coat includes UV stabilizers.
  • 10. The protective barrier of claim 1, wherein the PET film of each of the two or more lenses has a machine direction shrinkage of 0.6%-1.8% and a transverse direction shrinkage of 0.3%-1.1% at 150° C.
  • 11. A method comprising: stacking two or more lenses, each of the two or more lenses including a polyethylene terephthalate (PET) film and a hard coat on a first side of the PET film, the stack of two or more lenses having a modulation transfer function that exhibits a contrast value greater than 70% for a spatial resolution of one line-pair per 0.0003 radians at 70 degrees angle of incidence;placing the stack of two more lenses on a curved substrate to contact with the curved substrate; andapplying heat and pressure to conform the stack of two or more lenses to the shape of the curved substrate.
  • 12. The method of claim 11, wherein each of the two or more lenses further includes an adhesive layer on a second side of the PET film opposite the first side.
  • 13. The method of claim 12, wherein the adhesive layer of each of the two or more lenses includes UV stabilizers.
  • 14. The method of claim 12, wherein said applying heat and pressure is performed at least in part prior to the adhesive layer of each of the two or more lenses being fully cured.
  • 15. The method of claim 11, further comprising peeling off an outermost lens of the stack of two or more lenses after said applying heat and pressure.
  • 16. The method of claim 11, wherein the PET film of each of the two or more lenses has a modulation transfer function that exhibits a contrast value greater than 80% for a spatial resolution of one line-pair per 0.0003 radians at 65 degrees angle of incidence.
  • 17. The method of claim 11, wherein each of the two or more lenses is 2-4 mil thick.
  • 18. The method of claim 11, wherein the PET film of each of the two or more lenses includes UV stabilizers.
  • 19. The method of claim 11, wherein the hard coat of each of the two or more lenses includes UV stabilizers.
  • 20. The method of claim 11, wherein the PET film of each of the two or more lenses has a machine direction shrinkage of 0.6%-1.8% and a transverse direction shrinkage of 0.3%-1.1% at 150° C.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. application Ser. No. 18/062,901, filed Dec. 7, 2022, which is a continuation of U.S. application Ser. No. 16/866,392, filed May 4, 2020, now U.S. Pat. No. 11,548,356, issued Jan. 10, 2023, which relates to and claims the benefit of U.S. Provisional Application No. 62/987,726, filed Mar. 10, 2020 and entitled “PROTECTIVE BARRIER FOR SAFETY GLAZING,” the entire contents of which is expressly incorporated herein by reference.

US Referenced Citations (535)
Number Name Date Kind
1337036 Bergmann Apr 1920 A
1366907 Dunand Feb 1921 A
2138086 Blodjer Nov 1938 A
2248331 Blodjer Jul 1941 A
2328687 Serr Sep 1943 A
2339280 Harold Jan 1944 A
2354415 Woodard Jul 1944 A
2461604 Huntsman Feb 1949 A
2511329 Craig Jun 1950 A
2546117 Whelan Mar 1951 A
2563125 Malcom, Jr. Aug 1951 A
2569715 Green Oct 1951 A
2640068 Schaefer et al. May 1953 A
2736109 Scholl Feb 1956 A
2923944 Lindblom Feb 1960 A
2963708 Herbine et al. Dec 1960 A
3095575 Radov Jul 1963 A
3298031 Harold Jan 1967 A
3475766 Raschke Nov 1969 A
3577565 Feldmann et al. May 1971 A
3605115 Bohner Sep 1971 A
3685054 Raschke Aug 1972 A
3774239 Kotzar Nov 1973 A
3785102 Amos Jan 1974 A
3797042 Gager Mar 1974 A
3810815 Welhart et al. May 1974 A
3868293 Selph Feb 1975 A
3937863 Moore Feb 1976 A
3948662 Alston et al. Apr 1976 A
3950580 Boudet Apr 1976 A
3987569 Chase Oct 1976 A
4063740 Mader Dec 1977 A
4076373 Moretti Feb 1978 A
4090464 Bishopp et al. May 1978 A
D249597 Dillon Sep 1978 S
4138746 Bergmann Feb 1979 A
D254638 Bay, Jr. Apr 1980 S
4204231 Permenter May 1980 A
4248762 Hornibrook et al. Feb 1981 A
4248918 Hornibrook et al. Feb 1981 A
4268134 Gulati et al. May 1981 A
4273098 Silverstein Jun 1981 A
4301193 Zuk Nov 1981 A
4332861 Franz et al. Jun 1982 A
4333983 Allen Jun 1982 A
4380563 Ayotte Apr 1983 A
4528701 Smith Jul 1985 A
4557980 Hodnett, III Dec 1985 A
4582764 Allerd et al. Apr 1986 A
4625341 Broersma Dec 1986 A
4658515 Oatman Apr 1987 A
4696860 Epperson Sep 1987 A
4701965 Landis Oct 1987 A
4716601 Mcneal Jan 1988 A
4726074 Baclit et al. Feb 1988 A
4729179 Quist, Jr. Mar 1988 A
4769265 Coburn, Jr. Sep 1988 A
D299767 Hsin Feb 1989 S
4842919 David et al. Jun 1989 A
4850049 Landis et al. Jul 1989 A
4852185 Olson Aug 1989 A
4852186 Landis Aug 1989 A
4853974 Olim Aug 1989 A
4856535 Forbes Aug 1989 A
4864653 Landis Sep 1989 A
4867178 Smith Sep 1989 A
4884296 Nix, Jr. Dec 1989 A
4884302 Foehl Dec 1989 A
4889754 Vargas Dec 1989 A
D306363 Stackhouse et al. Feb 1990 S
4907090 Ananian Mar 1990 A
4911964 Corbo Mar 1990 A
D307065 Friedman Apr 1990 S
4920576 Landis May 1990 A
4934792 Tovi Jun 1990 A
4945573 Landis Aug 1990 A
4950445 Salce et al. Aug 1990 A
D311263 Russell Oct 1990 S
4964171 Landis Oct 1990 A
4965887 Paoluccio et al. Oct 1990 A
4973511 Farmer et al. Nov 1990 A
4975981 Ray Dec 1990 A
5000528 Kawakatsu Mar 1991 A
5002326 Spicer et al. Mar 1991 A
D318147 Russell Jul 1991 S
5035004 Koester Jul 1991 A
D319449 Millar Aug 1991 S
5046195 Koritan Sep 1991 A
D321268 Nix, Jr. Oct 1991 S
5052054 Birum Oct 1991 A
5054480 Bare et al. Oct 1991 A
5067475 Posnansky Nov 1991 A
5071206 Hood et al. Dec 1991 A
H1023 Wiseman Mar 1992 H
5104929 Bilkadi Apr 1992 A
5113528 Burke, Jr. et al. May 1992 A
D331820 Scanlon Dec 1992 S
D333366 Brown Feb 1993 S
5183700 Austin Feb 1993 A
5194293 Foster Mar 1993 A
5201077 Dondlinger Apr 1993 A
5206956 Olson May 1993 A
5208916 Kelman May 1993 A
5239406 Lynam Aug 1993 A
5318685 O'Shaughnessy Jun 1994 A
D349177 Russell Jul 1994 S
D349178 Russell Jul 1994 S
5327180 Hester et al. Jul 1994 A
D349362 Russell Aug 1994 S
5364671 Gustafson Nov 1994 A
5365615 Piszkin Nov 1994 A
D353691 Scanlon Dec 1994 S
D354588 Russell Jan 1995 S
D354589 Russell Jan 1995 S
5420649 Lewis May 1995 A
D359586 Lofton Jun 1995 S
D361160 Russell Aug 1995 S
5443877 Kramer et al. Aug 1995 A
D362086 Russell Sep 1995 S
5468247 Matthai et al. Nov 1995 A
5471036 Sperbeck Nov 1995 A
5473778 Bell Dec 1995 A
5486883 Candido Jan 1996 A
5507332 McKinnon Apr 1996 A
5510173 Pass et al. Apr 1996 A
5512116 Campfield Apr 1996 A
5523132 Zhang et al. Jun 1996 A
RE35318 Warman Aug 1996 E
5544361 Fine et al. Aug 1996 A
5553608 Reese et al. Sep 1996 A
5555570 Bay Sep 1996 A
5557683 Eubanks Sep 1996 A
5584130 Perron Dec 1996 A
5592698 Woods Jan 1997 A
5593786 Parker et al. Jan 1997 A
5622580 Mannheim Apr 1997 A
5633049 Bilkadi et al. May 1997 A
5668612 Hung Sep 1997 A
5671483 Reuber Sep 1997 A
5673431 Batty Oct 1997 A
5687420 Chong Nov 1997 A
5694650 Hong Dec 1997 A
5702415 Matthai et al. Dec 1997 A
5709825 Shih Jan 1998 A
5740560 Muoio Apr 1998 A
5792535 Weder Aug 1998 A
5806102 Park Sep 1998 A
5815848 Jarvis Oct 1998 A
5819311 Lo Oct 1998 A
5846659 Hartmut et al. Dec 1998 A
D404849 Desy Jan 1999 S
5885704 Peiffer et al. Mar 1999 A
5896991 Hippely et al. Apr 1999 A
5924129 Gill Jul 1999 A
5937596 Leeuwenburgh et al. Aug 1999 A
5956175 Hojnowski Sep 1999 A
5972453 Akiwa et al. Oct 1999 A
5991072 Solyntjes et al. Nov 1999 A
5991081 Haaland et al. Nov 1999 A
5991930 Sorrentino Nov 1999 A
D418256 Caruana Dec 1999 S
6008299 Mcgrath et al. Dec 1999 A
6049419 Wheatley et al. Apr 2000 A
6085358 Cogan Jul 2000 A
6173447 Arnold Jan 2001 B1
6217099 Mckinney et al. Apr 2001 B1
6221112 Snider Apr 2001 B1
6237147 Brockman May 2001 B1
6250765 Murakami Jun 2001 B1
6305073 Badders Oct 2001 B1
6347401 Joyce Feb 2002 B1
6375865 Paulson et al. Apr 2002 B1
6378133 Daikuzono Apr 2002 B1
6381750 Mangan May 2002 B1
6385776 Linday May 2002 B2
6388813 Wilson et al. May 2002 B1
6403005 Mientus et al. Jun 2002 B1
6416872 Maschwitz Jul 2002 B1
6432522 Friedman et al. Aug 2002 B1
6461709 Janssen et al. Oct 2002 B1
6469752 Ishikawa et al. Oct 2002 B1
6481019 Diaz et al. Nov 2002 B2
6491390 Provost Dec 2002 B1
6531180 Takushima et al. Mar 2003 B1
6536045 Wilson et al. Mar 2003 B1
6536589 Chang Mar 2003 B2
6555235 Aufderheide et al. Apr 2003 B1
6559902 Kusuda et al. May 2003 B1
6576349 Lingle et al. Jun 2003 B2
6584614 Hogg Jul 2003 B2
6592950 Toshima et al. Jul 2003 B1
6614423 Wong et al. Sep 2003 B1
6622311 Diaz et al. Sep 2003 B2
D480838 Martin Oct 2003 S
6654071 Chen Nov 2003 B2
6660389 Liu et al. Dec 2003 B2
6662371 Shin Dec 2003 B2
6667738 Murphy Dec 2003 B2
6739718 Jung May 2004 B1
6745396 Landis et al. Jun 2004 B1
6750922 Benning Jun 2004 B1
6773778 Onozawa et al. Aug 2004 B2
6773816 Tsutsumi Aug 2004 B2
6777055 Janssen et al. Aug 2004 B2
6800378 Hawa et al. Oct 2004 B2
6838610 De Moraes Jan 2005 B2
6841190 Liu et al. Jan 2005 B2
6847492 Wilson et al. Jan 2005 B2
6864882 Newton Mar 2005 B2
6870686 Wilson et al. Mar 2005 B2
6879319 Cok Apr 2005 B2
6907617 Johnson Jun 2005 B2
6911593 Mazumder et al. Jun 2005 B2
6922850 Arnold Aug 2005 B1
6952950 Doe et al. Oct 2005 B2
6967044 O'Brien Nov 2005 B1
D512797 Canavan et al. Dec 2005 S
6973677 Diaz et al. Dec 2005 B2
6995976 Richardson Feb 2006 B2
7070837 Ross Jul 2006 B2
7071927 Blanchard Jul 2006 B2
D526446 Cowan et al. Aug 2006 S
7097080 Cox Aug 2006 B2
7101810 Bond et al. Sep 2006 B2
7103920 Otterson Sep 2006 B1
7143979 Wood et al. Dec 2006 B2
7184217 Wilson et al. Feb 2007 B2
D541991 Lawrence May 2007 S
7215473 Fleming May 2007 B2
7226176 Huang Jun 2007 B1
7238401 Dietz Jul 2007 B1
7311956 Pitzen Dec 2007 B2
D559442 Regelbrugge et al. Jan 2008 S
7344241 Baek Mar 2008 B2
7351470 Draheim et al. Apr 2008 B2
D569557 Cho May 2008 S
7389869 Mason, Jr. Jun 2008 B2
7410684 Mccormick Aug 2008 B2
7425369 Oakey et al. Sep 2008 B2
D586052 Elias Feb 2009 S
7495895 Carnevali Feb 2009 B2
7597441 Farwig Oct 2009 B1
7629052 Brumwell Dec 2009 B2
7631365 Mahan Dec 2009 B1
7663047 Hanuschak Feb 2010 B2
7709095 Persoone et al. May 2010 B2
7722921 Shimoda et al. May 2010 B2
7727615 Kato et al. Jun 2010 B2
7735156 VanDerWoude et al. Jun 2010 B2
7752682 Vanderwoude et al. Jul 2010 B2
7812077 Borade et al. Oct 2010 B2
7858001 Qin et al. Dec 2010 B2
7937775 Manzella, Jr. et al. May 2011 B2
7957524 Chipping Jun 2011 B2
8024818 Davenport Sep 2011 B1
8044942 Leonhard et al. Oct 2011 B1
8101277 Logan et al. Jan 2012 B2
8234722 VanDerWoude et al. Aug 2012 B2
8261375 Reaux Sep 2012 B1
8282234 VanDerWoude et al. Oct 2012 B2
8292347 Drake Oct 2012 B1
8294843 Hollaway Oct 2012 B2
8316470 McNeal et al. Nov 2012 B2
8361260 Wilson et al. Jan 2013 B2
8407818 VanDerWoude et al. Apr 2013 B2
D683077 Klotz et al. May 2013 S
8455105 Hobeika et al. Jun 2013 B2
D692187 Isobe Oct 2013 S
D692189 Isobe Oct 2013 S
8567596 Mason, Jr. Oct 2013 B1
8693102 Wilson et al. Apr 2014 B2
8819869 VanDerWoude et al. Sep 2014 B2
8889801 Liao et al. Nov 2014 B2
8918198 Atanasoff Dec 2014 B2
8974620 Wilson et al. Mar 2015 B2
D726378 Wako Apr 2015 S
8999509 Port et al. Apr 2015 B2
9023162 Mccormick et al. May 2015 B2
9104256 Wilson et al. Aug 2015 B2
9128545 Wilson et al. Sep 2015 B2
9150763 Lopez et al. Oct 2015 B2
9161858 Capers et al. Oct 2015 B2
9170415 Mansuy Oct 2015 B2
9173437 VanDerWoude et al. Nov 2015 B2
9204823 Derenne et al. Dec 2015 B2
9274625 Wilson et al. Mar 2016 B2
9295297 Wilson Mar 2016 B2
D759900 Cummings et al. Jun 2016 S
9442306 Hines et al. Sep 2016 B1
9471163 Wilson et al. Oct 2016 B2
9526290 Wilson Dec 2016 B2
9575231 Chu et al. Feb 2017 B2
D781507 Huh Mar 2017 S
D781508 Huh Mar 2017 S
9629407 Foster Apr 2017 B2
9671622 Vetrini et al. Jun 2017 B1
9706808 Sclafani et al. Jul 2017 B2
9726940 Tomiyasu Aug 2017 B2
D805256 Yang Dec 2017 S
9905297 Best Feb 2018 B2
D815190 Dellemann Apr 2018 S
9968155 Wilson May 2018 B2
10070678 Wilson Sep 2018 B2
10165819 Klotz et al. Jan 2019 B2
10201207 VanDerWoude et al. Feb 2019 B2
10226095 Wilson Mar 2019 B2
10227501 Hwang et al. Mar 2019 B2
D849240 Guo et al. May 2019 S
D850256 Ryszawy Jun 2019 S
10321731 Wilson Jun 2019 B2
10345934 Wilson et al. Jul 2019 B2
10384084 Isham et al. Aug 2019 B2
10427385 Wilson et al. Oct 2019 B2
10449397 VanDerWoude et al. Oct 2019 B2
10520756 Gallina et al. Dec 2019 B2
10537236 Bennett et al. Jan 2020 B2
D879384 Sato Mar 2020 S
D882182 Fekete Apr 2020 S
10620670 Wilson et al. Apr 2020 B2
10687569 Mcdirmid Jun 2020 B1
10716986 Winter et al. Jul 2020 B2
10874163 VanDerWoude et al. Dec 2020 B2
D907299 Brown et al. Jan 2021 S
D907300 Brown et al. Jan 2021 S
D925129 Wilson Jul 2021 S
D925834 Babin et al. Jul 2021 S
11090516 VanDerWoude et al. Aug 2021 B2
11141959 Wilson et al. Oct 2021 B2
11147323 Wilson Oct 2021 B1
11307329 Wilson Apr 2022 B1
11480801 Morris et al. Oct 2022 B1
11490667 Wilson Nov 2022 B1
11510718 Childers et al. Nov 2022 B2
11548356 Wilson Jan 2023 B2
11579339 Thothadri et al. Feb 2023 B2
11807078 Wilson Nov 2023 B2
20010035936 Maisnik Nov 2001 A1
20020025441 Hieda et al. Feb 2002 A1
20020036362 Chigira et al. Mar 2002 A1
20020101411 Chang Aug 2002 A1
20020109922 Wilson et al. Aug 2002 A1
20020114934 Liu et al. Aug 2002 A1
20020122925 Liu et al. Sep 2002 A1
20020159159 Wilson et al. Oct 2002 A1
20020195910 Hus et al. Dec 2002 A1
20030012936 Draheim et al. Jan 2003 A1
20030087054 Janssen et al. May 2003 A1
20030110613 Ross Jun 2003 A1
20040004605 David Jan 2004 A1
20040109096 Anderson et al. Jun 2004 A1
20040121105 Janssen et al. Jun 2004 A1
20040139530 Yan Jul 2004 A1
20040202812 Congard et al. Oct 2004 A1
20040227722 Friberg et al. Nov 2004 A1
20040238690 Wood et al. Dec 2004 A1
20040246386 Thomas et al. Dec 2004 A1
20040258933 Enniss et al. Dec 2004 A1
20050002108 Wilson et al. Jan 2005 A1
20050015860 Reaux Jan 2005 A1
20050071909 Diaz et al. Apr 2005 A1
20050133035 Yahiaoui et al. Jun 2005 A1
20050180877 Usami et al. Aug 2005 A1
20050186415 Mccormick et al. Aug 2005 A1
20050188821 Yamashita et al. Sep 2005 A1
20050200154 Barbee et al. Sep 2005 A1
20050249957 Jing et al. Nov 2005 A1
20050260343 Han Nov 2005 A1
20060024494 Amano et al. Feb 2006 A1
20060052167 Boddicker et al. Mar 2006 A1
20060056030 Fukuda et al. Mar 2006 A1
20060057399 Persoone et al. Mar 2006 A1
20060114245 Masters et al. Jun 2006 A1
20060138694 Biernath et al. Jun 2006 A1
20060158609 Heil Jul 2006 A1
20060177654 Shoshi Aug 2006 A1
20060204776 Chen et al. Sep 2006 A1
20060254088 Mccormick Nov 2006 A1
20060285218 Wilson et al. Dec 2006 A1
20070019300 Wilson et al. Jan 2007 A1
20070181456 Kusuda et al. Aug 2007 A1
20070211002 Zehner et al. Sep 2007 A1
20070212508 Mase Sep 2007 A1
20070229962 Mason Oct 2007 A1
20070234592 Crates Oct 2007 A1
20070234888 Rotolo De Moraes Oct 2007 A1
20070286995 Li et al. Dec 2007 A1
20080014446 Donea et al. Jan 2008 A1
20080030631 Gallagher Feb 2008 A1
20080030675 Dillon Feb 2008 A1
20080055258 Sauers Mar 2008 A1
20080118678 Huang et al. May 2008 A1
20080151177 Wang Jun 2008 A1
20080160321 Padiyath et al. Jul 2008 A1
20080176018 Enniss et al. Jul 2008 A1
20080192351 Miyagawa et al. Aug 2008 A1
20080231979 Chen Sep 2008 A1
20080256688 Bruce Oct 2008 A1
20080286500 Sussner et al. Nov 2008 A1
20080292820 Padiyath et al. Nov 2008 A1
20090011205 Thiel Jan 2009 A1
20090026095 Lofland et al. Jan 2009 A1
20090054115 Horrdin et al. Feb 2009 A1
20090086415 Chipping Apr 2009 A1
20090087655 Yamada et al. Apr 2009 A1
20090105437 Determan et al. Apr 2009 A1
20090119819 Thompson May 2009 A1
20090181242 Enniss et al. Jul 2009 A1
20090233032 Craig Sep 2009 A1
20090239045 Kato et al. Sep 2009 A1
20090239048 Sugihara et al. Sep 2009 A1
20100026646 Xiao et al. Feb 2010 A1
20100033442 Kusuda et al. Feb 2010 A1
20100102197 Mcintyre Apr 2010 A1
20100102476 Higgins Apr 2010 A1
20100122402 Tipp May 2010 A1
20100146679 Heil Jun 2010 A1
20100238119 Dubrovsky et al. Sep 2010 A1
20100245273 Hwang et al. Sep 2010 A1
20100270189 Pedersen et al. Oct 2010 A1
20110007388 Wilson et al. Jan 2011 A1
20110010994 Wilson et al. Jan 2011 A1
20110012841 Lin Jan 2011 A1
20110013273 Wilson et al. Jan 2011 A1
20110014481 Wilson et al. Jan 2011 A1
20110035936 Lee Feb 2011 A1
20110052864 Son Mar 2011 A1
20110097574 Faldysta et al. Apr 2011 A1
20110119801 Wright May 2011 A1
20110165361 Sherman et al. Jul 2011 A1
20110168261 Welser et al. Jul 2011 A1
20110267793 Cohen et al. Nov 2011 A1
20110271497 Suh et al. Nov 2011 A1
20110277361 Nichol et al. Nov 2011 A1
20110279383 Wilson et al. Nov 2011 A1
20120003431 Huang Jan 2012 A1
20120030095 Marshall et al. Feb 2012 A1
20120047614 Choi Mar 2012 A1
20120070603 Hsu Mar 2012 A1
20120081792 Neuffer Apr 2012 A1
20120137414 Saylor Jun 2012 A1
20120180204 Hawkins Jul 2012 A1
20120183712 Leonhard et al. Jul 2012 A1
20120188743 Wilson et al. Jul 2012 A1
20120200816 Krasnov et al. Aug 2012 A1
20120291173 Gleason et al. Nov 2012 A1
20130045371 O'Donnell Feb 2013 A1
20130083285 McNeal et al. Apr 2013 A1
20130089688 Wilson et al. Apr 2013 A1
20130098543 Reuter et al. Apr 2013 A1
20130141693 McCabe et al. Jun 2013 A1
20130145525 Arenson et al. Jun 2013 A1
20130222913 Tomoda et al. Aug 2013 A1
20130247286 Vanderwoude et al. Sep 2013 A1
20130293959 Mcdonald Nov 2013 A1
20140020153 Romanski et al. Jan 2014 A1
20140050909 Choi et al. Feb 2014 A1
20140220283 Wilson et al. Aug 2014 A1
20140259321 Arnold Sep 2014 A1
20140289937 Capers et al. Oct 2014 A1
20150033431 Hofer Kraner et al. Feb 2015 A1
20150131047 Saylor et al. May 2015 A1
20150202847 Johnson et al. Jul 2015 A1
20150234209 Miyamoto et al. Aug 2015 A1
20150258715 Ohta Sep 2015 A1
20150294656 Hanuschak Oct 2015 A1
20150309609 Wilson et al. Oct 2015 A1
20150349147 Xi et al. Dec 2015 A1
20150359675 Wilson Dec 2015 A1
20160023442 Faris Jan 2016 A1
20160050990 Hayes Feb 2016 A1
20160073720 Niedrich Mar 2016 A1
20160231834 Hardi Aug 2016 A1
20160259102 Taka Sep 2016 A1
20160271922 Uzawa et al. Sep 2016 A1
20160291543 Saito Oct 2016 A1
20160318227 Kim et al. Nov 2016 A1
20170052286 Hines et al. Feb 2017 A1
20170071792 Wilson et al. Mar 2017 A1
20170079364 Paulson Mar 2017 A1
20170129219 Uebelacker et al. May 2017 A1
20170173923 Davis et al. Jun 2017 A1
20170192131 Wilson et al. Jul 2017 A1
20170208878 Kakinuma et al. Jul 2017 A1
20170232713 Mannheim Astete et al. Aug 2017 A1
20170281414 Wilson Oct 2017 A1
20170299898 Gallina et al. Oct 2017 A1
20170318877 Yahiaoui et al. Nov 2017 A1
20180029337 Wilson et al. Feb 2018 A1
20180042324 King Feb 2018 A1
20180052334 Repko Feb 2018 A1
20180094164 Ito et al. Apr 2018 A1
20180148578 Ohta et al. May 2018 A1
20180161208 Huh Jun 2018 A1
20180229480 Chung Aug 2018 A1
20180236753 Wykoff, II et al. Aug 2018 A1
20180295925 Gagliardo et al. Oct 2018 A1
20180338550 Boulware et al. Nov 2018 A1
20190021430 Elliott Jan 2019 A1
20190037948 Romanski et al. Feb 2019 A1
20190116300 Okuno Apr 2019 A1
20190118057 Winter et al. Apr 2019 A1
20190209912 Isserow et al. Jul 2019 A1
20190212474 Le Quang et al. Jul 2019 A1
20190346591 Thothadri et al. Nov 2019 A1
20190389182 Wilson et al. Dec 2019 A1
20200100657 Lee et al. Apr 2020 A1
20200115519 Phillips et al. Apr 2020 A1
20200124768 Wilson Apr 2020 A1
20200134773 Pinter et al. Apr 2020 A1
20200154808 Inouye May 2020 A1
20200178622 Jascomb et al. Jun 2020 A1
20200247102 Wilson et al. Aug 2020 A1
20200261055 Zwierstra et al. Aug 2020 A1
20200281301 Wynalda, Jr. Sep 2020 A1
20200310494 Ahn et al. Oct 2020 A1
20200359718 Jefferis et al. Nov 2020 A1
20200375272 Ulmer et al. Dec 2020 A1
20200384747 Fukuda et al. Dec 2020 A1
20210030095 Reicher Feb 2021 A1
20210162645 Wilson et al. Jun 2021 A1
20210283994 Wilson Sep 2021 A1
20210298380 Brown, II et al. Sep 2021 A1
20210298390 Sup, IV et al. Sep 2021 A1
20210307425 Keim Oct 2021 A1
20210315291 Votolato et al. Oct 2021 A1
20210318553 Gharabegian Oct 2021 A1
20210321692 Wilson Oct 2021 A1
20210321693 Wilson et al. Oct 2021 A1
20210329999 Ackerman Oct 2021 A1
20210368886 Swart et al. Dec 2021 A1
20210386155 Rose Dec 2021 A1
20210393440 Leatt et al. Dec 2021 A1
20210394427 Frisco et al. Dec 2021 A1
20220015472 Boza Jan 2022 A1
20230106407 Arima et al. Apr 2023 A1
Foreign Referenced Citations (42)
Number Date Country
2005244595 Jul 2006 AU
2015277196 Jan 2017 AU
2386043 Nov 2003 CA
3637188 May 1988 DE
19808535 Sep 1999 DE
202004010014 Apr 2005 DE
202020101562 Apr 2020 DE
202020101794 Apr 2020 DE
192075 Aug 1986 EP
671258 Sep 1995 EP
1471415 Oct 2004 EP
1517791 Mar 2005 EP
1047537 Mar 2010 EP
3157480 Apr 2017 EP
2310862 Sep 1997 GB
2492574 Jan 2013 GB
61017860 Jan 1986 JP
S6117860 Jan 1986 JP
62053832 Mar 1987 JP
04314537 Nov 1992 JP
06143496 May 1994 JP
07021456 Jan 1995 JP
10167765 Jun 1998 JP
2000334812 Dec 2000 JP
2002328613 Nov 2002 JP
2012183822 Sep 2012 JP
2014032222 Feb 2014 JP
2015128896 Jul 2015 JP
6767596 Oct 2020 JP
20120001292 Jan 2012 KR
200700793 Jan 2007 TW
201027992 Jul 2010 TW
0024576 May 2000 WO
03052678 Jun 2003 WO
2009008857 Jan 2009 WO
2015009114 Jan 2015 WO
2015091425 Jun 2015 WO
2015093413 Jun 2015 WO
2015195814 Dec 2015 WO
2019006151 Jan 2019 WO
2019055267 Mar 2019 WO
2021176316 Sep 2021 WO
Non-Patent Literature Citations (133)
Entry
Racing Optics, Inc. v. Aevoe Corp. DBA Moshi; Case 2:15-cv-01774-RCJ-VCF; “Answer to Aevoe's Counterclaims—Jury Trial Demanded”; Nov. 2, 2015; 15 pages.
Gregory Brower et al.; “Complaint for Patent Infringement”; Sep. 15, 2015; 15 pages.
Jeffrey A. Silverstri et al.; “Answer to Complaint for Patent Infringement”; Oct. 7, 2015; 59 pages.
United States Patent and Trademark Office; Office Action for U.S. Appl. No. 15/090,681; Aug. 26, 2016; 8 pages.
List of References and considered by Examiner for U.S. Appl. No. 15/090,681; Receipt date Jun. 30, 2016; 3 pages.
List of References and considered by Examiner for U.S. Appl. No. 15/090,681; Receipt date Apr. 27, 2016; 4 pages.
Examiner's search strategy and results for U.S. Appl. No. 15/090,681; Aug. 21, 2016; 2 pages.
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01164; Petition for Inter Partes Review of U.S. Pat. No. 9,104,256 (including Exhibits 1001-1011 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016.
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01165; Petition for Inter Partes Review of U.S. Pat. No. 9,128,545(including Exhibits 1001-1006 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016.
Aevoe Corp. v. Racing Optics, Inc.; Case No. IPR2016-01166; Petition for Inter Partes Review of U.S. Pat. No. 9,274,625 (including Exhibits 1001-1011 and Petitioner Power of Attorney Pursuant to 37 C.F.R. 42. 10(b) for Petition for Inter Partes Review); Jun. 21, 2016.
Exhibit 1—Invalidity Contentions re: '545 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 2—Invalidity Contentions re: '256 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 3—Invalidity Contentions re: '620 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 4—Invalidity Contentions re: '625 Patent Under LPR 1-8(b)-(d); at least as early as Jul. 1, 2016.
Exhibit 1002—U.S. Pat. No. 5,364,671 to Gustafson; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-6.
Exhibit 1004—U.S. Pat. No. 7,351,470 to Draheim et al.; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-15.
Exhibit 1001—U.S. Pat. No. 8,974,620 to Wilson et al.; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-15.
Exhibit 1003—U.S. Pat. No. 6,250,765 to Murakami; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-8.
Exhibit 1005—U.S. Pat. No. 7,957,524 to Chipping; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2017; pp. 1-20.
Aevoe Corp., Racing Optics, Inc.; Petition for Inter Partes Review; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-55.
Exhibit 1006—Japanese Application No. JP 2002-328613 to Kitaguchi Translation; IPR2016-01745; at least as early as Sep. 7, 2016; pp. 1-10.
Exhibit 1009—U.S. Appl. No. 13/838,311; Interview Summary; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-3.
Exhibit 1010—U.S. Appl. No. 15/838,311; Notice of Allowance; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-8.
Aevoe Corp. v. Racing Optics, Inc.; Declaration of Darran Cairns; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-32.
Aevoe Corp. v. Racing Optics, Inc.; Petitioner's Power of Attorney; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-3.
Exhibit 1007—U.S. Appl. No. 13/838,311; Response to Office Action; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; p. 1-19.
Exhibit 1008—U.S. Appl. No. 13/838,311; Response and Request for Continued Examination; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-21.
Aevoe Corp. v. Racing Optics, Inc.; Mandatory Notices; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-4.
Aevoe Corp. v. Racing Optics, Inc.; Power of Attorney; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 7, 2016; pp. 1-4.
Aevoe Corp v. Racing Optics, Inc.; Notice of Filing Date; Case IPR2016-01745; Inter Partes Review of U.S. Pat. No. 8,974,620; at least as early as Sep. 6, 2016; p. 1-5.
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01164; Inter Partes Review of U.S. Pat. No. 9,104,256; at least as early as Nov. 7, 2016; p. 1-24.
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01166; Inter Partes Review of U.S. Pat. No. 9,274,625; at least as early as Nov. 7, 2016; p. 1-23.
Aevoe Corp v. Racing Optics, Inc.; Decision; Case IPR2016-01165; Inter Partes Review of U.S. Pat. No. 9,128,545; at least as early as Nov. 7, 2016; p. 1-25.
Settlement and License Agreement, Dec. 21, 2007, 28 pgs.
United States Patent and Trademark Office; Office Action dated Dec. 21, 2016 pertaining to U.S. Appl. No. 15/090,681, filed Apr. 5, 2016; 8 pages.
PCT Search Report and Written Opinion for US2020/016245 (Apr. 28, 2020).
Professional Plastics (http://www.professionalplastics.com/MelinexPETFilmDupont) 2012.
Whitney, Frank D., Preliminary Injunction, Aug. 21, 2007, 5 pgs.
Higgins, John P., Answer and Counterclaims to First Amended Complaint, Sep. 4, 2007, 27 pgs.
Ballato, John, Expert Report of John Ballato, Ph.D., Nov. 12, 2007, 5 pgs.
Russell, Geoffrey A., Rebuttal Report of Geoffrey A. Russell, Ph.D., on issues raised in the Export Report of John Ballato, Ph.D., Nov. 21, 2007, 15 pgs.
Higgins, John P., Defendants' Second Supplement to Its Response to Plaintiffs' First Set of Interrogatories, Dec. 7, 2007, 25 pgs.
Barnhardt, John J. III, Redacted Version Defendants' Memorandum in Support of Motion for Partial Summary Judgment, Dec. 3, 2007, 36 pgs.
Higgins, John P., Defendants' Second Supplement to its Response to Plaintiffs' First Set of Interrogatories, Dec. 7, 2007, 26 pgs.
Whitney, Frank D., Consent Judgment Order, Jan. 3, 2008, 5 pgs.
Ballato, John, Supplemental Expert Report of John Ballato, Ph.D., Nov. 19, 2007, 10 pgs.
Moore, Steven D., Plaintiffs' Motion to Strike Defendants' New and Untimely Invalidity Theory, Dec. 19, 2007, 3 pgs.
Moore, Steven D., Plaintiffs' Brief in Support of Motion to Strike Defendants' New and Untimely Invalidity Theory, Dec. 19, 2007, 10 pgs.
Barnhardt, John J. III, Notice Pursuant to 35 U.S.C. 282, Dec. 18, 2007, 3 pgs.
Office Action for Canadian Patent Application No. 2,952,436; Jul. 8, 2020.
www.wikipedia.org. “Black Body”, Jul. 2009, 11 pages.
www.wikipedia.org. “Infrared”, Jul. 2009, 12 pages.
www.wikipedia.org. “PET Film (biaxially oriented)”, Jul. 2009, 4 pages.
PCT International Application No. PCT/US99/25128 with International Search Report, Date of Completion Jan. 18, 2000, 54 Pages.
English translation of TW201027992, “Monitor Protection Device for a Flat Panel Display”, 11 pgs.
Pulse Racing Innovations, EZ Tear Universal Single Pull Tearoff Ramp, webpage <https://www.pulseracinginnovations.com>, Dec. 30, 2020, 6 pages.
PCT International Search Report and Written Opinion for International Application No. PCT/US20/24639, Jun. 11, 2020, 13 pages.
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/049919; Nov. 27, 2020.
Tian-Chi Chang, Xun Cao, Shan-Hu Bao, Shi=Dong Ji, Hong-Jie Luo, Ping Jin; “Review on Thermochromic Vanadium Dioxide Based Smart Coatings: From Lab to Commercial Application”; Dec. 16, 2017.
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/062230; Feb. 8, 2021.
“Anti-reflective coating,” Wikipedia, last updated Jul. 13, 2017 by Andy Dingley, <https://en.m.wikipedia.org/wiki/Anti-reflective_coating>.
“Monotonic function,” Wikipedia, accessed May 24, 2017, <https://en.wikipedia.org/wiki/Monotonic_function>.
“Thin Film,” Wikipedia, last updated Jun. 20, 2017, <https://en.wikipedia.org/wiki/Thin_film>.
“Tips to Get Quality Anti-Reflection Optical Coatings,” Penn Optical Coatings, accessed May 24, 2017, <http://www.pennoc.com/tipsgetqualityantireflectionopticalcoatings/>.
Langlet, M., “Antireflective Films”, from Chapter 15 of Handbook of Sol-Gel Science and Technology Processing Characterization and Applications, copyright 2005, pp. 332-334, 337, 339-341., taken from website <https://books. google.com/books ?id=i9swy1D2HxIC&lpg=PA339&dq=AR%20thick%20film%20coatings&pg=PA339#v=onepage&q=AR%20thick%20film%20coatings&f=false>.
Li, H.-M. et al., “Influence of weight ratio in polymer blend film on the phase separation structure and its optical properties”, The European Physical Journal Applied Physics, 45, 20501, published Jan. 31, 2009, EDP Sciences, 4 pages.
MDS Nordion, “Gamma Compatible Materials,” Datasheet, Aug. 2007, 4 pages, <https://ab-div-bdi-bl-blm.web.cern.ch/Radiation/Gamma_Compatible_Materials_List_company.pdf>, retrieved on Sep. 29, 2021.
Zhang, Xin_Xiang et al., Abstract of “One-step sol-gel preparation of PDMS-silica ORMOSILs as environment-resistant and crack-free thick antireflective coatings,” Journal of Materials Chemistry, Issue 26, 2012, <http://pubs.rsc.org/en/content/articlelanding/2012/m/c2jm31005h#!divAbstract>.
PCT International Search Report and Written Opinion for International Application No. PCT/US2017/044438, dated Oct. 23, 2017, 12 pages.
Chemical Book, “Benzophenone”, https://www.chemicalbook.com/Chemical ProductProperty_EN_CB57 44679.htm, available at least as of 2017, accessed on line on Dec. 15, 2021 (Year: 2017).
Chemical Book, “Polymethylhydrosiloxane”, https://www.chemicalbook.com/Chemical ProductProperty _En_ CB3694969. htm, available at least as of 2017, accessed online on Dec. 15, 2021 (Year: 2017).
Guide Chem, “UV Stabilizer”, https://wap.guidechem.com/trade/uv-stabilizer-uv-absorber-ligh-id3578792.html, available at least as of 2018, accessed online on Dec. 15, 2021 (Year: 2018).
Hostaphan RBB biaxially oriented film data sheet (Year: 2011).
PCT International Search Report and Written Opinion for International Application No. PCT/US2020/024639; Jun. 11, 2020.
PCT International Search Report and Written Opinion for International Application No. PCT/US2021/026165, dated Jul. 9, 2021, 10 pages.
PCT International Search Report and Written Opinion for International Application No. PCT/US21/20421, May 20, 2021, 8 pages.
Wiseman, Sr., United States Statutory Invention Registration No. H1023, published Mar. 3, 1992, 7 pages.
Chemical Book, Bis(1,2,2,6,6-pentamethyl-4-piperidyl) sebacate, available online at least as of 2017, https://www.chemicalbook.com/ChemicalProductProperty_EN_CB8121619.htm, accessed online Mar. 15, 2022 (Year: 2017).
Pearson Dental, “UV Protection Face Shields”, https://www.pearsondental.com/catalog/subcat_thumb.asp?majcatid=750&catid=I0149, available online at least as of Jan. 27, 2021 per Internet Archive, accessed online on Sep. 15, 2021. (Year: 2021).
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2022/031823, mailed Jul. 14, 2022, 11 pages.
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2022/046171, mailed Jan. 18, 2023, 15 pages.
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2023/012316, mailed Apr. 14, 2023, 11 pages.
Patent Cooperation Treaty, International Search Report and Written Opinion for International Application No. PCT/US2023/26598, mailed Sep. 12, 2023, 7 pages.
Prosecution History of U.S. Re-Examination U.S. Appl. No. 95/002,073 titled Touch Screen Protector; pp. 1-1,980.
www.store.moshimode.com; “iVisor AG for iPad 2 Black”; 2004-2010.
Defendant's Motion for Summary Judgment; Oct. 25, 2013; pp. 1-31.
Jake Gaecke; “Appletell Reviews the iVisor for iPad”; www.appletell.com; Sep. 15, 2010 at 12:32 p.m. www.technologytell.com/apple/60407/appletell-reviews-ag-for-ipad/; 2 pages.
www.nushield.com/technology.php; “What Makes NuShield Screen Protectors Superior”, 2 pages.
www.spigen.com; “Something You Want”; 2 pages.
www.zagg.com; “Apple iPad 2 (Wi-Fi 3G) Screen Protector”; 2 pages.
www.gadgetguard.com; “Invisible Gadget Guard, the Original”; 1 page.
www.incipotech.com; “Protect Your iPhone 4 with Screen Protectors from Incipo”; 3 pages.
www.store.moshimonde.com; “iVisor AG iPad Screen Protector”; Jul. 2010; 7 pages.
www.store.moshimonde.com; “iVisor XT Crystal Clear Protector for iPad”; Aug. 2010; 3 pages.
www.store.moshimonde.com; “iVisor AG for iPad 2 Black”; Mar. 2011; 5 pages.
www.store.moshimonde.com; “iVisor AG for iPad 2 White”; Mar. 2011; 3 pages.
www.store.moshimonde.com; “iVisor AG for iPhone 4/4S Black”; Nov. 2010; 5 pages.
www.store.moshimonde.com; “iVisor AG for iPhone 4/4S White”; May 2010; 4 pages.
Dictionary.com (http://dictionary.reference.com) 2012.
Racing Optics, Inc. v. Aevoe, Inc., d/b/a/ Moshi; Case No. 15-cv-017744-JCM-VCF; Aevoe's Initial Disclosure Non-Infringement, Invalidity and Unenforceability Contentions (Redacted) dated Jan. 7, 2016.
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 9,128,545) dated Jan. 7, 2016.
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 9,104,256) dated Jan. 7, 2016.
Defendant Aevoe Corp.'s Non-Infringement Contentions and Responses to Racing Optic's Disclosure of Asserted Claims and Infringement Contentions (U.S. Pat. No. 8,974,620) dated Jan. 7, 2016.
I-Blason LLC v. Aevoe, Inc. and Aevoe Corp.; Case IPR2016-TBA; Petition for Inter Partes Review of U.S. Pat. No. 8,044,942 (including Exhibits 1001-1019).
Dupont Teijin Films, “Mylar Polyester Film—Optical Properties”, Jun. 2003, 2 pages.
https://en.wikipedia.org/wiki/Black_body, “Black Body”, Jul. 2009, 11 pages.
https://en.wikipedia.org/wiki/Infrared, “Infrared”, Jul. 2009, 12 pages.
https://en.wikipedia.org/wiki/BoPET, “PET Film (biaxially oriented)”, Jul. 2009, 4 pages.
Instashield LLC, Bionic Wrench® Inventor Creates Low-Cost Face Shield For Masses, Apr. 15, 2020, 3 pages.
Tom Zillich, Surrey manufacturer hopes to hit home run with face shield that clips to baseball cap, Apr. 29, 2020, 3 pages.
Opentip, Opromo Safety Face Shield Visor for Adult Kids, Protective Cotton Hat with Removable PVC Face Cover <https://www.opentip.com/product.php?products_id=11699030>, May 5, 2020, 3 pages.
Hefute, Hefute 5 Pcs Protective Face Cover with Shield Comfortable Full Protection Face Compatiable with Glasses Anti-Droplet Anti-Pollution and Windproof Transparent Safety Face Cover with Shield(Style B) <https://www.amazon.com/dp/B086GSG8DH/ref=sspa_dk_detail_9?psc=1&pd_rd_i=B086GSG8DH&pd_rd_w=Ocdm2&pf_rd_p=48d372c1-f7e1-4b8b-9d02-4bd86f5158c5&pd_rd_wg=qkB2b&pf_rd_r=M%E2%80%A6>, May 6, 2020, 7 pages.
Geanbaye, Geanbaye Safety Full Face Shield Cap Detachable Baseball Cap Anti-Saliva Anti-Spitting Eye Protective Hat Windproof Dustproof <https://www.amazon.com/dp/B086DV32B8/ref=sspa_dk_detail_8?psc=1&pd_rd_i=B086DV32B8&pd_rd_w=MwjfT&pf_rd_p=48d372c1-f7e1-4b8b-9d02-4bd86f5158c5&pd_rd_wg=pxuOs&pf_rd_r=PNDA%E2%80%A6>, May 5, 2020, 8 pages.
Leigh Buchanan, These 2 Companies Are Making Face Shields for Everyone <https://www.inc.com/leigh-buchanan/face-shields-coronavirus-protection-open-source.html>, May 6, 2020, 8 pages.
Brim Shield, photographs, Apr. 21, 2020, 1 pages.
Hatshield, Shield Yourself With The Hatshield <https://www.hat-shield.com/?gclid=CjwKCAjwp-X0BRAFEiwAheRui1u89v_3URuiwEVvBRGa9TaEfWoZVMJXRkWsZgPTUw-0fHJ5HD-8uhoCc84QAvD_BwE>, Apr. 17, 2020, 11 pages.
Eli N. Perencevich, Moving Personal Protective Equipment Into the Community Face Shields and Containment of COVID-19, Apr. 29, 2020, 2 pages.
Chang, Tian-Ci; Cao, Xun; Bao, Shan-Hu; JI, Shi-Dong; Luo, Hong-Jie; Jin, Ping; Review of Thermochromic Vanadium Dioxide Based Smart Coatings: From Lab to Commercial Application; Dec. 16, 2017.
Saudi Basic Industries Corporation (SABIC); “The Department of Transportation [DOT] Guidebook”; Oct. 2016.
Hostaphan RBB, “Transparent, Temperature Stable Polyester Film for Cooking & Roasting Bags” Jul. 2016.
Hostaphan Win, “White, Long-Term Stable, Thermally Stable Polyester Film for PV Back Sheet Laminates”; Jul. 2016.
PCT Search Report & Written Opinion for PCT/US2019/054565 (Dec. 20, 2019).
PCT Search Report & Written Opinion for PCT/US2015/036248 (Sep. 16, 2015).
“Declaration of Jerome Aho”; Filed Aug. 3, 2007; Case 3:07-cv-00221-FDW-DCK; Includes: Exhibit A, Nascar Postcard (1 page), Exhibit B, 50th Anniversary Nascar letter sent Jan. 7, 1998 (1 page), and Exhibit C, Front page of “The Official Nascar Preview and Press Guide” (1 page); 9 pages.
Racing Optics, Inc. v. David Leon O'Neal, Edward M. Wallace and Clear View Racing Optics, LLC; Case 3:07 CV 221; Includes: Exhibit A, Wilson et al. U.S. Pat. No. 6,847,492; and Exhibit B, Wilson et al. U.S. Pat. No. 7,184,217; 34 pages.
International Search Report; International Application No. PCT/US99/95128; Date of Completion: Jan. 18, 2000; 54 pages.
International Search Report; International Application No. PCT/US02/10971; Date of Completion: Nov. 20, 2002; 3 pages.
International Search Report; International Application No. PCT/US03/16284; Date of Completion: Mar. 9, 2004; 3 pages.
European Search Report for Application No. 15809930.9-107 / 3157480 (Dec. 15, 2017).
Canadian Office Action for Application Serial No. 2,952,436 (Nov. 15, 2019).
Canadian Office Action for Application Serial No. 2,952,436 (May 3, 2019).
Australian Examination Report for Application Serial No. 2015277196 (Oct. 18, 2018).
www.wikipedia.org, Refractive Index, Oct. 31, 2014.
Related Publications (1)
Number Date Country
20240025240 A1 Jan 2024 US
Provisional Applications (1)
Number Date Country
62987726 Mar 2020 US
Continuations (2)
Number Date Country
Parent 18062901 Dec 2022 US
Child 18478220 US
Parent 16866392 May 2020 US
Child 18062901 US