The invention relates to a protective cap for a dispenser and to a dispenser for discharging pharmaceutical and/or cosmetic liquids. Such a dispenser comprises a liquid reservoir and an exit opening, through which the liquid can be discharged into a surrounding atmosphere.
A liquid stored in the liquid reservoir is fed in the direction of the exit opening in order to be discharged, it being possible for this to take place by way of a large number of different mechanisms. For example, the liquid reservoir may be designed in the form of a squeeze bottle, of which the contents can be subjected to pressure as a result of the walls being deformed. It is also possible to use a separate pumping device.
Dispensers of the type in question are known from the prior art, for example from DE 10 2011 086 755 A1. The dispenser comprises an outlet channel, which connects the liquid reservoir to the exit opening, and an outlet valve, which is arranged in the outlet channel and opens in a pressure-dependent manner or is manually actuable, wherein the outlet valve, in the closed state, closes the outlet channel. The outlet valve subdivides the outlet channel here into a first part and a second part, wherein the second part, adjacent to the exit opening, extends in the direction of the liquid reservoir. In other configurations, the second part corresponds to a droplet-forming surface at the exit opening.
As a result of the outlet valve, it is always the case that, following closure of the same, it is not possible for any liquid which has passed into a portion of the outlet channel on an outlet-valve side directed away from the liquid reservoir, or which has remained in the surroundings of the exit opening outside the outlet channel, to be sucked back into the dispenser. This therefore prevents the contents of the liquid reservoir from possibly being contaminated by liquid residues which have been sucked back. The residual liquid therefore remains in a region which is accessible from the outside. Upon contact with the atmosphere, the residual liquid dries up quickly.
In order also to make it possible for the residual liquid to dry up quickly when a protective cap is placed in position on the dispenser, DE 10 2011 086 755 A1 discloses providing the protective cap of the dispenser with ventilation openings which create a permanent connection between the region in which residual liquid can remain and exterior surroundings. However, it is possible for the ventilation openings, for their part, to cause contamination again.
In order to avoid contamination, DE 10 2011 086 755 A1 makes provision for surfaces of the outlet channel downstream of the outlet valve, as seen in the discharging direction, and/or an outer surface of a housing which surrounds the exit opening to be of antibacterial design, wherein the antibacterial design is restricted exclusively to these surfaces.
It is a problem of the invention to make available a protective cap which is intended for a dispenser, allows rapid drying and in the case of which the problem of microorganisms penetrating into the protective cap is alleviated. A further problem of the invention is that of making available a dispenser with a corresponding protective cap.
A first aspect of the invention provides for a protective cap for a dispenser for discharging pharmaceutical and/or cosmetic liquids, wherein the dispenser has a liquid reservoir and an exit opening, through which the liquid can be discharged into a surrounding atmosphere, and wherein the protective cap has at least one ventilation opening in order for an interior to communicate with exterior surroundings, and the protective cap has arranged on it a sterile filter, which covers the at least one ventilation opening so as to reduce, or to prevent, the introduction of germs into the interior of the protective cap via the at least one ventilation opening.
A second aspect of the invention provides for a discharging device comprising a dispenser for discharging pharmaceutical and/or cosmetic liquids, having a liquid reservoir and having an exit opening, through which the liquid can be discharged into a surrounding atmosphere, and having a protective cap, which has at least one ventilation opening in order for an interior to communicate with exterior surroundings, wherein the protective cap has arranged on it a sterile filter, which covers the at least one ventilation opening so as to reduce, or to prevent, the introduction of germs into the interior of the protective cap via the at least one ventilation opening.
The sterile filter prevents, or at least reduces, the introduction of germs into an interior of the protective cap via the at least one ventilation opening. Germs or microorganisms within the context of the present invention are to be understood as being all microbial pathogens, in particular bacteria and viruses.
The dispenser is suitable, in particular, for unpreserved ophthalmic preparations. In advantageous configurations, the dispenser comprises an outlet channel, which connects the liquid reservoir to the exit opening, and an outlet valve, which opens in a pressure-dependent manner or is manually actuable, is arranged in the outlet channel and, in a closed state, closes the outlet channel. The outlet valve here prevents germs from penetrating into the liquid reservoir. The outlet valve is preferably an outlet valve which opens in a pressure-dependent manner and is opened by the liquid in the liquid reservoir, or an amount removed therefrom, being subjected to pressure and closes automatically again as soon as the corresponding positive pressure in relation to the surroundings is no longer present. It is also possible in principle here, however, to use other types of valve. Provision may thus be made, for example, for the liquid in the liquid reservoir to be subjected permanently to pressure and for the dispenser to be handled by way of a handle which is actuated manually to open the outlet valve. The outlet valve prevents discharged liquid from being sucked back into the liquid reservoir. The at least one ventilation opening causes said residual liquid to dry up rapidly.
The sterile filter preferably has an average pore diameter or a cutoff of at most approximately 0.1 μm to approximately 0.3 μm, preferably at most approximately 0.2 μm. The cutoff describes the size from which particles are held back by the sterile filter. The sterile filter is preferably configured in the form of a membrane filter. A membrane filter with a cutoff between approximately 0.1 μm to approximately 0.3 μm is also referred to as a microfiltration membrane. Bacteria have a size of approximately 0.2 to approximately 5 μm, and can be filtered out efficiently by means of a microfiltration membrane. Depending on the application, it is also possible for the sterile filter to be subjected to more stringent requirements. In particular one configuration provides sterile filters having an average pore diameter or a cutoff of approximately 10 nm. Such membrane filters are also referred to as ultrafiltration membranes. Viruses of a size of 15 nm can also be filtered out using an ultrafiltration membrane.
In one configuration, the sterile filter is produced in the form of a woven fabric made of a polymer or of an inorganic material, for example a ceramic material. In advantageous configurations, the sterile filter is designed in the form of a microporous polymer membrane made of a membrane polymer from the group comprising polysulfone, polyethersulfone, cellulose, cellulose derivatives, polyvinylidene fluoride, polyamide, polyester and polyacrylonitrile and/or combinations thereof.
The sterile filter preferably also serves as an absorber surface, wherein liquid is transported away from the exit opening via the sterile filter and the sterile filter thus advantageously assists rapid drying of the dispenser. For this purpose, the sterile filter is configured in the form of a hydrophilic polymer membrane. Designing the protective cap with an absorber surface which is in contact with the exit opening is also advantageous in configurations which do not have a sterile filter. One configuration provides two membranes functioning as a sterile filter and/or absorber surface. In yet further configurations, a multilayered membrane is provided in the protective cap, wherein a first layer, which is directed toward the exit opening of the dispenser, has absorbent properties and a second layer, which is directed toward the ventilation opening, has filter properties.
In one configuration, the sterile filter is configured in the form of an insert part, which is connected to the protective cap by overmolding. In other configurations, the sterile filter is latched to a wall of the protective cap.
In advantageous configurations, provision is made for the protective cap to comprise a cylindrical portion and a cover portion connected thereto, wherein the at least one ventilation opening is provided on the cover portion. In one configuration, an inner wall of the cylindrical portion has provided on it radially inwardly oriented latching protrusions or an encircling latching protrusion, by means of which the sterile filter is accommodated. In advantageous configurations, latching arms, which project from an inner side of the cover portion, are provided for fastening the sterile filter. Such latching arms allow reliable, correct assembly.
In advantageous configurations, the sterile filter is made of a material which has a sufficient level of mechanical strength for it to be possible for the sterile filter to be latched into the latching arms or latching protrusions. In other configurations, the sterile filter is applied to a carrier layer. The carrier layer here, in one configuration, has material properties which differ from those of the sterile filter. A gas-permeable, hydrophilic carrier layer is preferably provided, and therefore the carrier layer likewise assists drying of the dispenser. The carrier layer and the sterile filter are preferably firmly, in particular integrally, connected to one another, for example by adhesive bonding or welding. In one configuration, the sterile filter is applied to the carrier layer by vapor deposition or sputtering.
The sterile filter is preferably arranged such that, during use, it is in contact with an exit opening of the dispenser, wherein in particular the protective cap has a stop, which forces the sterile filter into contact with the exit opening during use. This means that the sterile filter can be advantageously utilized as an absorber.
Further advantages and aspects of the invention can be gathered not just from the claims, but also from the following description of preferred exemplary embodiments of the invention, which will be explained hereinbelow with reference to the figures. The drawings use like reference signs to denote the same or similar components. Features illustrated or described as part of an exemplary embodiment can likewise be used in a different exemplary embodiment in order to achieve a further embodiment of the invention. In the drawings:
Said dispenser 2 has a liquid reservoir 21, which is delimited by a container body 20. The liquid 4 is stored in the liquid reservoir 21. An outlet subassembly 22 has been placed in position, and fastened by means of a latching connection, on the container body 20. Said outlet subassembly 22 serves for directing liquid from the liquid reservoir 21 to an exit opening 24 through an outlet channel 23. The exit opening 24 illustrated is configured in the form of a droplet-forming surface and widens conically in the discharging direction.
On account of the section plane in
The dispenser 2 illustrated is configured in the form of a so-called squeeze bottle. Said dispenser 2 is used by being placed upside down with the exit opening 24 oriented downward. Thereafter, walls of the container body 20 are pressed together in order for the liquid 4 in the liquid reservoir 21 to be subjected to pressure. This pressure causes the outlet valve 25 to open. More specifically, as soon as the liquid pressure in a part of the outlet channel 23 upstream of the outlet valve 25 is sufficiently high, the valve body 27 shifts counter to the force of the restoring spring 26 as a result of said pressure and frees the path for the liquid in the direction of the exit opening 24.
Following a discharging operation, the outlet valve 25 is closed again. It is usual here for a residue of the liquid, the so-called residual droplet, to remain at the exit opening 24, configured in the form of the droplet-forming surface, and in a part of the outlet channel 23 assigned to the exit opening 24 and located downstream of the outlet valve 25 as seen in the discharging direction. The outlet valve 25, which opens in a pressure-dependent manner, precludes any possibility of the liquid flowing back into the liquid reservoir 12.
Without a protective cap being placed in position, the residual droplet can dry up rapidly. In order to make it possible for rapid drying also to take place when the protective cap has been placed in position, protective caps of the type in question have at least one ventilation opening.
According to the application, the protective cap 3 has a sterile filter 5, which covers the ventilation openings 30 and prevents, or at least reduces, the introduction of germs into an interior 31 of the protective cap 3 via the ventilation openings 30. The sterile filter 5 has a cutoff of at most 0.2 μm, and therefore bacteria of a size of approximately 0.2 to approximately 5 μm are reliably held back.
In the exemplary embodiment illustrated, the sterile filter 5 is arranged parallel to the cover portion 33 of the protective cap 3, on an inner side of the cover portion 33, and covering the ventilation openings 30. For fastening the sterile filter 5, in the exemplary embodiment illustrated, latching arms 37 are provided on the protective cap 3, on the inner side of the cover portion 33. The latching arms 37 project from the cover portion 33 in the longitudinal direction of the protective cap 3. For the purpose of fitting the sterile filter 5, the latching arms 37 are deformed elastically.
As can be seen in
In contrast to the embodiment according to
In contrast to the embodiment according to
As described above, advantageous configurations make provision, when the protective cap 3 has been placed in position, for the sterile filter 5 to be in contact with a point at the top of the dispenser 2, assigned to the exit opening 24. In order to force the sterile filter 5 into contact with the point at the top of the dispenser, the protective cap 3 according to
In order to reduce the introduction of germs, and thus the loading to which the membrane is subjected, during relatively long-term storage, during storage in surroundings containing lots of germs and/or prior to the dispenser being used for the first time, provision is made, in one configuration, for an additional cover cap (not illustrated), to be fitted over the protective cap 3. For fastening of said cover cap (not illustrated), the protective cap 3 according to
Number | Date | Country | Kind |
---|---|---|---|
10 2013 226 253.1 | Dec 2013 | DE | national |
This is a continuation of prior U.S. application Ser. No. 15/102,415, filed Jun. 7, 2016, which was the National Stage of International Application No. PCT/EP2014/075754, filed Nov. 27, 2014, which claims priority to Germany Application No. 10 2013 226 253.1, all of which are hereby incorporated by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3622049 | Thompson | Nov 1971 | A |
4463880 | Kramer et al. | Aug 1984 | A |
4696409 | Vize | Sep 1987 | A |
4929354 | Meyering et al. | May 1990 | A |
4938389 | Rossi et al. | Jul 1990 | A |
4957518 | Brassell | Sep 1990 | A |
5033647 | Smith et al. | Jul 1991 | A |
5080800 | Heyl et al. | Jan 1992 | A |
5105993 | La Haye et al. | Apr 1992 | A |
5154325 | Ryder et al. | Oct 1992 | A |
5328063 | Beck | Jul 1994 | A |
5437655 | Bartholomew | Aug 1995 | A |
5496471 | Heyl et al. | Mar 1996 | A |
5611464 | Tsao et al. | Mar 1997 | A |
5849311 | Sawan et al. | Dec 1998 | A |
5869073 | Sawan et al. | Feb 1999 | A |
5988426 | Stern | Nov 1999 | A |
5992701 | Bougamont et al. | Nov 1999 | A |
6000580 | Nilson | Dec 1999 | A |
6053368 | Geimer | Apr 2000 | A |
6116468 | Nilson | Sep 2000 | A |
6126931 | Sawan et al. | Oct 2000 | A |
6180584 | Sawan et al. | Jan 2001 | B1 |
6354469 | Pozzi | Mar 2002 | B1 |
6708850 | Uetake et al. | Mar 2004 | B2 |
6904929 | Ruschke | Jun 2005 | B2 |
7011221 | Smith et al. | Mar 2006 | B2 |
7225949 | Kubo et al. | Jun 2007 | B2 |
7303098 | Backes | Dec 2007 | B2 |
7607548 | Dagn | Oct 2009 | B2 |
7681809 | Maget | Mar 2010 | B2 |
7799009 | Niedospial, Jr. | Sep 2010 | B2 |
8056766 | Grevin | Nov 2011 | B2 |
8376165 | Chiang | Feb 2013 | B2 |
8523020 | Abfall | Sep 2013 | B2 |
8894622 | Chibret et al. | Nov 2014 | B2 |
9669974 | Wochele | Jun 2017 | B2 |
9845181 | Abraham | Dec 2017 | B2 |
9908688 | Abfall | Mar 2018 | B2 |
20020187176 | Yao | Dec 2002 | A1 |
20040074925 | Faurie | Apr 2004 | A1 |
20040129648 | Manesis | Jul 2004 | A1 |
20040200860 | Buxmann | Oct 2004 | A1 |
20050173456 | Backes | Aug 2005 | A1 |
20060011654 | Webb | Jan 2006 | A1 |
20060180613 | Manesis | Aug 2006 | A1 |
20060242933 | Webb et al. | Nov 2006 | A1 |
20070093765 | Kawashiro et al. | Apr 2007 | A1 |
20070102455 | Stark et al. | May 2007 | A1 |
20080210717 | Dewig | Sep 2008 | A1 |
20080302828 | Pozzi | Dec 2008 | A1 |
20100108712 | Manesis | May 2010 | A1 |
20100147899 | Nardi | Jun 2010 | A1 |
20110052900 | Uno et al. | Mar 2011 | A1 |
20120080449 | Lehmkuhl | Apr 2012 | A1 |
20140158712 | Abfall | Jun 2014 | A1 |
20140197207 | Pozzi | Jul 2014 | A1 |
20140336596 | Wochele | Nov 2014 | A1 |
20150043958 | Painchaud et al. | Feb 2015 | A1 |
20150166224 | Greiner-Perth | Jun 2015 | A1 |
20150166229 | Wochele et al. | Jun 2015 | A1 |
20150166364 | Wiegele | Jun 2015 | A1 |
20150352809 | Kohlman et al. | Dec 2015 | A1 |
20150360156 | Swaminathan | Dec 2015 | A1 |
20160137390 | Wochele | May 2016 | A1 |
20160311589 | Wochele | Oct 2016 | A1 |
20160325238 | Uchiyama | Nov 2016 | A1 |
20170081093 | Fisch | Mar 2017 | A1 |
20170081094 | Fisch | Mar 2017 | A1 |
20170129662 | Decock | May 2017 | A1 |
20170362000 | Greiner-Perth | Dec 2017 | A1 |
Number | Date | Country |
---|---|---|
1326509 | Jul 2007 | CN |
101296754 | Oct 2008 | CN |
102079415 | Jun 2011 | CN |
29518284 | Feb 1996 | DE |
69324583 | Sep 1999 | DE |
10200519 | Jul 2003 | DE |
102011086755 | May 2013 | DE |
2738555 | Mar 1997 | FR |
2132989 | Jul 1984 | GB |
55-148067 | Oct 1980 | JP |
2003-290316 | Oct 2003 | JP |
2004166978 | Jun 2004 | JP |
9212065 | Jul 1992 | WO |
2004089805 | Oct 2004 | WO |
2010004735 | Jan 2010 | WO |
2013140069 | Sep 2013 | WO |
Entry |
---|
International Search Report issued in corresponding International Application No. PCT/EP2014/075754 with English translation, dated Feb. 5, 2015 (7 pages). |
Written Opinion of International Searching Authority issued in corresponding International Application No. PCT/EP2014/075754, dated Feb. 5, 2015 (5 pages). |
Office Action of Chinese Patent Office issued in corresponding China Application No. 201480067574.9 with English translation, dated Jan. 24, 2018 (12 pages). |
Chinese Search Report issued in corresponding China Application No. 201480067574.9 dated Jan. 24, 2018 (3 pages). |
Translation of Japanese Office Action issued in corresponding Japan Application No. 2016-535220 dated Apr. 17, 2018 (5 pages). |
Opposition proceedings of European Patent Office issued in corresponding European Patent No. 3082707 dated Oct. 17, 2019 (19 pages). |
Number | Date | Country | |
---|---|---|---|
20200262622 A1 | Aug 2020 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15102415 | US | |
Child | 16851516 | US |