a-9c are fragmentary cross-sectional illustrations of exemplary embodiments of expandable connections.
a and 11b are fragmentary cross-sectional illustrations of the formation of an exemplary embodiment of an expandable connection.
a, 13b and 13c are fragmentary cross-sectional illustrations of an exemplary embodiment of an expandable connection.
Referring to
The internally threaded connection 112 of the end portion 114 of the first tubular member 110 is a box connection, and the externally threaded connection 124 of the end portion 126 of the second tubular member 128 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 116 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members, 110 and 128. In this manner, during the threaded coupling of the first and second tubular members, 110 and 128, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members, 110 and 128, the tubular sleeve 116 is also radially expanded and plastically deformed. As a result, the tubular sleeve 116 may be maintained in circumferential tension and the end portions, 114 and 126, of the first and second tubular members, 110 and 128, may be maintained in circumferential compression.
Sleeve 116 increases the axial compression loading of the connection between tubular members 110 and 128 before and after expansion by the expansion device 134. Sleeve 116 may be secured to tubular members 110 and 128 by a heat shrink fit.
In several alternative embodiments, the first and second tubular members, 110 and 128, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization, hydroforming, and/or roller expansion devices and/or any one or combination of the conventional commercially available expansion products and services available from Baker Hughes, Weatherford International, and/or Enventure Global Technology L.L.C.
The use of the tubular sleeve 116 during (a) the coupling of the first tubular member 110 to the second tubular member 128, (b) the placement of the first and second tubular members in the structure 132, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 116 protects the exterior surfaces of the end portions, 114 and 126, of the first and second tubular members, 110 and 128, during handling and insertion of the tubular members within the structure 132. In this manner, damage to the exterior surfaces of the end portions, 114 and 126, of the first and second tubular members, 110 and 128, is avoided that could otherwise result in stress concentrations that could cause a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 116 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 128 to the first tubular member 110. In this manner, misalignment that could result in damage to the threaded connections, 112 and 124, of the first and second tubular members, 110 and 128, may be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 116 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 116 can be easily rotated, that would indicate that the first and second tubular members, 110 and 128, are not fully threadably coupled and in intimate contact with the internal flange 118 of the tubular sleeve. Furthermore, the tubular sleeve 116 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 110 and 128. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 114 and 126, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 110 and 128, the tubular sleeve 116 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve 116 and the exterior surfaces of the end portions, 114 and 126, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 112 and 124, of the first and second tubular members, 110 and 128, into the annulus between the first and second tubular members and the structure 132. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 110 and 128, the tubular sleeve 116 may be maintained in circumferential tension and the end portions, 114 and 126, of the first and second tubular members, 110 and 128, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve.
Referring to
The first tubular member 210 includes a recess 231. The internal flange 221 mates with and is received within the annular recess 231. Thus, the sleeve 216 is coupled to and surrounds the external surfaces of the first and second tubular members 210 and 228.
The internally threaded connection 212 of the end portion 214 of the first tubular member 210 is a box connection, and the externally threaded connection 224 of the end portion 226 of the second tubular member 228 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 216 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members 210 and 228. In this manner, during the threaded coupling of the first and second tubular members 210 and 228, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members 210 and 228, the tubular sleeve 216 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 216 may be maintained in circumferential tension and the end portions 214 and 226, of the first and second tubular members 210 and 228, may be maintained in circumferential compression.
Sleeve 216 increases the axial tension loading of the connection between tubular members 210 and 228 before and after expansion by the expansion device 234. Sleeve 216 may be secured to tubular members 210 and 228 by a heat shrink fit.
Referring to
The internally threaded connection 312 of the end portion 314 of the first tubular member 310 is a box connection, and the externally threaded connection 324 of the end portion 326 of the second tubular member 328 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 316 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members 310 and 328. In this manner, during the threaded coupling of the first and second tubular members 310 and 328, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members, 310 and 328, the tubular sleeve 316 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 316 may be maintained in circumferential tension and the end portions, 314 and 326, of the first and second tubular members, 310 and 328, may be maintained in circumferential compression.
The sleeve 316 increases the axial compression and tension loading of the connection between tubular members 310 and 328 before and after expansion by expansion device 324. Sleeve 316 may be secured to tubular members 310 and 328 by a heat shrink fit.
Referring to
The internally threaded connection 412 of the end portion 414 of the first tubular member 410 is a box connection, and the externally threaded connection 424 of the end portion 426 of the second tubular member 428 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 416 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members 410 and 428. In this manner, during the threaded coupling of the first and second tubular members 410 and 428, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members 410 and 428, the tubular sleeve 416 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 416 may be maintained in circumferential tension and the end portions 414 and 426, of the first and second tubular members, 410 and 428, may be maintained in circumferential compression.
The addition of the sacrificial material 440, provided on sleeve 416, avoids stress risers on the sleeve 416 and the tubular member 410. The tapered surfaces 442 and 444 are intended to wear or even become damaged, thus incurring such wear or damage which would otherwise be borne by sleeve 416. Sleeve 416 may be secured to tubular members 410 and 428 by a heat shrink fit.
Referring to
The first tubular member 510 includes a recess 531. The internal flange 521 mates with and is received within the annular recess 531. Thus, the sleeve 516 is coupled to and surrounds the external surfaces of the first and second tubular members 510 and 528.
The internally threaded connection 512 of the end portion 514 of the first tubular member 510 is a box connection, and the externally threaded connection 524 of the end portion 526 of the second tubular member 528 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 516 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members 510 and 528. In this manner, during the threaded coupling of the first and second tubular members 510 and 528, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members 510 and 528, the tubular sleeve 516 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 516 may be maintained in circumferential tension and the end portions 514 and 526, of the first and second tubular members 510 and 528, may be maintained in circumferential compression.
Sleeve 516 is covered by a thin walled cylinder of sacrificial material 540. Spaces 523 and 524, adjacent tapered portions 520 and 522, respectively, are also filled with an excess of the sacrificial material 540. The material may be a metal or a synthetic, and is provided to facilitate the insertion and movement of the first and second tubular members 510 and 528, through the structure 532.
The addition of the sacrificial material 540, provided on sleeve 516, avoids stress risers on the sleeve 516 and the tubular member 510. The excess of the sacrificial material 540 adjacent tapered portions 520 and 522 are intended to wear or even become damaged, thus incurring such wear or damage which would otherwise be borne by sleeve 516. Sleeve 516 may be secured to tubular members 510 and 528 by a heat shrink fit.
Referring to
The first tubular member 610 includes a recess 631. The internal flange 621 mates with and is received within the annular recess 631. Thus, the sleeve 616 is coupled to and surrounds the external surfaces of the first and second tubular members 610 and 628.
The internally threaded connection 612 of the end portion 614 of the first tubular member 610 is a box connection, and the externally threaded connection 624 of the end portion 626 of the second tubular member 628 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 616 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members 610 and 628. In this manner, during the threaded coupling of the first and second tubular members 610 and 628, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members 610 and 628, the tubular sleeve 616 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 616 may be maintained in circumferential tension and the end portions 614 and 626, of the first and second tubular members 610 and 628, may be maintained in circumferential compression.
Sleeve 616 has a variable thickness due to one or more reduced thickness portions 690 and/or increased thickness portions 692.
Varying the thickness of sleeve 616 provides the ability to control or induce stresses at selected positions along the length of sleeve 616 and the end portions 624 and 626. Sleeve 616 may be secured to tubular members 610 and 628 by a heat shrink fit.
Referring to
Referring to
The internally threaded connection 812 of the end portion 816 of the first tubular member 810 is a box connection, and the externally threaded connection 822 of the end portion 824 of the second tubular member 826 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 818 is at least approximately 0.020″ greater than the outside diameters of the first tubular member 810. In this manner, during the threaded coupling of the first and second tubular members 810 and 826, fluidic materials within the first and second tubular members may be vented from the tubular members.
The first and second tubular members 810 and 826, and the tubular sleeve 818 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.
During the radial expansion and plastic deformation of the first and second tubular members 810 and 826, the tubular sleeve 818 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 818 may be maintained in circumferential tension and the end portions 816 and 824, of the first and second tubular members 810 and 826, respectively, may be maintained in circumferential compression.
In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 810 and 826, and the tubular sleeve 818, the sealing element 830 seals the interface between the first and second tubular members. In an exemplary embodiment, during and after the radial expansion and plastic deformation of the first and second tubular members 810 and 826, and the tubular sleeve 818, a metal to metal seal is formed between at least one of: the first and second tubular members 810 and 826, the first tubular member and the tubular sleeve 818, and/or the second tubular member and the tubular sleeve. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.
Referring to
The internally threaded connections, 912a and 912b, of the end portion 916 of the first tubular member 910 are box connections, and the externally threaded connections, 918a and 918b, of the end portion 922 of the second tubular member 924 are pin connections. In an exemplary embodiment, the sealing element 926 is an elastomeric and/or metallic sealing element.
The first and second tubular members 910 and 924 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.
In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 910 and 924, the sealing element 926 seals the interface between the first and second tubular members. In an exemplary embodiment, before, during and/or after the radial expansion and plastic deformation of the first and second tubular members 910 and 924, a metal to metal seal is formed between at least one of: the first and second tubular members 910 and 924, the first tubular member and the sealing element 926, and/or the second tubular member and the sealing element. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.
In an alternative embodiment, the sealing element 926 is omitted, and during and/or after the radial expansion and plastic deformation of the first and second tubular members 910 and 924, a metal to metal seal is formed between the first and second tubular members.
Referring to
The internally threaded connections, 932a and 932b, of the end portion 936 of the first tubular member 930 are box connections, and the externally threaded connections, 938a and 938b, of the end portion 942 of the second tubular member 944 are pin connections. In an exemplary embodiment, the sealing element 946 is an elastomeric and/or metallic sealing element.
The first and second tubular members 930 and 944 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.
In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 930 and 944, the sealing element 946 seals the interface between the first and second tubular members. In an exemplary embodiment, before, during and/or after the radial expansion and plastic deformation of the first and second tubular members 930 and 944, a metal to metal seal is formed between at least one of: the first and second tubular members 930 and 944, the first tubular member and the sealing element 946, and/or the second tubular member and the sealing element. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.
In an alternative embodiment, the sealing element 946 is omitted, and during and/or after the radial expansion and plastic deformation of the first and second tubular members 930 and 944, a metal to metal seal is formed between the first and second tubular members.
Referring to
The internally threaded connections, 952a and 952b, of the end portion 958 of the first tubular member 950 are box connections, and the externally threaded connections, 960a and 960b, of the end portion 966 of the second tubular member 968 are pin connections. In an exemplary embodiment, the sealing element 970 is an elastomeric and/or metallic sealing element.
The first and second tubular members 950 and 968 may be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.
In an exemplary embodiment, before, during, and after the radial expansion and plastic deformation of the first and second tubular members 950 and 968, the sealing element 970 seals the interface between the first and second tubular members. In an exemplary embodiment, before, during and/or after the radial expansion and plastic deformation of the first and second tubular members, 950 and 968, a metal to metal seal is formed between at least one of: the first and second tubular members, the first tubular member and the sealing element 970, and/or the second tubular member and the sealing element. In an exemplary embodiment, the metal to metal seal is both fluid tight and gas tight.
In an alternative embodiment, the sealing element 970 is omitted, and during and/or after the radial expansion and plastic deformation of the first and second tubular members 950 and 968, a metal to metal seal is formed between the first and second tubular members.
Referring to
First, second, and/or third tubular sleeves, 1026, 1028, and 1030, are coupled the external surface of the first tubular member 1010 in opposing relation to the threaded connection formed by the internal and external threads, 1012a and 1018a, the interface between the non-threaded surfaces, 1014 and 1020, and the threaded connection formed by the internal and external threads, 1012b and 1018b, respectively.
The internally threaded connections, 1012a and 1012b, of the end portion 1016 of the first tubular member 1010 are box connections, and the externally threaded connections, 1018a and 1018b, of the end portion 1022 of the second tubular member 1024 are pin connections.
The first and second tubular members 1010 and 1024, and the tubular sleeves 1026, 1028, and/or 1030, may then be positioned within another structure 1032 such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device 1034 through and/or within the interiors of the first and second tubular members.
During the radial expansion and plastic deformation of the first and second tubular members 1010 and 1024, the tubular sleeves 1026, 1028 and/or 1030 are also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeves 1026, 1028, and/or 1030 are maintained in circumferential tension and the end portions 1016 and 1022, of the first and second tubular members 1010 and 1024, may be maintained in circumferential compression.
The sleeve 1026, 1028, and/or 1030 may, for example, be secured to the first tubular member 1010 by a heat shrink fit.
Referring to
The internally threaded connection 1112 of the end portion 1114 of the first tubular member 1110 is a box connection, and the externally threaded connection 1116 of the end portion 1118 of the second tubular member 1120 is a pin connection.
A tubular sleeve 1122 including internal flanges 1124 and 1126 is positioned proximate and surrounding the end portion 1114 of the first tubular member 1110. As illustrated in
The first and second tubular members 1110 and 1120, and the tubular sleeve 1122, may then be positioned within another structure such as, for example, a wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating an expansion device through and/or within the interiors of the first and second tubular members.
During the radial expansion and plastic deformation of the first and second tubular members 1110 and 1120, the tubular sleeve 1122 is also radially expanded and plastically deformed. In an exemplary embodiment, as a result, the tubular sleeve 1122 is maintained in circumferential tension and the end portions 1114 and 1118, of the first and second tubular members 1110 and 1120, may be maintained in circumferential compression.
Referring to
A first end of a tubular sleeve 1218 that includes an internal flange 1220 having a tapered portion 1222 and an annular recess 1224 for receiving the annular projection 1214 of the first tubular member 1210, and a second end that includes a tapered portion 1226, is then mounted upon and receives the end portion 1216 of the first tubular member 1210.
In an exemplary embodiment, the end portion 1216 of the first tubular member 1210 abuts one side of the internal flange 1220 of the tubular sleeve 1218 and the annular projection 1214 of the end portion of the first tubular member mates with and is received within the annular recess 1224 of the internal flange of the tubular sleeve, and the internal diameter of the internal flange 1220 of the tubular sleeve 1218 is substantially equal to or greater than the maximum internal diameter of the internally threaded connection 1212 of the end portion 1216 of the first tubular member 1210. An externally threaded connection 1226 of an end portion 1228 of a second tubular member 1230 having an annular recess 1232 is then positioned within the tubular sleeve 1218 and threadably coupled to the internally threaded connection 1212 of the end portion 1216 of the first tubular member 1210. In an exemplary embodiment, the internal flange 1232 of the tubular sleeve 1218 mates with and is received within the annular recess 1232 of the end portion 1228 of the second tubular member 1230. Thus, the tubular sleeve 1218 is coupled to and surrounds the external surfaces of the first and second tubular members, 1210 and 1228.
The internally threaded connection 1212 of the end portion 1216 of the first tubular member 1210 is a box connection, and the externally threaded connection 1226 of the end portion 1228 of the second tubular member 1230 is a pin connection. In an exemplary embodiment, the internal diameter of the tubular sleeve 1218 is at least approximately 0.020″ greater than the outside diameters of the first and second tubular members, 1210 and 1230. In this manner, during the threaded coupling of the first and second tubular members, 1210 and 1230, fluidic materials within the first and second tubular members may be vented from the tubular members.
As illustrated in
During the radial expansion and plastic deformation of the first and second tubular members, 1210 and 1230, the tubular sleeve 1218 is also radially expanded and plastically deformed. As a result, the tubular sleeve 1218 may be maintained in circumferential tension and the end portions, 1216 and 1228, of the first and second tubular members, 1210 and 1230, may be maintained in circumferential compression.
Sleeve 1216 increases the axial compression loading of the connection between tubular members 1210 and 1230 before and after expansion by the expansion device 1236. Sleeve 1216 may be secured to tubular members 1210 and 1230, for example, by a heat shrink fit.
In several alternative embodiments, the first and second tubular members, 1210 and 1230, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization, hydroforming, and/or roller expansion devices and/or any one or combination of the conventional commercially available expansion products and services available from Baker Hughes, Weatherford International, and/or Enventure Global Technology L.L.C.
The use of the tubular sleeve 1216 during (a) the coupling of the first tubular member 1210 to the second tubular member 1230, (b) the placement of the first and second tubular members in the structure 1234, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 1216 protects the exterior surfaces of the end portions, 1216 and 1228, of the first and second tubular members, 1210 and 1230, during handling and insertion of the tubular members within the structure 1234. In this manner, damage to the exterior surfaces of the end portions, 1216 and 1228, of the first and second tubular members, 1210 and 1230, is avoided that could otherwise result in stress concentrations that could cause a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 1216 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 1230 to the first tubular member 1210. In this manner, misalignment that could result in damage to the threaded connections, 1212 and 1228, of the first and second tubular members, 1210 and 1230, may be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 1216 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 1216 can be easily rotated, that would indicate that the first and second tubular members, 1210 and 1230, are not fully threadably coupled and in intimate contact with the internal flange 1220 of the tubular sleeve. Furthermore, the tubular sleeve 1216 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 1210 and 1230. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 1216 and 1228, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 1210 and 1230, the tubular sleeve 1216 may provide a fluid tight metal-to-metal seal between interior surface of the tubular sleeve 1216 and the exterior surfaces of the end portions, 1216 and 1228, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 1212 and 1226, of the first and second tubular members, 1210 and 1230, into the annulus between the first and second tubular members and the structure 1234. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 1210 and 1230, the tubular sleeve 1216 may be maintained in circumferential tension and the end portions, 1216 and 1228, of the first and second tubular members, 1210 and 1230, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve.
Referring to
A first end of a tubular sleeve 1318 that includes an internal flange 1320 and a tapered portion 1322, a second end that includes a tapered portion 1324, and an intermediate portion that includes one or more longitudinally aligned openings 1326, is then mounted upon and receives the end portion 1316 of the first tubular member 1310.
In an exemplary embodiment, the end portion 1316 of the first tubular member 1310 abuts one side of the internal flange 1320 of the tubular sleeve 1318, and the internal diameter of the internal flange 1320 of the tubular sleeve 1316 is substantially equal to or greater than the maximum internal diameter of the internally threaded connection 1312 of the end portion 1316 of the first tubular member 1310. An externally threaded connection 1328 of an end portion 1330 of a second tubular member 1332 that includes one or more internal grooves 1334 is then positioned within the tubular sleeve 1318 and threadably coupled to the internally threaded connection 1312 of the end portion 1316 of the first tubular member 1310. In an exemplary embodiment, the internal flange 1320 of the tubular sleeve 1318 mates with and is received within an annular recess 1336 defined in the end portion 1330 of the second tubular member 1332. Thus, the tubular sleeve 1318 is coupled to and surrounds the external surfaces of the first and second tubular members, 1310 and 1332.
The first and second tubular members, 1310 and 1332, and the tubular sleeve 1318 may be positioned within another structure such as, for example, a cased or uncased wellbore, and radially expanded and plastically deformed, for example, by displacing and/or rotating a conventional expansion device within and/or through the interiors of the first and second tubular members. The tapered portions, 1322 and 1324, of the tubular sleeve 1318 facilitate the insertion and movement of the first and second tubular members within and through the structure, and the movement of the expansion device through the interiors of the first and second tubular members, 1310 and 1332, may be from top to bottom or from bottom to top.
During the radial expansion and plastic deformation of the first and second tubular members, 1310 and 1332, the tubular sleeve 1318 is also radially expanded and plastically deformed. As a result, the tubular sleeve 1318 may be maintained in circumferential tension and the end portions, 1316 and 1330, of the first and second tubular members, 1310 and 1332, may be maintained in circumferential compression.
Sleeve 1316 increases the axial compression loading of the connection between tubular members 1310 and 1332 before and after expansion by the expansion device. The sleeve 1318 may be secured to tubular members 1310 and 1332, for example, by a heat shrink fit.
During the radial expansion and plastic deformation of the first and second tubular members, 1310 and 1332, the grooves 1314 and/or 1334 and/or the openings 1326 provide stress concentrations that in turn apply added stress forces to the mating threads of the threaded connections, 1312 and 1328. As a result, during and after the radial expansion and plastic deformation of the first and second tubular members, 1310 and 1332, the mating threads of the threaded connections, 1312 and 1328, are maintained in metal to metal contact thereby providing a fluid and gas tight connection. In an exemplary embodiment, the orientations of the grooves 1314 and/or 1334 and the openings 1326 are orthogonal to one another. In an exemplary embodiment, the grooves 1314 and/or 1334 are helical grooves.
In several alternative embodiments, the first and second tubular members, 1310 and 1332, are radially expanded and plastically deformed using other conventional methods for radially expanding and plastically deforming tubular members such as, for example, internal pressurization, hydroforming, and/or roller expansion devices and/or any one or combination of the conventional commercially available expansion products and services available from Baker Hughes, Weatherford International, and/or Enventure Global Technology L.L.C.
The use of the tubular sleeve 1318 during (a) the coupling of the first tubular member 1310 to the second tubular member 1332, (b) the placement of the first and second tubular members in the structure, and (c) the radial expansion and plastic deformation of the first and second tubular members provides a number of significant benefits. For example, the tubular sleeve 1318 protects the exterior surfaces of the end portions, 1316 and 1330, of the first and second tubular members, 1310 and 1332, during handling and insertion of the tubular members within the structure. In this manner, damage to the exterior surfaces of the end portions, 1316 and 1330, of the first and second tubular members, 1310 and 1332, is avoided that could otherwise result in stress concentrations that could cause a catastrophic failure during subsequent radial expansion operations. Furthermore, the tubular sleeve 1318 provides an alignment guide that facilitates the insertion and threaded coupling of the second tubular member 1332 to the first tubular member 1310. In this manner, misalignment that could result in damage to the threaded connections, 1312 and 1328, of the first and second tubular members, 1310 and 1332, may be avoided. In addition, during the relative rotation of the second tubular member with respect to the first tubular member, required during the threaded coupling of the first and second tubular members, the tubular sleeve 1316 provides an indication of to what degree the first and second tubular members are threadably coupled. For example, if the tubular sleeve 1318 can be easily rotated, that would indicate that the first and second tubular members, 1310 and 1332, are not fully threadably coupled and in intimate contact with the internal flange 1320 of the tubular sleeve. Furthermore, the tubular sleeve 1318 may prevent crack propagation during the radial expansion and plastic deformation of the first and second tubular members, 1310 and 1332. In this manner, failure modes such as, for example, longitudinal cracks in the end portions, 1316 and 1330, of the first and second tubular members may be limited in severity or eliminated all together. In addition, after completing the radial expansion and plastic deformation of the first and second tubular members, 1310 and 1332, the tubular sleeve 1318 may provide a fluid and gas tight metal-to-metal seal between interior surface of the tubular sleeve 1318 and the exterior surfaces of the end portions, 1316 and 1330, of the first and second tubular members. In this manner, fluidic materials are prevented from passing through the threaded connections, 1312 and 1330, of the first and second tubular members, 1310 and 1332, into the annulus between the first and second tubular members and the structure. Furthermore, because, following the radial expansion and plastic deformation of the first and second tubular members, 1310 and 1332, the tubular sleeve 1318 may be maintained in circumferential tension and the end portions, 1316 and 1330, of the first and second tubular members, 1310 and 1332, may be maintained in circumferential compression, axial loads and/or torque loads may be transmitted through the tubular sleeve.
In several exemplary embodiments, the first and second tubular members are radially expanded and plastically deformed using the expansion device in a conventional manner and/or using one or more of the methods and apparatus disclosed in one or more of the following: The present application is related to the following: (1) U.S. patent application Ser. No. 09/454,139, attorney docket No. 25791.03.02, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, attorney docket No. 25791.7.02, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, attorney docket No. 25791.8.02, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, attorney docket No. 25791.9.02, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, attorney docket No. 25791.11.02, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, attorney docket No. 25791.12.02, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, attorney docket No. 25791.16.02, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, attorney docket No. 25791.17.02, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, attorney docket No.25791.23.02, filed on Apr. 26, 2000, (10) PCT patent application Ser. No. PCT/US00/18635, attorney docket No. 25791.25.02, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, attorney docket No. 25791.27, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, attorney docket No. 25791.29, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, attorney docket No. 25791.34, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, attorney docket No. 25791.36, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, attorney docket No. 25791.37, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, attorney docket No. 25791.38, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, attorney docket No. 25791.39, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, attorney docket No. 25791.45, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, attorney docket No. 25791.46, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, attorney docket No. 25791.47, filed on Sep. 18, 2000, (21) U.S. provisional patent application Ser. No. 60/237,334, attorney docket No. 25791.48, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, attorney docket No. 25791.50, filed on Feb. 20, 2001, (23) U.S. provisional patent application Ser. No. 60, 262,434, attorney docket No. 25791.51, filed on Jan. 17, 2001, (24) U.S, provisional patent application Ser. No. 60/259,486, attorney docket No. 25791.52, filed on Jan. 3, 2001, (25) U.S. provisional patent application Ser. No. 60/303,740, attorney docket No. 25791.61, filed on Jul. 6, 2001, (26) U.S. provisional patent application Ser. No. 60/313,453, attorney docket No. 25791.59, filed on Aug. 20, 2001, (27) U.S. provisional patent application Ser. No. 60/317,985, attorney docket No. 25791.67, filed on Sep. 6, 2001, (28) U.S. provisional patent application Ser. No. 60/3318,386, attorney docket No. 25791.67.02, filed on Sep. 10, 2001, (29) U.S. utility patent application Ser. No. 09/969,922, attorney docket No. 25791.69, filed on Oct. 3, 2001, (30) U.S. utility patent application Ser. No. 10/016,467, attorney docket No. 25791.70, filed on Dec. 10, 2001, (31) U.S. provisional patent application Ser. No. 60, 343,674, attorney docket No. 25791.68, filed on Dec. 2001; and (32) U.S. provisional patent application Ser. No. 60/346,309, attorney docket No. 25791.92, filed on Jan. 7, 2002, (33) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.378, filed on Aug. 16, 2005, (34) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.379, filed on Aug. 16, 2005, (35) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.380, filed on Aug. 16, 2005, (36) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.185.05, filed on Aug. 16, 2005, (37) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.382, filed on Aug. 16, 2005, (38) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.383, filed on Aug. 16, 2005, the disclosures of which are incorporated herein by reference.
In several exemplary embodiments, the teachings of the present disclosure are combined with one or more of the teachings disclosed in FR 2 841 626, filed on Jun. 28, 2002, and published on Jan. 2, 2004, the disclosure of which is incorporated herein by reference.
A radially expandable multiple tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; a sleeve overlapping and coupling the first and second tubular members at the joint; the sleeve having opposite tapered ends and a flange engaged in a recess formed in an adjacent tubular member; and one of the tapered ends being a surface formed on the flange. In an exemplary embodiment, the recess includes a tapered wall in mating engagement with the tapered end formed on the flange. In an exemplary embodiment, the sleeve includes a flange at each tapered end and each tapered end is formed on a respective flange. In an exemplary embodiment, each tubular member includes a recess. In an exemplary embodiment, each flange is engaged in a respective one of the recesses. In an exemplary embodiment, each recess includes a tapered wall in mating engagement with the tapered end formed on a respective one of the flanges.
A method of joining radially expandable multiple tubular members has also been described that includes providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve having opposite tapered ends and a flange, one of the tapered ends being a surface formed on the flange; and mounting the sleeve for overlapping and coupling the first and second tubular members at the joint, wherein the flange is engaged in a recess formed in an adjacent one of the tubular members. In an exemplary embodiment, the method further includes providing a tapered wall in the recess for mating engagement with the tapered end formed on the flange. In an exemplary embodiment, the method further includes providing a flange at each tapered end wherein each tapered end is formed on a respective flange. In an exemplary embodiment, the method further includes providing a recess in each tubular member. In an exemplary embodiment, the method further includes engaging each flange in a respective one of the recesses. In an exemplary embodiment, the method further includes providing a tapered wall in each recess for mating engagement with the tapered end formed on a respective one of the flanges.
A radially expandable multiple tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; and a sleeve overlapping and coupling the first and second tubular members at the joint; wherein at least a portion of the sleeve is comprised of a frangible material.
A radially expandable multiple tubular member apparatus has been described that includes a first tubular member; a second tubular member engaged with the first tubular member forming a joint; and a sleeve overlapping and coupling the first and second tubular members at the joint; wherein the wall thickness of the sleeve is variable.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve comprising a frangible material; and mounting the sleeve for overlapping and coupling the first and second tubular members at the joint.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member; engaging a second tubular member with the first tubular member to form a joint; providing a sleeve comprising a variable wall thickness; and mounting the sleeve for overlapping and coupling the first and second tubular members at the joint.
An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for increasing the axial compression loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for increasing the axial tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for increasing the axial compression and tension loading capacity of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for avoiding stress risers in the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member; a second tubular member coupled to the first tubular member; and means for inducing stresses at selected portions of the coupling between the first and second tubular members before and after a radial expansion and plastic deformation of the first and second tubular members.
In several exemplary embodiments of the apparatus described above, the sleeve is circumferentially tensioned; and wherein the first and second tubular members are circumferentially compressed.
In several exemplary embodiments of the method described above, the method further includes maintaining the sleeve in circumferential tension; and maintaining the first and second tubular members in circumferential compression before, during, and/or after the radial expansion and plastic deformation of the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, a first threaded connection for coupling a portion of the first and second tubular members, a second threaded connection spaced apart from the first threaded connection for coupling another portion of the first and second tubular members, a tubular sleeve coupled to and receiving end portions of the first and second tubular members, and a sealing element positioned between the first and second spaced apart threaded connections for sealing an interface between the first and second tubular member, wherein the sealing element is positioned within an annulus defined between the first and second tubular members. In an exemplary embodiment, the annulus is at least partially defined by an irregular surface. In an exemplary embodiment, the annulus is at least partially defined by a toothed surface. In an exemplary embodiment, the sealing element comprises an elastomeric material. In an exemplary embodiment, the sealing element comprises a metallic material. In an exemplary embodiment, the sealing element comprises an elastomeric and a metallic material.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, providing a sleeve, mounting the sleeve for overlapping and coupling the first and second tubular members, threadably coupling the first and second tubular members at a first location, threadably coupling the first and second tubular members at a second location spaced apart from the first location, and sealing an interface between the first and second tubular members between the first and second locations using a compressible sealing element. In an exemplary embodiment, the sealing element includes an irregular surface. In an exemplary embodiment, the sealing element includes a toothed surface. In an exemplary embodiment, the sealing element comprises an elastomeric material. In an exemplary embodiment, the sealing element comprises a metallic material. In an exemplary embodiment, the sealing element comprises an elastomeric and a metallic material.
An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, a first threaded connection for coupling a portion of the first and second tubular members, a second threaded connection spaced apart from the first threaded connection for coupling another portion of the first and second tubular members, and a plurality of spaced apart tubular sleeves coupled to and receiving end portions of the first and second tubular members. In an exemplary embodiment, at least one of the tubular sleeves is positioned in opposing relation to the first threaded connection; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded connection. In an exemplary embodiment, at least one of the tubular sleeves is not positioned in opposing relation to the first and second threaded connections.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, threadably coupling the first and second tubular members at a first location, threadably coupling the first and second tubular members at a second location spaced apart from the first location, providing a plurality of sleeves, and mounting the sleeves at spaced apart locations for overlapping and coupling the first and second tubular members. In an exemplary embodiment, at least one of the tubular sleeves is positioned in opposing relation to the first threaded coupling; and wherein at least one of the tubular sleeves is positioned in opposing relation to the second threaded coupling. In an exemplary embodiment, at least one of the tubular sleeves is not positioned in opposing relation to the first and second threaded couplings.
An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, and a plurality of spaced apart tubular sleeves coupled to and receiving end portions of the first and second tubular members.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, providing a plurality of sleeves, coupling the first and second tubular members, and mounting the sleeves at spaced apart locations for overlapping and coupling the first and second tubular members.
An expandable tubular assembly has been described that includes a first tubular member, a second tubular member coupled to the first tubular member, a threaded connection for coupling a portion of the first and second tubular members, and a tubular sleeves coupled to and receiving end portions of the first and second tubular members, wherein at least a portion of the threaded connection is upset. In an exemplary embodiment, at least a portion of tubular sleeve penetrates the first tubular member.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, providing a second tubular member, threadably coupling the first and second tubular members, and upsetting the threaded coupling. In an exemplary embodiment, the first tubular member further comprises an annular extension extending therefrom, and the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member. In an exemplary embodiment, the first tubular member further comprises an annular extension extending therefrom; and the flange of the sleeve defines an annular recess for receiving and mating with the annular extension of the first tubular member.
A radially expandable multiple tubular member apparatus has been described that includes a first tubular member, a second tubular member engaged with the first tubular member forming a joint, a sleeve overlapping and coupling the first and second tubular members at the joint, and one or more stress concentrators for concentrating stresses in the joint. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; and one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and one or more of the stress concentrators comprises one or more openings defined in the sleeve. In an exemplary embodiment, one or more of the stress concentrators comprises one or more external grooves defined in the first tubular member; wherein one or more of the stress concentrators comprises one or more internal grooves defined in the second tubular member; and wherein one or more of the stress concentrators comprises one or more openings defined in the sleeve.
A method of joining radially expandable multiple tubular members has been described that includes providing a first tubular member, engaging a second tubular member with the first tubular member to form a joint, providing a sleeve having opposite tapered ends and a flange, one of the tapered ends being a surface formed on the flange, and concentrating stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the second tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member and the second tubular member to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member and the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the second tubular member and the sleeve to concentrate stresses within the joint. In an exemplary embodiment, concentrating stresses within the joint comprises using the first tubular member, the second tubular member, and the sleeve to concentrate stresses within the joint.
A system for radially expanding and plastically deforming a first tubular member coupled to a second tubular member by a mechanical connection has been described that includes means for radially expanding the first and second tubular members, and means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members.
A system for radially expanding and plastically deforming a first tubular member coupled to a second tubular member by a mechanical connection has been described that includes means for radially expanding the first and second tubular members; and means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second tubular members.
A system for radially expanding and plastically deforming a first tubular member coupled to a second tubular member by a mechanical connection has been described that includes means for radially expanding the first and second tubular members; means for maintaining portions of the first and second tubular member in circumferential compression following the radial expansion and plastic deformation of the first and second tubular members; and means for concentrating stresses within the mechanical connection during the radial expansion and plastic deformation of the first and second tubular members.
It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the teachings of the present illustrative embodiments may be used to provide a wellbore casing, a pipeline, or a structural support. Furthermore, the elements and teachings of the various illustrative embodiments may be combined in whole or in part in some or all of the illustrative embodiments.
Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.
The present application is the National Stage patent application for PCT patent application Ser. No. PCT/US2004/004740, attorney docket No. 25791.185.02, filed on Feb. 17, 2004, which claimed the benefit of the filing dates of (1) U.S. provisional patent application Ser. No. 60/448,526, attorney docket No. 25791.185, filed on Feb. 18, 2003, the disclosures of which are incorporated herein by reference. The present application is a continuation in part of U.S. utility patent application Ser. No. 10/528222, attorney docket No. 25791.129.03, filed on Mar. 20, 2005, which was the National Stage patent application for PCT patent application Ser. No. PCT/US03/25716, filed on Aug. 18, 2003, attorney docket No. 25791.129.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/528223, attorney docket No. 25791.127.03, filed on Mar. 18, 2005, which was the National Stage patent application for PCT patent application Ser. No. PCT/US03/25707, filed on Aug. 18, 2003, attorney docket No. 25791.127.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/525402, attorney docket No. 25791.120.05, filed on Feb. 23, 2005, which was the National Stage patent application for PCT patent application Ser. No. PCT/US03/25676, filed on Aug.18, 2003, attorney docket No. 25791.120.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/525332, attorney docket No. 25791.119.03, filed on Feb. 23, 2005, which was the National Stage patent application for PCT patent application Ser. No. PCT/US03/25677, filed on Aug. 18, 2003, attorney docket No. 25791.119.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/522039, attorney docket No. 25791.106.05, filed on Jan. 19, 2005, which was the National Stage patent application for PCT patent application Ser. No. PCT/US03/19993, filed on Jun. 24, 2003, attorney docket No. 25791.106.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/511410, attorney docket No. 25791.101.05, filed on Oct. 14, 2004, which was the National Stage patent application for PCT patent application Ser. No. PCT/US03/10144, filed on Mar. 31, 2003, attorney docket No. 25791.101.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/510966, attorney docket No. 25791.93.05, filed on 10/12/2004, which was the National Stage patent application for PCT patent application Ser. No. PCT/US03/06544, filed on Mar. 4, 2003, attorney docket No. 25791.93.02, which was a continuation in part of U.S. utility patent application Ser. No. 10/500745, attorney docket No. 25791.92.05, filed on Jul. 6, 2004, which was the National Stage patent application for PCT patent application PCT/US02/39418, filed on Dec. 10, 2002, attorney docket No. 25791.92.02, the disclosures of which are incorporated herein by reference. The present application is a continuation in part of PCT patent application Ser. No. PCT/US03/25716, filed on Aug. 18, 2003, attorney docket No. 25791.129.02, which was a continuation in part of PCT patent application Ser. No. PCT/US03/25707, filed on Aug. 18, 2003, attorney docket No. 25791.127.02, which was a continuation in part of PCT patent application Ser. No. PCT/US03/25676, filed on Aug. 18, 2003, attorney docket No. 25791.120.02, which was a continuation in part of PCT patent application Ser. No. PCT/US03/25677, filed on Aug. 18, 2003, attorney docket No. 25791.119.02, which was a continuation in part of PCT patent application Ser. No. PCT/US03/19993, filed on Jun. 24, 2003, attorney docket No. 25791.106.02, which was a continuation in part of PCT patent application Ser. No. PCT/US03/10144, filed on Mar. 31, 2003, attorney docket No. 25791.101.02, which was a continuation in part of PCT patent application Ser. No. PCT/US03/06544, filed on Mar. 4, 2003, attorney docket No. 25791.93.02, which was a continuation in part of PCT patent application PCT/US02/39418, filed on Dec. 10, 2002, attorney docket No. 25791.92.02, the disclosures of which are incorporated herein by reference. The present application is related to the following: (1) U.S. patent application Ser. No. 09/454,139, attorney docket No. 25791.03.02, filed on Dec. 3, 1999, (2) U.S. patent application Ser. No. 09/510,913, attorney docket No. 25791.7.02, filed on Feb. 23, 2000, (3) U.S. patent application Ser. No. 09/502,350, attorney docket No. 25791.8.02, filed on Feb. 10, 2000, (4) U.S. patent application Ser. No. 09/440,338, attorney docket No. 25791.9.02, filed on Nov. 15, 1999, (5) U.S. patent application Ser. No. 09/523,460, attorney docket No. 25791.11.02, filed on Mar. 10, 2000, (6) U.S. patent application Ser. No. 09/512,895, attorney docket No. 25791.12.02, filed on Feb. 24, 2000, (7) U.S. patent application Ser. No. 09/511,941, attorney docket No. 25791.16.02, filed on Feb. 24, 2000, (8) U.S. patent application Ser. No. 09/588,946, attorney docket No. 25791.17.02, filed on Jun. 7, 2000, (9) U.S. patent application Ser. No. 09/559,122, attorney docket No. 25791.23.02, filed on Apr. 26, 2000, (10) PCT patent application Ser. No. PCT/US00/18635, attorney docket No. 25791.25.02, filed on Jul. 9, 2000, (11) U.S. provisional patent application Ser. No. 60/162,671, attorney docket No. 25791.27, filed on Nov. 1, 1999, (12) U.S. provisional patent application Ser. No. 60/154,047, attorney docket No. 25791.29, filed on Sep. 16, 1999, (13) U.S. provisional patent application Ser. No. 60/159,082, attorney docket No. 25791.34, filed on Oct. 12, 1999, (14) U.S. provisional patent application Ser. No. 60/159,039, attorney docket No. 25791.36, filed on Oct. 12, 1999, (15) U.S. provisional patent application Ser. No. 60/159,033, attorney docket No. 25791.37, filed on Oct. 12, 1999, (16) U.S. provisional patent application Ser. No. 60/212,359, attorney docket No. 25791.38, filed on Jun. 19, 2000, (17) U.S. provisional patent application Ser. No. 60/165,228, attorney docket No.25791.39, filed on Nov. 12, 1999, (18) U.S. provisional patent application Ser. No. 60/221,443, attorney docket No. 25791.45, filed on Jul. 28, 2000, (19) U.S. provisional patent application Ser. No. 60/221,645, attorney docket No. 25791.46, filed on Jul. 28, 2000, (20) U.S. provisional patent application Ser. No. 60/233,638, attorney docket No. 25791.47, filed on Sep. 18, 2000, (21) U.S. provisional patent application Ser. No. 60/237,334, attorney docket No. 25791.48, filed on Oct. 2, 2000, (22) U.S. provisional patent application Ser. No. 60/270,007, attorney docket No. 25791.50, filed on Feb. 20, 2001, (23) U.S. provisional patent application Ser. No. 60/262,434, attorney docket No. 25791.51, filed on Jan. 17, 2001, (24) U.S, provisional patent application Ser. No. 60/259,486, attorney docket No. 25791.52, filed on Jan. 3, 2001, (25) U.S. provisional patent application Ser. No. 60/303,740, attorney docket No. 25791.61, filed on Jul. 6, 2001, (26) U.S. provisional patent application Ser. No. 60/313,453, attorney docket No. 25791.59, filed on Aug. 20, 2001, (27) U.S. provisional patent application Ser. No. 60/317,985, attorney docket No. 25791.67, filed on Sep. 6, 2001, (28) U.S. provisional patent application Ser. No. 60/3318,386, attorney docket No. 25791.67.02, filed on Sep. 10, 2001, (29) U.S. utility patent application Ser. No. 09/969,922, attorney docket No. 25791.69, filed on Oct. 3, 2001, (30) U.S. utility patent application Ser. No. 10/016,467, attorney docket No. 25791.70, filed on Dec. 10, 2001, (31) U.S. provisional patent application Ser. No. 60/343,674, attorney docket No. 25791.68, filed on Dec. 27, 2001; and (32) U.S. provisional patent application Ser. No. 60/346,309, attorney docket No. 25791.92, filed on Jan. 7, 2002, (33) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.378, filed on Aug. 16, 2005, (34) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.379, filed on Aug. 16, 2005, (35) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.380, filed on Aug. 16, 2005, (36) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.185.05, filed on Aug. 16, 2005, (37) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.382, filed on Aug. 16, 2005, (38) U.S. utility patent application Ser. No. ______ , attorney docket No. 25791.383, filed on Aug. 16, 2005, the disclosures of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
60448526 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/US04/04740 | Feb 2004 | US |
Child | 10546079 | US |