1. Field of the Invention
The present invention relates generally to a system and apparatus for protecting equipment associated with oil and gas producing wells and, more specifically, for protecting exposed well head equipment such as Christmas trees, valves and accessory equipment located at the well surface.
2. Description of the Prior Art
The nature of the ordinary well head is such that it embodies sufficient control means that the well can be adjusted to safely produce at a desired rate. Depending on the type of formation being produced and other factors, the well head itself can assume different proportions and embody varying forms of equipment adapted to the particular conditions at hand. It is customary in the oil and gas industry to refer to the upper most portion of the well head as it leaves the surface of the ground as the “Christmas tree.” The Christmas tree is generally an assembly of valves, tees, crosses, and other fittings at the well head used to control oil or gas production and to give access to the well tubing. Other fittings such as choke jackets, pressure gauges, and the like, can become part of what is known in the art as the “Christmas tree.” Many times, a master valve is provided on the Christmas tree which controls the flow of gas or oil directly from the well itself. This valve can be closed, preventing any flow from the well to the Christmas tree itself.
Other valuable devices, such as additional expensive valves, may also be present at the well head. Many times, a very expensive control valve may be mounted on a pipeline itself. These valves and controllers are quite expensive, and their damage likewise brings a loss of production or supply of oil or gas flowing with the pipeline. While this assembly of valves, tees and other fittings which is affixed to the gas well or oil well at the well head is fairly sturdy in construction, it is possible for it to become damaged in a number of different situations.
One way in which damage can occur is due to the nature of the proximity of plural wells being completed within feet of each other. Often, where a highly productive oil or gas reserve field is discovered, a number of wells will be drilled into the area, each being furnished with a well head which protrudes just above the ground. Often in a highly productive area, these well heads are closely spaced. This situation creates particular concern where a new well is being completed in close proximity to an already completed well head or well heads. It is always possible that equipment can be dropped on the existing well head/heads, for example, by a crane being used to move a new Christmas tree into position at the site. The undesirable consequence of such damage could be an uncontrolled flow of the crude oil or gas. There have been instances, for example, where well heads have been damaged to the point of requiring replacement of one or more of the component parts.
Various schemes have been proposed for protecting both surface well head equipment and also sub-sea well head equipment. However, the prior art proposals have generally been lacking in one or more respects. For example, certain of the prior art constructions were permanent in nature and were not easily removed or transported from one well site to another.
A further feature of a suitable well head protective enclosure for the present purposes is that it must accommodate workover tools and instruments which are periodically inserted into the well for various reasons. It is also obviously necessary for worker personnel to be able to access the well head components to perform these and other customary operations. The protective enclosure must not impede these necessary operations.
It has therefore become a desirable to provide some form of protective enclosure for a well head of the type under consideration, especially where several well heads are located in close proximity. Preferably, the protective structure would be designed to deflect or deter damaging contact between a well head and heavy moving objects or lines. A primary function of the protective enclosure would be to permit the well head to operate in a safe manner and yet be readily accessible for workover purposes and/or for inspection, routine maintenance, or other such purposes. The enclosure would also preferably be assembled from a number of component parts which could be disassembled and transported to another location, when desired, with a minimum of effort being required for the disassembly.
Thus, despite the advances which have been made in well head construction, there continues to exist a need for an improved well head enclosure which would meet the previously expressed needs.
In order to address the foregoing needs, there is presently provided a well head protector which is sufficiently sturdy to perform its designed function, and yet can be readily transported to and installed at a remote well head location. The protector is thus initially fabricated into discrete sub-assemblies which can be easily transported to a desired well location, as by truck. After use, the protective enclosure can be broken down into its respective component parts and transported to another location and reassembled.
The preferred protective enclosure is comprised of an open framework of structural members which define a quasi-enclosed area adapted to surround and protect the well head. The open framework of structural members is made up of a plurality of individual steel panels, each of the steel panels being constructed of lengths of square steel tubing, the panels being assembled to form a series of upstanding walls which are covered by a series of roof panels and which together define the quasi-enclosed area surrounding the well head. The series of roof panels are, in turn, covered with a steel grating which forms a covered roof for the protective enclosure. The lengths of square steel tubing which make up the steel panels are spaced a selected distance apart which allows access to the quasi-enclosed area by a worker needing to access the well head.
In some instances, the individual steel panels which make up the protective enclosure are joined together using a plurality of lever latch and keeper assemblies. Each of the lever latches is rotatably mounted on one of the lengths of square steel tubing making up one of the steel panels, the associated keeper assembly including a lock element. The lever latch and keeper assemblies are movable between a locked position which temporarily locks the steel panels together and an unlocked position which allows the protective enclosure to be disassembled for transportation to a different location.
In one form of the invention, the series of roof panels are connected to the steel grating which forms the covered roof for the protective enclosure by a plurality of removable U-bolts. The steel grating can conveniently be provided with a series of upstanding ring members which allow the steel grating to be lifted into position on the roof panels or to be removed, if necessary, to provide additional access for maintenance or other operations.
In one version of the invention, at least selected ones of the lengths of square steel tubing making up the upstanding walls of the enclosure are provided with a telescoping leg which can be moved between a retracted position inside the respective length of steel tubing, and an extended position which provides an exposed length of tubing which can be cemented into the ground at the well location. The telescoping leg includes at least one locking hole for receiving a locking member. In the most preferred form, there are at least two locking holes provided in each telescoping leg, the holes being spaced to allow the telescoping leg to be locked in either the extended or retracted position. The telescoping leg and associated length of steel tubing can also be provided with aligned holes which receive a locking pin when the telescoping leg is in the extended position to further secure the telescoping leg.
The lever latch assemblies, telescoping legs and removable roof grating allow the entire enclosure to be disassembled by retracting the telescoping legs and unlocking the lever latch and keeper assemblies, whereby the enclosure can be easily disassembled and moved to another well location.
In another version of the invention, at least selected ones of the lengths of square tubing making up the panel upright legs of the enclosure are provided with a special cemented retaining arrangement with U-bolts being used to join individual upright legs of the panels, rather than using the telescoping legs.
In a final version of the invention, the U-bolts used to join the individual upright legs of the panels are replaced with specially designed hinged brackets which provide added ease of installation as well as additional structural integrity to the assembly.
Additional objects, features and advantages will be apparent in the written description which follows.
The preferred version of the invention presented in the following written description and the various features and advantageous details thereof are explained more fully with reference to the non-limiting examples included in the accompanying drawings and as detailed in the description which follows. Descriptions of well-known components and processes and manufacturing techniques are omitted so as to not unnecessarily obscure the principle features of the invention as described herein. The examples used in the description which follows are intended merely to facilitate an understanding of ways in which the invention may be practiced and to further enable those skilled in the art to practice the invention. Accordingly, the examples should not be construed as limiting the scope of the claimed invention.
As will be appreciated from
The panels 17, 19 are assembled to form a series of upstanding walls which are covered by a series of roof panels (such as the panel 21 in
As best seen in
As shown in
While the protective enclosure 11 could be assembled using the lever latch and keeper assemblies and merely set up on the well site, it is often desirable to further secure the enclosure to the ground. This can be accomplished, as shown in
Preferably, the telescoping leg 51 includes at least one locking hole 53 for receiving a locking member, such as members 55, 57. The locking members 55, 57, illustrated in
As best seen in
The hinged brackets are easier to assembly than the U-bolts shown in
An invention has been provided with several advantages. The protective enclosure of the invention is relatively simple in design and economical to manufacture. It can be manufactured from readily available materials of the type commonly found around oil field operations. The enclosure is extremely sturdy and can withstand impacts of various kinds to protect the enclosed well head equipment. The open nature of the assembly continues to allow workers to access the well head equipment for routine tasks or repairs. Because the enclosure is made up of a series of interlocked panels, it can be easily disassembled and moved to another well site with a minimum of effort.
While the invention has been shown in several of its forms, it is not thus limited and is susceptible to various changes and modifications without departing from the spirit thereof.
The present application is a continuation-in-part of earlier filed Ser. No. 13/893,775, filed May 14, 2013, which, in turn, was a continuation-in-part of earlier filed Ser. No. 13/214,380, filed Aug. 22, 2011, entitled “Protective Enclosure For A Wellhead”, by the same inventor, now abandoned.
Number | Name | Date | Kind |
---|---|---|---|
3871137 | Grammatico | Mar 1975 | A |
20070107339 | Matsumoto | May 2007 | A1 |
20100088974 | Scott, IV | Apr 2010 | A1 |
Number | Date | Country |
---|---|---|
2092636 | Aug 1982 | GB |
Number | Date | Country | |
---|---|---|---|
20150082713 A1 | Mar 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13893775 | May 2013 | US |
Child | 14557129 | US | |
Parent | 13214380 | Aug 2011 | US |
Child | 13893775 | US |