The present invention relates to personal protective equipment, and, more particularly, to a protective head support assembly to prevent neck injury in contact sports.
Neck injury from sudden acceleration or deceleration force is extremely common. The term “whiplash” was initially coined in 1928 and describes damage to both bone and soft tissue in the neck when the head and body are accelerated, each from the other, causing severe hyperflexion, hyperextension, or lateral bending of the cervical spine. While whiplash injury is most commonly seen in motor vehicle accidents, contact sports are also a frequent cause of such injuries. Many contact sports require the use of protective headgear, which has been implicated as a cause of increased neck injury because of the increase in mass or weight of the head when protective headgear is worn. While rarely lethal, whiplash injuries result in substantial morbidity and economic loss.
While much has been done to design protective headgear in professional sport, little has been done to prevent concomitant neck injury which occurs with similar frequency. Indeed, because of the increased weight of protective head gear, many have speculated that the wearing of a helmet may actually increase the risk of neck injury in both athletic and motor sports. Clearly, there is a need to protect not only the head but also the neck in any contact sport or other sporting endeavors where helmet wearing is a must.
According to aspects illustrated herein, there is provided a protective head support assembly, comprising a helmet comprising one or more sensors, a vest, at least one stabilizer tube filled with a fluid, including a first end connected to the helmet, and a second end connected to the vest, and a transducer arranged to receive a signal from the one or more sensors and introduce a magnetic field to the fluid.
According to aspects illustrated herein, there is provided a protective head support assembly, comprising a helmet including one or more sensors, a vest, at least one stabilizer tube filled with a fluid, including a first end connected to the helmet, and a second end connected to the vest, an impact element arranged proximate the at least one stabilizer tube, the impact element operatively arranged to provide a concussive force to the at least one stabilizer tube, and a transducer arranged to receive a signal from the at least one sensor and transmit a signal to the impact element.
These and other objects, features, and advantages of the present disclosure will become readily apparent upon a review of the following detailed description of the disclosure, in view of the drawings and appended claims.
Various embodiments are disclosed, by way of example only, with reference to the accompanying schematic drawings in which corresponding reference symbols indicate corresponding parts, in which:
At the outset, it should be appreciated that like drawing numbers on different drawing views identify identical, or functionally similar, structural elements. It is to be understood that the claims are not limited to the disclosed aspects.
Furthermore, it is understood that this disclosure is not limited to the particular methodology, materials, and modifications described and as such may, of course, vary. It is also understood that the terminology used herein is for the purpose of describing particular aspects only, and is not intended to limit the scope of the claims.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood to one of ordinary skill in the art to which this disclosure pertains. It should be understood that any methods, devices, or materials similar or equivalent to those described herein can be used in the practice or testing of the example embodiments. The assembly of the present disclosure could be driven by hydraulics, electronics, and/or pneumatics.
It should be appreciated that the term “substantially” is synonymous with terms such as “nearly,” “very nearly,” “about,” “approximately,” “around,” “bordering on,” “close to,” “essentially,” “in the neighborhood of,” “in the vicinity of,” etc., and such terms may be used interchangeably as appearing in the specification and claims. It should be appreciated that the term “proximate” is synonymous with terms such as “nearby,” “close,” “adjacent,” “neighboring,” “immediate,” “adjoining,” etc., and such terms may be used interchangeably as appearing in the specification and claims. The term “approximately” is intended to mean values within ten percent of the specified value.
Referring now to the figures,
Helmet 20 is a hard or padded protective hat, various types of which are worn by soldiers, police officers, firefighters, motorcyclists, athletes, and others. Helmet 20 is fitted over a user's head 12. Helmet 20 comprises one or more sensors 22A-D. Sensors 22A-D are any sensors capable of detecting an incoming impact and transmitting a signal to transducer 50, as will be discussed in greater detail below. Sensors 22A-D may be, for example, active Light Detection and Ranging (LIDAR) sensors, Radio Detection and Ranging (RADAR) distance sensors, motion detectors, proximity sensors, passive infrared sensors, alarm sensors, or any other suitable optical, light, imaging, photon, proximity, or presence sensor. In the embodiment shown, helmet 20 comprises four sensors 22A-D. However, it should be appreciated that any number of sensors suitable for detecting incoming impact from any position. In an example embodiments, sensors 22A-D are located on vest 30. It should be appreciated that sensors 22A-D can be located at any location of a user's body suitable for detecting incoming contact.
Vest (or shoulder pads) 30 is a piece of protective equipment used in many contact sports such as American football, Canadian football, lacrosse, and hockey. With respect to the present disclosure, vest 30 is any garment that is securely worn on the upper torso of a user. It should be appreciated that vest 30 does not actually need to be a vest, but rather may be a shirt and comprise sleeves. It should also be appreciated that vest 30 does not need to be a protective piece of equipment.
Stabilizer 40 comprises wall 42, base 44, base 46, fluid 48, and transducer 50. Stabilizer 40 is generally an elliptical tube having wall 42 filled with fluid 48 that extends between helmet 20 and vest 30 along neck 14 of a user. It should be appreciated that stabilizer 40 can be any shape suitable to stiffen and promote alignment of head 12 and neck 14. For example, stabilizer 40 may be a frusto-conical tube, a rectangular tube, a square tube, a circular tube, or a triangular tube. Because of its positioning, stabilizer 40 does not interfere with the user's vision. Stabilizer 40 is sealed at a top end by base 44 and at a bottom end by base 46. Stabilizer 40 is secured to helmet 20 at base 44 and vest 30 at base 46. Wall 42 is made of a material that can be suitably stiffened, such as a substantially non-elastic rubber. In the embodiment shown, protective head support assembly 10 comprises one stabilizer tube. In an example embodiment, protective head support assembly 10 comprises two stabilizer tubes. In an example embodiment, protective head support assembly 10 comprises a plurality of stabilizer tubes. However, it should be appreciated that protective head support assembly 10 may comprise any number of stabilizer suitable to stiffen and support the user's neck.
Transducer 50 is arranged to receive a signal from any of sensors 22A-D and transmit a magnetic field proximate fluid 48, as will be discussed in greater detail below. As is known in the art, a magnetic field is created as an effect of electric current. In the embodiment shown, transducer 50 is arranged adjacent stabilizer 40 in base 44 and comprises receiver 52, power source 54, and conductor 56. In an example embodiment, transducer 50 is arranged in base 46. It should be appreciated that transducer 50 can be located at any position suitable to detect a signal and transmit an electric current proximate stabilizer 40. For example, transducer 50 may be located as a transducer pack on a user's waist belt and have an electrical conductor, such as a wire, connected to stabilizer 40. Transducer 50 is capable of transmitting a variable amount of electric current through conductor 56, thereby creating a variable strength magnetic field proximate fluid 48. For example, if sensor 22B determines, based on the velocity and mass of the incoming object, that a very large collision is about to occur, then transducer 50 will transmit a large amount of current though conductor 56 and thus large magnetic field proximate fluid 48 such that stabilizer 40 is stiffer. On the other hand, if sensor 22B determines, based on the velocity and mass of the incoming object, that a small to moderate collision is about to occur, then transducer 50 will only transmit a small amount of current through conductor 56 and thus small magnetic field proximate fluid 48 such that the user is protected but head 12 and neck 14 are not overly inhibited. The amount of electric current transmitted based on velocity and mass of the incoming object can be calibrated. Conductor 56 is arranged proximate stabilizer 40 and may be any suitable material or shape for conducting electricity and creating a magnetic field (e.g., a copper wire or rod). In an example embodiment, conductor 56 runs through fluid 48 within stabilizer 40. In an example embodiment, conductor 56 is arranged outside of stabilizer 40 adjacent to wall 42. In addition, conductor 56 may be a set of two or more wires or rods (i.e., a lead conductor and a return conductor). Power source 54 is any electronic device that supplies electric energy to an electric load, for example, a lead-acid or lithium-ion battery. Power source 54 may also be located in vest 30 or in another suitable location, such as a waste pack for example.
Helmet 120 is a hard or padded protective hat, various types of which are worn by soldiers, police officers, firefighters, motorcyclists, athletes, and others. Helmet 120 is fitted over a user's head 112. Helmet 120 comprises one or more sensors 122A-D. Sensors 122A-D are any sensors capable of detecting an incoming impact and transmitting a signal to transducer 150, as will be discussed in greater detail below. Sensors 122A-D may be, for example, active LIDAR sensors, RADAR distance sensors, motion detectors, proximity sensors, passive infrared sensors, alarm sensors, or any other suitable optical, light, imaging, photon, proximity, or presence sensor. In the embodiment shown, helmet 120 comprises four sensors 122A-D. However, it should be appreciated that any number of sensors suitable for detecting incoming impact from any position. In an example embodiments, sensors 122A-D are located on vest 130. It should be appreciated that sensors 122A-D can be located at any location of a user's body suitable for detecting incoming contact.
Vest (or shoulder pads) 130 is a piece of protective equipment used in many contact sports such as American football, Canadian football, lacrosse, and hockey. With respect to the present disclosure, vest 130 is any garment that is securely worn on the upper torso of a user. It should be appreciated that vest 130 does not actually need to be a vest, but rather may be a shirt and comprise sleeves. It should also be appreciated that vest 130 does not need to be a protective piece of equipment.
Stabilizer 140 comprises wall 142, base 144, base 146, fluid 148, and transducer 150. Stabilizer 140 is generally an elliptical tube having wall 142 filled with fluid 148 that extends between helmet 120 and vest 130 along neck 114 of a user. It should be appreciated that stabilizer 140 can be any shape suitable to stiffen and promote alignment of head 112 and neck 114. For example, stabilizer 140 may be a frusto-conical tube, a rectangular tube, a square tube, a circular tube, or a triangular tube, or indeed, multiple tubes. Because of its positioning, stabilizer 140 does not interfere with the user's vision. Stabilizer 140 is sealed at a top end by base 144 and at a bottom end by base 146. Stabilizer 140 is secured to helmet 120 at base 144 and vest 130 at base 146. Wall 142 is made of a material that can be suitably stiffened, such as a substantially non-elastic rubber. Stabilizer 140 is filled with fluid 148. Fluid 148 is a non-Newtonian fluid or any other fluid that stiffens once an impact force has been applied thereto. It should also be appreciated that vest 130 may also contain non-Newtonian fluid or any other fluid that stiffens once an impact force has been applied thereto. In the embodiment shown, protective head support assembly 100 comprises one stabilizer tube. In an example embodiment, protective head support assembly 100 comprises two stabilizer tubes. In an example embodiment, protective head support assembly 100 comprises a plurality of stabilizer tubes. However, it should be appreciated that protective head support assembly 100 may comprise any number of stabilizer suitable to stiffen and support the user's neck.
Transducer 150 is arranged to receive a signal from sensors 122A-D and transmit a force to stabilizer 140, as will be discussed in greater detail below. In the embodiment shown, transducer 150 is arranged adjacent stabilizer 140 in impact element 160 and comprises receiver 152 and power source 154. It should be appreciated that transducer 150 can be located at any position suitable to detect a signal and transmit an electric current to stabilizer 140. For example, transducer 150 may be located as a transducer pack on a user's waist belt and have an electrical conductor, such as a wire, connected to impact element 160. Impact element 160 is any device capable of introducing a concussive impact to stabilizer 140. For example, impact element 160 can be a hammer or other mechanical device, or an air gun or other pneumatic force providing mechanism.
Similar to protective head support assembly 10, when one of sensors 122A-D detects an incoming impact they transmit signal 126 (not shown) to transducer 150. Receiver 152 of transducer 150 receives the signal, and transducer 150, using power source 154, transmits a signal to impact element 160. Impact element 160 then provides concussive force F3 to impact stabilizer 140. Force F3 causes fluid 148 to stiffen within stabilizer 140 and causes head 112 and neck 114 to remain substantially aligned. The use of non-Newtonian fluid requires that a separate concussive force be applied to stabilizer 140 in order to stiffen the fluid therein. This separate concussive force must be applied prior to the incoming impact in order to protect the user.
It will be appreciated that various aspects of the disclosure above and other features and functions, or alternatives thereof, may be desirably combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3818509 | Romo | Jun 1974 | A |
5123408 | Gaines | Jun 1992 | A |
6006368 | Phillips | Dec 1999 | A |
6499149 | Ashline | Dec 2002 | B2 |
6696973 | Ritter | Feb 2004 | B1 |
6701529 | Rhoades | Mar 2004 | B1 |
6813782 | Kintzi | Nov 2004 | B2 |
6871360 | Ashline | Mar 2005 | B1 |
6931669 | Ashline | Aug 2005 | B2 |
6968576 | McNeil | Nov 2005 | B2 |
D522178 | Ashline | May 2006 | S |
7155747 | Baker | Jan 2007 | B2 |
7380290 | Mothaffar | Jun 2008 | B2 |
7395558 | Mothaffar | Jul 2008 | B2 |
7430767 | Nagely | Oct 2008 | B2 |
7765623 | Ashline | Aug 2010 | B2 |
7789844 | Allen | Sep 2010 | B1 |
7849525 | Ghajar | Dec 2010 | B2 |
7941873 | Nagely | May 2011 | B2 |
8015626 | Grassl | Sep 2011 | B2 |
8074301 | Mothaffar | Dec 2011 | B2 |
8181281 | Nagely | May 2012 | B2 |
8272074 | Ashline | Sep 2012 | B1 |
8341770 | Siegler | Jan 2013 | B2 |
8375472 | Ashline | Feb 2013 | B2 |
8384777 | Maguire, Jr. | Feb 2013 | B2 |
8443468 | Minson | May 2013 | B2 |
9665983 | Spivack | May 2017 | B2 |
9795178 | Suddaby | Oct 2017 | B2 |
9980531 | Suddaby | May 2018 | B2 |
20040131498 | Kuutti | Jul 2004 | A1 |
20040255368 | Baker | Dec 2004 | A1 |
20060074338 | Greenwald | Apr 2006 | A1 |
20070022520 | Grassl | Feb 2007 | A1 |
20070186329 | Baker | Aug 2007 | A1 |
20070245464 | Baker | Oct 2007 | A1 |
20090064396 | Ghajar | Mar 2009 | A1 |
20100223706 | Becker | Sep 2010 | A1 |
20130019384 | Knight | Jan 2013 | A1 |
20130019385 | Knight | Jan 2013 | A1 |
20130086734 | Siegler | Apr 2013 | A1 |
20130130843 | Burroughs | May 2013 | A1 |
20130232668 | Suddaby | Sep 2013 | A1 |
20130296755 | Duncan | Nov 2013 | A1 |
20140173810 | Suddaby | Jun 2014 | A1 |
20150143617 | Suddaby | May 2015 | A1 |
20150154452 | Bentley | Jun 2015 | A1 |
20150173666 | Smith | Jun 2015 | A1 |
20160366969 | Suddaby | Dec 2016 | A1 |
20170112220 | Suddaby | Apr 2017 | A1 |
20170251744 | Suddaby | Sep 2017 | A1 |
20180160760 | Suddaby | Jun 2018 | A1 |
20180190027 | Yao | Jul 2018 | A1 |
20180368490 | Suddaby | Dec 2018 | A1 |
Number | Date | Country |
---|---|---|
WO03015555 | Feb 2003 | WO |
Entry |
---|
http://www.hovding.com/how_hovding_works, last accessed Aug. 17, 2017. |
Number | Date | Country | |
---|---|---|---|
20180368490 A1 | Dec 2018 | US |