The systems and methods described below relate generally to the field of head protection. More particularly, the systems and methods relate to headbands that can be worn during sporting, or athletic, or other physical endeavors.
Then an individual participates in contact sports activities such as football, lacrosse, hockey, soccer, rugby, basketball, volleyball and the like, or other physical activities, such as skiing, skateboarding, and the like, it is common that parts of the individual's body are subject to impact and other physical contact. Various attempts have been made to provide padding as a means of protecting the individual during such activities. Conventional protective equipment can include helmets, shoulder pads, thigh pads, and shin pads.
The present disclosure will be more readily understood from a detailed description of some example embodiments taken in conjunction with the following figures:
Various non-limiting embodiments of the present disclosure will now be described to provide an overall understanding of the principles of the structure, function, and use of the headbands disclosed herein. One or more examples of these non-limiting embodiments are illustrated in the accompanying drawings. Those of ordinary skill in the art will understand that systems and methods specifically described herein and illustrated in the accompanying drawings are non-limiting embodiments. The features illustrated or described in connection with one non-limiting embodiment may be combined with the features of other non-limiting embodiments. Such modifications and variations are intended to be included within the scope of the present disclosure.
The presently disclosed embodiments are generally directed to headband, headband systems, methods of using a headband, and methods of manufacturing headbands. Such systems and methods may be implemented in a wide variety of contexts and applications. In one example embodiment, the headband is compressive so that it can be retained on a user's head without the use of a securing strap, such as a hook-and-loop strap. In other embodiments, an adjustment strap can be used to help secure the headband in place. The headbands can be constructed with one or more layers, sections, or pockets of impact absorbing or impact dissipating materials, referred to generally herein as padding. The particular type of padding can vary based on a variety of factors, such as style of headband, sporting or athletic application, type of user, size of headband, and so forth. As described in more detail below, in some embodiments, the headband can have multiple layers, including an inner layer, a middle layer, and an outermost layer. The middle layer can comprise the padding.
The headband can also include a rigid portion which can be positioned proximate to a user's forehead when worn. In some example embodiments, the headband can be washable without necessarily removing the padding layer from the headband. The headband can also have breathable characteristics, sweat wicking characteristics, or other comfort related characteristics, such as vents. The headband can have water resistant or water repellant qualities. In some embodiments, the headband can include an anti-bacterial agent, anti-microbial agent, anti-odor agent, or other deodorizing or sanitizing compounds. In some embodiments, the headband is configured to provide protection against ultraviolet rays using any suitable techniques, such as chemical treatments, construction techniques, materials, and so forth. Further, the headband can be include anti-slip features, such as a silicone grip element, to aid in maintaining the placement of the headband on the wearer's head.
The headband described herein can be sized to accommodate different ages of users. In one example embodiment, a child's “one size fits all” headband is sized to fit children and an adult's “one size fits all” headband is sized to fit adults. As described in more detail below, elastic components incorporated into the headband can aid in maintaining the headband on a user's head while also allowing the headband to accommodate different sized heads. In some embodiments, headbands can be manufactured in different sizes (small, medium, large, x-large, and so forth). In some embodiments, the headband may be selectively adjustable to accommodate different head sizes.
Reference throughout the specification to “various embodiments,” “some embodiments,” “one embodiment,” “some example embodiments,” “one example embodiment,” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment. Thus, appearances of the phrases “in various embodiments,” “in some embodiments,” “in one embodiment,” “some example embodiments,” “one example embodiment,” or “in an embodiment” in places throughout the specification are not necessarily all referring to the same embodiment. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more embodiments.
Referring now to
Referring now to
Referring now to
Referring now to
The padding layer utilized by headbands in accordance with the present disclosure can be comprised of any suitable material that provides the desirable characteristics and response to impact. For example, the padding layer can comprise one or more of the following materials: thermoplastic polyurethane (available, for example, from Skydex Technologies), military-grade materials, impact absorbing silicone, D30® impact absorbing material, impact gel, wovens, non-wovens, cotton, elastomers, IMPAXX® energy-absorbing foam (available from Dow Automotive), DEFLEXION shock absorbing material (available from Dow Corning), styrofoam, polymer gels, general shock absorbing elastometers, visco-elastic polymers, PORON® XRD impact protection (available from Rogers Corporation), SMARTFOAM material (available from XONano® in partnership with Rogers Corporation), Sorbothane® (available from Sorbothane Inc.), Neoprene (available from DuPont), Ethyl Vinyl Acetate, impact-dispersing gels, foams, rubbers, and so forth. The padding layer can be breathable and/or generally porous to provide ventilation. In some embodiments, the padding layer is a mesh material that aids in the breathability of the associated headband. As provided above, the padding layer can be attached to one or more layers. In some embodiments, the padding layer can be generally disconnected and “floating” between the layers.
In some embodiments, padding layers in accordance with the present systems and methods can comprise a rate dependent material, such as a rate dependent low density foam material. Examples of suitable low density foams include polyester and polyether polyurethane foams. In some embodiments, such foams to have a density ranging from about 5 to about 35 pounds per cubic foot (pcf), more particularly from about 10 to about 30 pcf, and more particularly still from about 15 to about 25 pcf. PORON® and PORON XRD® are available from Rogers Corporation, which are open cell, microcellular polyurethane foams, is an example of one suitable rate dependent foam. However, in order to provide impact resistance, the padding layer can be any suitable energy absorbing or rate dependent materials. As such, other rate dependent foams or other types of materials can be used without departing from the scope of the present disclosure.
The other layers of headbands in accordance with the present disclosure can either be the same material or different material. The material can be, for example, and without limitation, polyester, nylon, spandex, ELASTENE (available from Dow Chemical), cotton, materials that glow in the dark or are fluorescent, and so forth. Either of the inner or outer layers can also be of a mesh or otherwise porous material. In some embodiments, the inner and/or outer layers can be a blend of a variety of materials, such as a spandex/polyester blend. In some embodiments, the headband is water proof, water resistant, or water repellant. Other durable materials can be used for the outer layer of any embodiment, including knit, woven and nonwoven fabrics, leather, vinyl or any other suitable material. In some instances, it can be desirable to use materials for the layer than are somewhat elastic; therefore, stretchable fabrics, such as spandex fabrics, can be desirable. Such materials can help provide compressive forces to maintain placement of headband on a wearer's head.
Various headbands in accordance with the systems and methods described herein can be manufactured with or otherwise include various coatings, agents, or treatments to provide anti-microbial or anti-bacterial properties. Some embodiments, for example, can utilize Microban® offered by Microban International, Ltd. for antibacterial protection. In some embodiments, the padding layer comprises antimicrobial agents and one or more other fabric layers of the headband also treated with antimicrobial agents. Antimicrobial protection for the fabric layers can be in the form of a chemical coating applied to the fabric, for example. Generally, antimicrobial technologies combat odor by fighting bacteria resulting in fresher smell for longer and minimizing the frequency of laundering or washing. Any suitable technique can be used to provide headbands with antimicrobial properties. In one embodiment, for example, AEGIS Microbe Shield® offered by DOW Corning Corp. is utilized. Other examples of antimicrobial agents include SILVADUR® offered by The Dow Chemical Company is utilized, Smart Silver offered by NanoHorizons, Inc., and HealthGuard® Premium Protection offered by HealthGuard.
In some embodiments, a headband, or at least various components of a headband are configured to provide moisture wicking properties. Generally, moisture wicking translates into sweat management, which works by removing perspiration from the skin in an attempt to cool the wearer. Any suitable moisture wicking can be used. In one embodiment, a topical application of a moisture wicking treatment to a fabric of the headband is utilized. The topical treatment is applied to give the headband the ability to absorb sweat. The hydrophilic (water-absorbing) finish or treatment generally allows the headband to absorb residue, while the hydrophobic (water-repellent) fibers of the headband help it to dry fast, keeping the wearer more comfortable. In one embodiment, the blend of fiber is used to deliver moisture wicking properties by combining a blend of both hydrophobic (such as polyester) with hydrophilic fibers. Certain blends of these fibers allow the hydrophilic fibers to absorb fluid, moving it over a large surface area, while the hydrophobic fibers speed drying time. One benefit of headbands utilizing these types of fiber blends is that moisture management properties are inherent in the fiber blend, meaning they will never wash or wear out.
Headbands in accordance with the presently disclosed embodiments may be manufactured using a variety of manufacturing techniques, such as ultrasonic welding, stitching, gluing, and/or quilting, for example. Additionally, or alternatively, additive manufacturing and/or 3D printing processes can be utilized. Stitching can be used to couple an interior fabric layer to an external fabric layer to create a pocket to house the padding layer. In some embodiments, double needle stitching is utilized to attach various components of the headband. With a double stitching technique, twin needles create parallel double stitching using two needles mounted in a plastic holder. A standard needle shank is added to the plastic holder so it can be inserted in the needle holder on the sewing machine. One needle can be shorter than the other so that a bobbin can catch both stitches. The headbands can be manufactured in different sizes so that they can accommodate both children head sizes and adult head sizes.
The particular combination of materials for the various layers of headbands manufactured in accordance with the systems and methods described herein can vary. Below are some non-limiting examples of material combinations. As is to be readily appreciated, other combinations are envisioned and are within the scope of the present disclosure. For some headbands, one or more layers can comprise about 80-90% polyester or Nylon and about 10-20% Spandex or Elastene. In one embodiment, one or more layers can comprise about 86% polyester and about 14% Spandex. One or more layers can also be a mesh-type material for increased breathability and ventilation. The layers of the headband can have various fabric weights. In some embodiments, the fabric weight of an outer or inner lay can be in the range of about 5 to about 12 ounces, for example.
In some embodiments, one or more of the fabric layers can comprise about 60% polyester and about 40% cotton. In one embodiment, one or more fabric layers can comprise about 100% cotton. In one embodiment, one or more fabric layers can comprise about 80% polyester and about 20% spandex. In one embodiment, one or more fabric layers can comprise about 90% polyester and about 10% Spandex. In one embodiment, one or more fabric layers can comprise about 86% polyester and about 14% Spandex. In some embodiments, one or more fabric layers can comprise about 100% acrylic. In one embodiment, one or more layers can comprise about 85% acrylic and about 15% nylon.
In some embodiments, one or more fabric layers can comprise about 100% cotton. In one embodiment, one or more fabric layers can comprise about 80% cotton and about 20% polyester. Furthermore, various headbands can be manufactured from colored materials, dyed particular colors, or manufactured with glow in the dark and/or reflective materials.
In various embodiments disclosed herein, a single component may be replaced by multiple components and multiple components may be replaced by a single component to perform a given function or functions. Except where such substitution would not be operative, such substitution is within the intended scope of the embodiments. While various embodiments have been described herein, it should be apparent that various modifications, alterations, and adaptations to those embodiments may occur to persons skilled in the art with attainment of at least some of the advantages. The disclosed embodiments are therefore intended to include all such modifications, alterations, and adaptations without departing from the scope of the embodiments as set forth herein.
This application is a continuation of U.S. patent application Ser. No. 17/970,760, filed on Oct. 21, 2022, which is a continuation of U.S. patent application Ser. No. 16/821,177, filed on Mar. 17, 2020, which claims the benefit of U.S. provisional patent application Ser. No. 62/819,796, filed on Mar. 18, 2019, entitled PROTECTIVE HEADBAND, the disclosures of which are incorporated herein by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
62819796 | Mar 2019 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17970760 | Oct 2022 | US |
Child | 18241979 | US | |
Parent | 16821177 | Mar 2020 | US |
Child | 17970760 | US |