1. Field of the Invention
Embodiments of the present invention generally relate to a protective helmet.
2. Background Art
Participants in sports involving contact with other players or objects are particularly susceptible to head and brain injuries. It is well known to use various types of protective headgear during participation in these sporting activities to prevent or limit injuries. The amount of protection afforded by headgear is determined by many factors, including the fit of the headgear on the user's head and the type, location, and amount of padding used in the headgear.
Furthermore, players of different sports require various degrees of protection from headgear depending on the amount of head impact commonly encountered in the sport. In sports such as American football, where violent head to head or head to ground contact is commonplace, the ideal headgear has a substantial amount of padding and is formed of a substantially rigid shell so as to provide maximum protection to the athlete. In sports involving somewhat lower impact forces to the head, such as hockey, the ideal headgear is more closely tailored to the shape of the user's head while still providing sufficient protection.
To achieve a tailored fit, it is well known to construct hockey helmets with separate front and back pieces. This construction allows for a degree of custom fitting, but results in a helmet that is adjustable only along one axis. Other helmet constructions utilize adjustable liner systems. While these systems improve the fit of the helmet, the size of the helmet shell itself is not adjustable. This results in a helmet with a shell that is unnecessarily bulky. Thus, there is a need for a helmet that allows for an improved fit to the head of an athlete.
There is also a need for a helmet with a shell that allows for an improved fit while at the same time offering an adjustable amount of padding. Inflatable articles of manufacture or bladders for use in inflatable articles of manufacture have been known for decades. Such articles of manufacture include inflatable air mattresses and pillows, inflatable life preservers and rafts, and athletic equipment. In the field of athletic equipment, inflatable bladders have been incorporated in the interior of balls (e.g., basketballs, footballs, soccer balls, etc.), as well as in articles of protective apparel, gloves, chest protectors and footwear.
U.S. application Ser. No. 10/887,927 filed on Jul. 12, 2004 (and published as U.S. Published Patent Application No. 20050028404-A1 on Feb. 10, 2005), the disclosure of which is incorporated herein by reference in its entirety, discloses a shoe having an inflatable bladder. Other pumps and valves, suitable for use, among other things, with inflatable bladders for helmets, are disclosed in U.S. Pat. Nos. 5,113,599, 5,074,765 and 5,144,708, the disclosures of which are incorporated herein by reference in their entirety.
Inflatable bladders have also been incorporated into protective helmets. However, these helmets are bulky and not well adapted to sports where a helmet with a more tailored fit is required. Accordingly, there is a need in the art to have a lightweight protective helmet that is able to provide a custom fit to an individual user while at the same time providing an adequate amount of cushioning.
Applicant has developed an innovative protective helmet, comprising: an injection molded shell having an inner surface and an outer surface, the injection molded shell comprising: a first main body portion and a second main body portion, wherein the first and second main body portions are formed of a first material; and a first molded hinge portion formed intermediate the first and second main body portions, the molded hinge portion adapted to allow the first main body portion and the second main body portion to move relative to each other.
Applicant has further developed an innovative helmet, comprising: an injection molded shell having an inner surface and an outer surface, the injection molded shell comprising: a left portion; a right portion; and a center portion disposed intermediate the left portion and the right portion; a first molded hinge portion integrally formed intermediate the left portion and the center portion, wherein the first molded hinge portion is adapted to allow the left portion and the center portion to move relative to each other; and a second molded hinge portion integrally formed intermediate the right portion and the center portion, wherein the second molded hinge portion is adapted to allow the right portion and the center portion to move relative to each other.
Applicant has developed an innovative helmet comprising: a dual-injected shell having a plurality of sections, wherein each section has an exterior surface and an interior surface, the dual-injected shell comprising: a molded hinge formed in the shell, the molded hinge allowing at least two of the sections to move relative to each other; an inflatable bladder affixed to a portion of the interior surface, and an inflation mechanism fluidly connected to the inflatable bladder.
Applicant has developed a helmet comprising: a dual-injected shell having a plurality of sections, the dual-injected shell comprising: an over-molded bumper, and a molded hinge, wherein the molded hinge allows two or more of the sections to move relative to each other; wherein at least two of the molded hinge, the over-molded bumper, and the sections are formed of differently colored materials.
The accompanying drawings, which are incorporated herein and form a part of the specification, illustrate the present invention and, together with the description, further serve to explain the principles of the invention and to enable a person skilled in the pertinent art to make and use the invention.
The present invention will now be described in detail with reference to embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps have not been described in detail in order not to unnecessarily obscure the present invention.
The present invention is directed to a protective helmet, particularly a helmet designed for use in sports where a streamlined helmet is desirable, such as ice hockey or the like.
Helmet shell 100 includes a front section 110 and a rear section 120 joined together. In one embodiment, front section 110 and rear section 120 are joined by a screw and post combination. As would be apparent to one of skill in the art, front section 110 and rear section 120 could also be joined by other methods such as riveting. In a preferred embodiment, helmet shell 100 is formed of HDPE (high density polyethylene). However, helmet shell 100 could also be formed of a variety of high impact resins suitable for use in protective headgear. The left and right sides of helmet shell 100 are generally symmetrical. Alternatively, helmet 100 could be formed of more than two sections or could be formed as a single unit. Helmet shell 100 comprises a plurality of molded hinges 130 formed by a process of dual-injection molding or co-molding. Molded hinges 130 can be located in a variety of areas on a helmet shell to improve the fit of the shell on the head of a user. For example, in the embodiment shown in
As shown in
Helmet shell 100 may also comprise a flex zone 150 located on the lower-most perimeter of lower rear portion 124 of rear section 120. Flex zone 150 is designed to contact the user's neck when the helmet is worn, thereby providing an improved fit and increased comfort.
Helmet shell 100 may also comprise one or more bumpers 140. Over-molded bumpers 140 provide impact attenuation or vibration control when the helmet collides with an object. Over-molded bumpers 140 can be formed in a variety of locations on helmet shell 100, but are preferably placed in locations where collisions are most common or where substantial vibration is experienced following a collision.
Helmet shell 100 may also comprise one or more over-molded bumpers 140 on rear section 120. For example, as shown in
Molded hinges 130, over-molded bumpers 140, and flex zone 150 may each be formed from a different material, or may each be formed of the same material, but with differing hardness or stiffness. Similarly, front section 110 and rear section 120 may each be formed of different materials, and may be formed of different materials than one or more of molded hinges 130, over-molded bumpers 140, and flex zone 150. In addition, each component of helmet shell 100 could be formed of materials having different colors, or of the same material with different colors, to achieve a desired aesthetic effect.
Helmet shell 100 may also be provided with one or more ventilation apertures 160 which allow air to pass through the shell.
Helmet shell 100 may also have an inflatable bladder provided on the interior of front section 110 and rear section 120. As shown in
Molded hinges and over-molded bumpers can be located at various positions on a helmet in order to achieve the desired fit to a wearer's head and collision protection.
Inflatable device 400 is shown in further detail in
A variety of different inflation mechanisms can be utilized in embodiments of the present invention. The inflation mechanism may be a simple latex bulb which is physically attached to the helmet. Alternatively, the inflation mechanism may be a molded plastic chamber, or may be a hand held pump such as one which utilizes CO2 gas to inflate a bladder.
Preferably, the inflation mechanism is small, lightweight, and provides a sufficient volume of air such that little effort is needed for adequate inflation. For example, U.S. Pat. No. 5,987,779, which is incorporated by reference, describes an inflation mechanism comprising a bulb (of various shapes) with a one-way check valve. When the bulb is compressed air within the bulb is forced into the desired region. As the bulb is released, the check valve opens because of the pressure void in the bulb, allowing ambient air to enter the bulb.
Another inflation mechanism, also described in U.S. Pat. No. 5,987,779, incorporated herein by reference, is a bulb having a hole which acts as a one-way valve. A finger can be placed over the hole in the bulb upon compression. Therefore, the air is not permitted to escape through the hole and is forced into the desired location. When the finger is removed, ambient air is allowed to enter through the hole. An inflation mechanism having collapsible walls in order to displace a greater volume of air may be preferred. A similar inflation mechanism may include a temporarily collapsible foam insert. This foam insert ensures that when the bulb is released, the bulb expands to the natural volume of the foam insert drawing in air to fill that volume. A preferred foam is a polyurethane, such as the 4.25 4.79 pound per cubic foot polyether polyurethane foam, part number FS-170-450TN, available from Woodbridge Foam Fabricating, 1120-T Judd Rd., Chattanooga, Tenn., 37406.
U.S. Pat. No. 6,287,225, incorporated herein by reference, describes another type of on-board inflation mechanism suitable for the present invention. Yet another type of on-board inflation mechanism, wherein the inflation mechanism is formed from an isolated portion of the bladder, is disclosed in U.S. Pat. No. 7,047,670, incorporated herein by reference. One skilled in the art can appreciate that a variety of inflation mechanisms are suitable for the present invention. In addition, any inflation mechanism is appropriate for use with any embodiments of the present invention.
These inflation mechanisms all require a one-way valve be placed between the inflation mechanism and the bladder, so that once air enters the system it may not travel backwards into the inflation mechanism. Various types of one-way valves are suitable for use in conjunction with the various inflation mechanisms of the present invention. Preferably, the valve will be relatively small and flat for less bulkiness. U.S. Pat. No. 5,144,708 to Pekar, incorporated herein by reference, describes a valve suitable for the present invention. The patent describes a valve formed between thermoplastic sheets. The valve described in the Pekar patent allows for simple construction techniques to be used whereby the valve can be built into the system at the same time the bladder is being welded. One skilled in the art would understand that a variety of suitable valves are contemplated in the present invention.
The one-way valve provides a method to avoid over inflation of the system. In particular, if the pressure in the bladder is equal to the pressure exerted by the inflation mechanism, no additional air will be allowed to enter the system. In fact, when an equilibrium is reached between the pressure in the bladder and the pressure of the compressed inflation mechanism, the one-way valve which opens to allow air movement from the inflation mechanism to the bladder 420 may remain closed. Even if this valve does open, no more air will enter the system. Further, one skilled in the art can design an inflation mechanism to have a certain pressure output to limit the amount of air that can be pumped into bladder 420. Any one-way valve will provide a similar effect, as would be known to one skilled in the art. In addition, any one-way valve would be appropriate for use in any embodiments of the present invention.
In one embodiment of the present invention, as shown in
As an alternative, fluid release mechanism 430 may also be a check valve, or blow off valve, which will open when the pressure in bladder 420 is at or greater than a predetermined level. In each of these situations, bladder 420 will not inflate over a certain amount no matter how much a user attempts to inflate the helmet.
One type of check valve has a spring holding a movable seating member against an opening in the bladder. When the pressure from the air inside the bladder causes a greater pressure on the movable seating member in one direction than the spring causes in the other direction, the movable seating member moves away from the opening allowing air to escape the bladder. Another type of check valve is an umbrella valve, such as the VA-3497 Umbrella Check Valve (Part No. VL1682-104) made of Silicone VL1001M12 and commercially available from Vernay Laboratories, Inc. (Yellow Springs, Ohio, USA). In addition, any other check valve is appropriate for use in the present invention, as would be apparent to one skilled in the art. Further, any check valve would be appropriate for use in any of embodiments of the present invention.
In another embodiment, fluid release mechanism 430 may be an adjustable check valve wherein a user can adjust the pressure at which a valve is released. An adjustable check valve has the added benefit of being set to an individually preferred pressure rather than a factory predetermined pressure. An adjustable check valve may be similar to the spring and movable seating member configuration described in the preceding paragraph. To make it adjustable, however, the valve may have a mechanism for increasing or decreasing the tension in the spring, such that more or less air pressure, respectively, would be required to overcome the force of the spring and move the movable seating member away from the opening in the bladder. However, any type of adjustable check valve is appropriate for use in the present invention, as would be apparent to one skilled in the art, and any adjustable check valve would be appropriate for use in any embodiment of the present invention.
Bladder 420 may include more than one type of fluid release mechanism 430. For example, bladder 420 may include both a check valve and a release valve. Alternatively, bladder 420 may contain a fluid release mechanism 430 which is a combination release valve and check valve. This type of valve is described in detail in U.S. Pat. No. 7,047,670.
In another embodiment, small perforations may be formed in the bladder to allow air to naturally diffuse through the bladder when a predetermined pressure is reached. The material used to make bladder 420 may be of a flexible material such that these perforations will generally remain closed. If the pressure in the bladder becomes greater than a predetermined pressure the force on the sides of the bladder will open the perforation and air will escape. When the pressure in bladder 420 is less than this predetermined pressure, air will escape very slowly, if at all, from these perforations. Any embodiment of a bladder of the present invention may also have these perforations for controlling the amount of air within the bladder.
As noted elsewhere, these example embodiments have been described for illustrative purposes only, and are not limiting. Other embodiments are possible and are covered by the methods and systems described herein. Such embodiments will be apparent to persons skilled in the relevant art(s) based on the teachings contained herein. Thus, the breadth and scope of the methods and systems described herein should not be limited by any of the above-described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents