When a disaster, such as a hurricane, tornado, or earthquake occurs, persons are often exposed to flying or falling debris. In such circumstances, it is of utmost importance to protect one's head. Because of this, some governmental bodies recommend that persons who are in danger of being affected by such a disaster wear helmets to prevent head injury. While it is a good idea to wear a helmet in such situations, there are no helmets on the market that are specifically designed for protecting the wearer's head from the debris that he or she may encounter in a disaster. As such, persons may have no better option than to wear a sports helmet, such as a football or cycling helmet, which is designed to protect the head in very different circumstances.
Even if a sports helmet can prevent or reduce head injury in a disaster, the wearer may still may be in danger. For example, if the wearer has sustained one or more life-threatening injuries and/or is buried under debris created by the disaster, there is a chance that the victim will not be located and treated in time to prevent death or a permanent injury. While personal locator devices have been developed for special applications, such as mountain climbing, no such devices are available for disaster situations.
From the above discussion, it can be appreciated that it would be desirable to have means to both protect the head of a disaster victim and facilitate the victim's location and treatment.
The present disclosure may be better understood with reference to the following figures. Matching reference numerals designate corresponding parts throughout the figures, which are not necessarily drawn to scale.
As described above, it would be desirable to have means to both protect the head of a disaster victim and facilitate the victim's location and treatment. Described herein are protective helmets that are specifically designed for these purposes. In some embodiments, the helmets comprise an outer shell that is made of a syntactic foam material that is well suited for protecting the wearer's (user's) head from flying or falling debris. In some embodiments, the helmets further include an electronic location system that is configured to transmit one or more electromagnetic signals that can be used to locate the victim. In some embodiments, the helmets further include one or more sensors that monitor body parameters of the victim (e.g., vital signs) and/or the severity of impacts to the helmet. In some embodiments, the helmets further include a scent-based location system that emits an odor “signal” that can be detected by search dogs and, in some cases, humans.
In the following disclosure, various specific embodiments are described. It is to be understood that those embodiments are example implementations of the disclosed inventions and that alternative embodiments are possible. All such embodiments are intended to fall within the scope of this disclosure.
The outer shell 12 can be made of one or more appropriate materials, such as thermoplastic polypropylene, polyethylene, polyamide, poly ethylene terephthalate, polyurethane, or polycarbonate. In some embodiments, the outer shell 12 is made out of a rigid, energy-absorbing foam material that is approximately 3 to 6 mm thick. The foam material can be a syntactic foam material that comprises a plurality of microspheres (also referred to as cenospheres or microballoons) that are compounded with a thermoplastic resin. Such a construction is schematically depicted in
The resin 34 can comprise a polymeric resin. In some embodiments, the resin is a thermoplastic resin comprising one or more of polypropylene, polyethylene, polyamide, poly ethylene terephthalate, polyurethane, or polycarbonate.
With reference back to
As is further shown in
With further reference to
As illustrated in
In the illustrated embodiment, the other components of the electronic system 40 include a body parameter sensor 44, an impact sensor 46, a scent-release mechanism 48, a power source 50, non-volatile memory 52, one or more indicator lights 54, and an electronic location system 56, each of which is described below.
The body parameter sensor 44 is configured to measure one or more parameters that pertain to the body's basic functioning and therefore, are particularly relevant in triage situations in which multiple individuals may be injured. Example parameters include the wearer's vital signs, such as body temperature, blood pressure, and heart rate. In some embodiments, the body parameter sensor 44 comprises a pulse oximeter that is applied to the wearer's forehead and is capable of measuring each of those parameters. In other embodiments, the body parameter sensor 44 can comprise individual sensors that separately measure each of the body parameters.
The impact sensor 46 is configured to measure impacts to the helmet 10 for the purpose of helping medical personnel gauge the potential severity of head injury that the wearer may have sustained. In some embodiments, the impact sensor 46 comprises an inertial measurement unit (IMU) that comprises both an accelerometer and a gyroscope. By way of example, the accelerometer can comprise a triaxial accelerometer that measures linear acceleration in three different linear directions and the gyroscope can comprise a triaxial gyroscope that measures angular velocity in three different angular directions.
The scent-release mechanism 48 is part of a scent-based location system and is adapted to release a unique scent when deemed appropriate by the microcontroller 42. This scent can then be detected by search and rescue dogs, and possibly humans, and therefore can be used to pinpoint the location of the wearer, who could be trapped under rubble or other debris. Situations in which the microcontroller 42 may activate the scent-release mechanism 48 include those in which the microcontroller detects an impact to the helmet that exceeds a particular threshold (as determined from data collected by the impact sensor 46) at a time when the helmet was being worn on the wearer's head (as determined from data collected by the body parameter sensor 44), as well as those in which the wearer's body parameters (as determined from data collected by the body parameter sensor 44) are indicative of significant injury and, therefore, risk of death. In some embodiments, the scent-release mechanism 48 can additionally or alternatively be manually activated by the wearer when desired by, for example, pressing a scent release button (not shown).
With reference back to
The non-volatile memory 52 enables storage of information that may be relevant to search and rescue or medical personnel. This information can include, for example, personal information about the wearer, such as name, age, etc., as well as medical information, such as medical conditions, allergies, etc., which may be relevant to someone who is going to treat the wearer for his or her injuries. In addition, the memory 52 can be used to store other information, such as the data measured by the body parameter sensor 44 or the impact sensor 46.
The one or more indicator lights 54 can be integrated into the exterior of the outer shell 12 and can be used to convey to search and rescue and medical personnel information that is relevant to assessing the severity of a head injury. In some embodiments, multiple lights 54, such as light-emitting diodes (LEDs) can be used to provide an indication of the severity of the impact that the helmet sustained. For example, each light 54 can be associated with a particular impact threshold and can be illuminated by the microcontroller 42 when that threshold has been reached. In such a case, a single illuminated light 54 may indicate a low threshold impact was sustained, two illuminated lights may indicate a medium threshold impact was sustained, and three illuminated lights may indicate a high threshold impact was sustained. The severity of the impact can be correlated with the likely severity of a head injury that the wearer may have sustained because of the impact. Such information enables medical personnel to quickly assess the wearer's need for medical assistance due to a head injury, which is useful for triage purposes. Although indicator “lights” have been discussed, it is noted that any other appropriate indicator can be used to convey the impact information.
With continued reference to
In the illustrated embodiment, the electronic location system 56 includes a satellite beacon 58, a homing beacon 60, and a global positioning system (GPS) receiver 62. The satellite beacon 58 is a radio frequency (RF) transmitter that is configured to transmit an RF distress signal to one or more satellites, such as the satellites of the Cospas-Sarsat satellite system. By way of example, the distress signal comprises 0.5 second, 406 MHz pulses that are transmitted once every 50 seconds. Once received by the satellite(s), the distress signal can be forwarded to the relevant search and rescue personnel, who can be dispatched to locate and assist the wearer. In cases such as that illustrated in
While the satellite beacon 58 is intended to identify the geospatial location of the wearer to a centralized rescue organization such as Cospas-Sarsat, the homing beacon 60 is intended to identify the precise location of the wearer to local search and rescue personnel who are within the identified geospatial location. In some embodiments, the homing beacon 60 is a further RF transmitter that is configured to transmit a low-frequency RF homing signal that can be detected by handheld receivers carried by search and rescue personnel within the vicinity of the wearer. In some embodiments, the homing signal comprises a 0.5 second, 87 kHz pulse that is transmitted every 30 seconds and that can be detected by a handheld receiver from a distance of up to approximately 100 yards. In some embodiments, the homing signal can be modulated to carry information about the wearer, such as the data collected by the body parameter sensor 44 and/or the impact sensor 46. In other embodiments, the homing beacon 60 can be an electromagnetic device that generates magnetic wave signals that more easily pass through obstructions, such as rubble and other debris. Like the RF homing signal, the magnetic wave signal can be detected using an appropriate handheld receiver and can be modulated to carry information about the wearer.
It is noted that the helmet 10 can include further electronics, if desired. For example, the helmet 10 can include an alternative chinstrap that incorporates such electronics.
The illustrated chinstrap 80 further includes flexible central straps 88 with which the chinstrap 80 can be fastened below the jaw. A buckle 90 is provided to attach the central straps 88 together and includes a sensor 92 that can detect when the chinstrap 80 is fastened or not. Also attached to one of the central straps 88 is a microphone 94 that can be used by the wearer to communicate with search and rescue personnel. In alternative embodiments, the microphone 94 can be mounted to the helmet shell 12. In some embodiments, the chinstrap 80 or helmet shell 12 can also be provided with a speaker (not shown) to enable two-way communications. In further embodiments, one or more of the body parameters described above as being captured by the body parameter sensor 20 can be captured by one or more sensors incorporated into the chinstrap 80.
This application claims priority to co-pending U.S. Provisional Application Ser. No. 61/974,736, filed Apr. 3, 2014, which is hereby incorporated by reference herein in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US15/24240 | 4/3/2015 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
61974736 | Apr 2014 | US |