Embodiments herein relate to a protective liner, such as for use in helmets and other articles.
Contemporary helmets are primarily designed to protect a skull from fracture during impact. The brain is however most sensitive to rapid head rotation, or rotational acceleration, which is readily caused by an oblique impact to the head.
Embodiments will be readily understood by the following detailed description in conjunction with the accompanying drawings and the appended claims. Embodiments are illustrated by way of example and not by way of limitation in the figures of the accompanying drawings.
In the following detailed description, reference is made to the accompanying drawings which form a part hereof, and in which are shown by way of illustration embodiments that may be practiced. It is to be understood that other embodiments may be utilized and structural or logical changes may be made without departing from the scope. Therefore, the following detailed description is not to be taken in a limiting sense.
Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding embodiments; however, the order of description should not be construed to imply that these operations are order-dependent.
The description may use perspective-based descriptions such as up/down, back/front, and top/bottom. Such descriptions are merely used to facilitate the discussion and are not intended to restrict the application of disclosed embodiments.
The terms “coupled” and “connected,” along with their derivatives, may be used. It should be understood that these terms are not intended as synonyms for each other. Rather, in particular embodiments, “connected” may be used to indicate that two or more elements are in direct physical contact with each other. “Coupled” may mean that two or more elements are in direct physical contact. However, “coupled” may also mean that two or more elements are not in direct contact with each other, but yet still cooperate or interact with each other.
For the purposes of the description, a phrase in the form “A/B” or in the form “A and/or B” means (A), (B), or (A and B). For the purposes of the description, a phrase in the form “at least one of A, B, and C” means (A), (B), (C), (A and B), (A and C), (B and C), or (A, B and C). For the purposes of the description, a phrase in the form “(A)B” means (B) or (AB) that is, A is an optional element.
The description may use the terms “embodiment” or “embodiments,” which may each refer to one or more of the same or different embodiments. Furthermore, the terms “comprising,” “including,” “having,” and the like, as used with respect to embodiments, are synonymous, and are generally intended as “open” terms (e.g., the term “including” should be interpreted as “including but not limited to,” the term “having” should be interpreted as “having at least,” the term “includes” should be interpreted as “includes but is not limited to,” etc.).
With respect to the use of any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity.
In various embodiments, methods, apparatuses, and systems for mitigation of rotational acceleration are provided. Embodiments herein employ a novel strategy based on a floating cellular liner that acts as a torsional suspension system to dampen rotational acceleration, such as head acceleration in a helmet, in response to an oblique impact. Specifically, the torsional suspension consists of an anisotropic cellular liner that is at least partially recessed inside a rigid polymer foam shell, relative to which the cellular liner can simultaneously undergo translation and in-plane compression.
Previous attempts have employed other strategies for mitigation of rotational head acceleration to reduce the risk of brain injury that are considerably less effective. For example, intermediate layers have been used that are not permitted to slide relative to adjacent layers. Such solutions rely only on shear deformation within the layer. Other attempts use a sliding layer disposed between an inner and outer helmet shell to facilitate displacement of the outer shell relative to the inner shell. However, the intermediate layer is not capable of absorbing rotational energy by in-plane compression.
Embodiments herein provide an impact absorption system that acts as a torsional suspension system for use in protective helmets to shield the head from linear and rotational accelerations. A brain is particularly vulnerable to rotational head accelerations, but contemporary helmets lack an effective mechanism to dampen rotational head accelerations in oblique impacts. In various embodiments, the helmets disclosed herein include a torsional suspension consisting of an anisotropic cellular liner that is at least partially recessed in an adjacent shell made of rigid expanded polymer foam. The cellular liner is separated from the polymer shell by polymer film, or another barrier layer, to create a floating cellular liner that can translate relative to the adjacent polymer shell. Thus, an oblique impact to the helmet will cause relative sliding between the cellular liner and the polymer shell, simultaneously to in-plane compression of the cellular liner. In combination, this simultaneous in-plane compression and sliding will absorb torsional energy to reduce rotational head acceleration.
Embodiments herein provide protective helmets designed to lessen the amount of harmful acceleration (both straight linear and rotational) that reaches the brain of a wearer during an impact to the helmet. In various embodiments, the helmets may include the torsional suspension system for both cushioning and absorbing linear and rotational energy, thus reducing peak acceleration or deceleration of a wearer's head in an impact. In various embodiments, this reduction in head acceleration and deceleration may result in a corresponding reduction in the magnitude of acceleration or deceleration experienced by the brain, reducing the risk and/or severity of traumatic brain injury (TBI).
In various embodiments, the helmets disclosed herein may include a torsional suspension consisting of an anisotropic cellular liner that is at least partially recessed in an adjacent shell made of expanded polymer foam. In embodiments, the cellular liner is separated from the polymer shell, such as by a polymer film, to facilitate relative sliding. Thus, an oblique impact to the helmet will cause relative sliding between the cellular liner and the polymer shell, simultaneously to in-plane compression of a portion of the cellular liner. In combination, this simultaneous in-plane compression and sliding will absorb torsional energy to reduce rotational head acceleration. The cellular liner is retained within the recess of the polymer shell without the necessity of using additional fasteners, adhesive etc. Rather, the cellular liner is sized to fit snug within the recess and to be retained within the recess as a friction fit with the shell or foam. In embodiments, only a minor amount of pressure is used to reduce the size of the cellular liner, temporarily, to place it within the recess. Once the pressure is released, the cellular liner presses against the side walls of the recess and remains in place. By eliminating additional fasteners, adhesive, etc., translation of the cellular liner within the recess is not encumbered.
In various embodiments, in addition to providing a torsional suspension system, the cellular liner may also compress in a direction normal to its surface to deplete impact energy directed normal to the helmet surface.
In various embodiments, the cellular liner may also shear in part by folding or sideways collapse of its cellular structure to further mitigate torsional and normal impact loads.
In various embodiments, the cellular liner may be comprised of a lightweight aluminum structure. One of skill in the art will appreciate that other lightweight, compressible materials may be employed, such as cardboard or paper pulp, various synthetic or natural foams, plastic, polymers, and the like.
In various embodiments, the cellular liner may be comprised of a cell geometry with auxetic properties to allow for spherical deformation of the cellular liner without distorting the regular cell geometry. By using a cellular liner with auxetic properties, the cellular liner may be shaped to fit into curved recesses, as would be typical of many helmets and other articles.
In various embodiments, the torsional suspension system of the helmets disclosed herein may be used to construct any type of protective headgear, such as safety helmets, motorcycle helmets, bicycle helmets, ski helmets, lacrosse helmets, hockey helmets, football helmets, batting helmets for baseball and softball, headgear for rock and mountain climbers, headgear for boxers, construction helmets, helmets for defense and military applications, and headgear for underground activities. While helmets are described with respect to particular embodiments herein, various features herein are applicable to other articles, such as other types of protective gear, such as face masks, elbow pads, knee pads, shoulder pads, shin guards, and the like, potential impact surfaces such as various surfaces (internal or external) of a vehicle, including a dashboard and crushable surfaces on automotive brake pedals. Alternatively, embodiments described herein may also be used in association with soles of safety shoes that would dampen the impact in case of a fall from height.
The impact damping system 100 is comprised of an anisotropic cellular liner 101 that is partially recessed inside an adjacent liner 102 made of rigid polymer foam. A barrier layer 103 is located at the interface between cellular liner 101 and rigid foam liner 102 to facilitate gliding of the cellular liner 101 parallel to rigid foam liner 102. This layer 103 also prevents cells 104 of cellular liner 101 from penetrating into the surface of foam liner 102, which would restrict relative sliding between cellular liner 101 and the foam liner 102. Recess 105 provides a geometric constraint of at least a part of the periphery of the cellular liner, with recess 105 having both a base surface and side walls defining the recess or pocket in which the cellular liner fits and is constrained.
In embodiments, layer 103 may be constrained within the pocket by interaction with recess 105 or by affixation, such as adhesive, or it may be a coating, or, in other embodiments, layer 103 may essentially be free to move, but be constrained within recess 105 by the presence of cellular liner 101 in recess 105.
Out-of-plane compression and shear deformation of cellular liner 101 primarily occurs at the impact site between sections 109 and 111, and contributes to impact energy dissipation by crumpling and shear folding of cells 107 similar to a traditional crumple zone. In summary, this impact damping system delivers a unique combination of impact damping strategies to absorb normal and tangential impact forces during an oblique impact. It dampens the impact load component that acts parallel to cellular liner 101 by in-plane compression of a section 109 of cellular liner 101. It dampens the impact load component that acts perpendicular to cellular liner 101 by out-of-plane compression of cellular liner 101 at the vicinity of the impact location 107. It furthermore supports shear deformation of cellular liner 101 in the vicinity of impact location 107.
Cellular liner 101 has anisotropic properties with a compressive stiffness that is lower in-plane than out-of-plane. Consequently, the in-plane compression caused by considerable gliding and densification of cellular liner 101 is considerably greater than the out-of-plane compression of cellular liner 101 at impact location 107.
In embodiments, a barrier layer may be a film, sheet, or coating, such as polymer film.
In various embodiments, outer helmet layer 106 may be sufficiently stable, rigid, and/or non-compressible to distribute impact forces over an extended area. One of skill in the art will appreciate that the shapes depicted in the figures are merely exemplary, and that the helmet shape can vary depending on the particular sporting event or activity for which the helmet is designed. Furthermore, helmets in accordance with the present disclosure may include additional features, such as a cage for a hockey helmet, a face mask for a football helmet, a visor for a motorcycle helmet, and/or retention straps, chin straps, and the like. Although not shown in the illustrated embodiment, cellular liner 201, foam liner 202, and plastic film may include one or more ventilation openings to permit air flow for cooling the wearer's head. Although not shown in the illustrated embodiment, the cell walls of cellular liner 201 may have geometric perturbations that facilitate shear deformation and in-plane compression of cellular liner 201.
While
Although certain embodiments have been illustrated and described herein, it will be appreciated by those of ordinary skill in the art that a wide variety of alternate and/or equivalent embodiments or implementations calculated to achieve the same purposes may be substituted for the embodiments shown and described without departing from the scope. Those with skill in the art will readily appreciate that embodiments may be implemented in a very wide variety of ways. This application is intended to cover any adaptations or variations of the embodiments discussed herein. Therefore, it is manifestly intended that embodiments be limited only by the claims and the equivalents thereof.
The present application claims priority to U.S. Provisional Patent Application No. 62/303,884, filed Mar. 4, 2016, entitled “Protective Liner for Helmets and Other Articles,” the entire disclosure of which is hereby incorporated by reference in its entirety. The present application is also a Continuation-in-Part of and claims priority to U.S. patent application Ser. No. 13/803,962, filed Mar. 14, 2013, entitled “Protective Helmet for Mitigation of Linear and Rotational Acceleration,” which claims priority to U.S. Provisional Patent Application No. 61/670,258, filed Jul. 11, 2012, entitled “Protective Helmet for Mitigation of Linear and Rotational Acceleration,” the entire disclosures of which are hereby incorporated by reference in their entirety.
Number | Name | Date | Kind |
---|---|---|---|
3577305 | Hines | May 1971 | A |
3877076 | Summers | Apr 1975 | A |
3999220 | Keltner | Dec 1976 | A |
4213202 | Larry | Jul 1980 | A |
4227593 | Bricmont et al. | Oct 1980 | A |
4526421 | Brennan et al. | Jul 1985 | A |
4710984 | Asper | Dec 1987 | A |
5025504 | Benston et al. | Jun 1991 | A |
5561866 | Ross | Oct 1996 | A |
5700545 | Audi et al. | Dec 1997 | A |
6065158 | Rush, III | May 2000 | A |
6332226 | Rush, III | Dec 2001 | B1 |
6387200 | Ashmead et al. | May 2002 | B1 |
6658671 | Von Holst | Dec 2003 | B1 |
6996856 | Puchalski | Feb 2006 | B2 |
7076811 | Puchalski | Jul 2006 | B2 |
7774866 | Ferrara | Aug 2010 | B2 |
7802320 | Morgan | Sep 2010 | B2 |
7930771 | Depreitere | Apr 2011 | B2 |
8347421 | Krueger | Jan 2013 | B2 |
8756719 | Veazie | Jun 2014 | B2 |
9032558 | Leon | May 2015 | B2 |
9060561 | Knight | Jun 2015 | B2 |
9408423 | Guerra | Aug 2016 | B2 |
20030140400 | Ho | Jul 2003 | A1 |
20040025229 | Takahashi et al. | Feb 2004 | A1 |
20040117896 | Madey | Jun 2004 | A1 |
20040223876 | Kirollos et al. | Nov 2004 | A1 |
20040250340 | Piper | Dec 2004 | A1 |
20050241048 | Cattaneo | Nov 2005 | A1 |
20050246824 | Berger | Nov 2005 | A1 |
20060059605 | Ferrara | Mar 2006 | A1 |
20060059606 | Ferrara | Mar 2006 | A1 |
20060148919 | Maurer | Jul 2006 | A1 |
20070000032 | Morgan | Jan 2007 | A1 |
20070068755 | Hawkins | Mar 2007 | A1 |
20080066217 | Depreitere | Mar 2008 | A1 |
20090266663 | Lin | Oct 2009 | A1 |
20090320185 | Hassler | Dec 2009 | A1 |
20100000009 | Morgan | Jan 2010 | A1 |
20100299812 | Maddux | Dec 2010 | A1 |
20110107503 | Morgan | May 2011 | A1 |
20110117310 | Anderson | May 2011 | A1 |
20110171420 | Yang | Jul 2011 | A1 |
20120198604 | Weber | Aug 2012 | A1 |
20130019384 | Knight | Jan 2013 | A1 |
20130019385 | Knight | Jan 2013 | A1 |
20130042397 | Halldin | Feb 2013 | A1 |
20130061371 | Phipps | Mar 2013 | A1 |
20130122256 | Kleiven | May 2013 | A1 |
20130185837 | Phipps | Jul 2013 | A1 |
20130333100 | Erb | Dec 2013 | A1 |
20140013491 | Hoshizaki | Jan 2014 | A1 |
20140013492 | Bottlang et al. | Jan 2014 | A1 |
20140045962 | Schofalvi et al. | Feb 2014 | A1 |
20140130239 | Preston-Powers | May 2014 | A1 |
20140208486 | Krueger | Jul 2014 | A1 |
20150047110 | Chilson | Feb 2015 | A1 |
20150223547 | Wibby | Aug 2015 | A1 |
20150264991 | Frey | Sep 2015 | A1 |
20150313305 | Daetwyler | Nov 2015 | A1 |
20160021965 | Mayerovitch | Jan 2016 | A1 |
20160073723 | Halldin | Mar 2016 | A1 |
Number | Date | Country |
---|---|---|
202019831 | Nov 2011 | CN |
8409316 | Jul 1984 | DE |
2389822 | Nov 2011 | EP |
2001-45526 | Jun 2001 | WO |
200145526 | Jun 2001 | WO |
2007-042930 | Apr 2007 | WO |
2011-139224 | Nov 2011 | WO |
2007042930 | Nov 2011 | WO |
2011-148146 | Dec 2011 | WO |
2011139224 | Dec 2011 | WO |
WO 2012-020066 | Feb 2012 | WO |
2012-109381 | Aug 2012 | WO |
2012109381 | Aug 2012 | WO |
Number | Date | Country | |
---|---|---|---|
62303884 | Mar 2016 | US | |
61670258 | Jul 2012 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13803962 | Mar 2013 | US |
Child | 15449898 | US |