Protective pad using a damping component

Information

  • Patent Grant
  • 10159295
  • Patent Number
    10,159,295
  • Date Filed
    Thursday, March 8, 2012
    12 years ago
  • Date Issued
    Tuesday, December 25, 2018
    6 years ago
Abstract
Embodiments of the present invention relate to a protective pad that is comprised of an impact shell and a damping component. The damping component may be formed by a plurality of connecting members that are separated from the impact shell by a plurality of extension members that extend between the damping lattice and the impact shell. The damping component may also be formed by a sheet-like form that is separated from the impact shell by a plurality of extension members that extend between the damping sheet and the impact shell. The damping component is formed from an elastomer that aids in absorbing a portion of an impact force that is distributed across the damping component by the impact shell. The geometry of the damping component may be configured to provide a difference of impact attenuation at specific locations of the protective pad.
Description
BACKGROUND

Protective pads are traditionally used to limit an impact force experienced by a person or an object. Some examples of protective padding rely on foam-like materials that are placed between a protected surface and a point of impact. Traditional foam may have limitations with respect to repeated cleaning, such as high-temperature washing, bulkiness, and manufacturing limitations.


SUMMARY

Embodiments of the present invention relate to a protective pad that is comprised of an impact shell and a damping component. The damping component may be formed by a plurality of connecting members that are separated from the impact shell by a plurality of extension members that extend between a damping lattice and the impact shell. The damping component may additionally or alternatively be formed by a sheet-like form that is separated from the impact shell by a plurality of extension members that extend between the solid sheet and the impact shell. The damping component absorbs a portion of an impact force that is distributed across the damping component by the impact shell. The geometry of the damping component may be configured to provide a desired level of impact attenuation at specific locations of the protective pad.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used as an aid in determining the scope of the claimed subject matter.





BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGS

Illustrative embodiments of the present invention are described in detail below with reference to the attached drawing figures, which are incorporated by reference herein and wherein:



FIG. 1 illustrates an exemplary protective pad, in accordance with aspects of the present invention;



FIG. 2 depicts a medial perspective view of the protective pad, in accordance with aspects of the present invention;



FIG. 3 depicts a front perspective view of the protective pad, in accordance with aspects of the present invention;



FIG. 4 depicts a back perspective of the protective pad, in accordance with aspects of the present invention;



FIG. 5 depicts a perspective view of the damping lattice, in accordance with aspects of the present invention;



FIG. 6 depicts a profile view of a portion of an exemplary protective pad, in accordance with aspects of the present invention;



FIG. 7 depicts a damping lattice configuration having commonly sized extension member and extension member voids at each intersection of connecting members, in accordance with aspects of the present invention;



FIG. 8 depicts a damping lattice configuration comprised of four similarly sized connecting members, in accordance with an exemplary aspect of the present invention;



FIG. 9 depicts a damping lattice configuration comprising multiple sized extension members and extension member voids, in accordance with aspects of the present invention;



FIG. 10 depicts a damping lattice configuration comprised of a plurality of connecting members and a plurality of extension members, which in combination form a void, in accordance with aspects of the present invention;



FIG. 11 depicts a damping lattice configuration comprised of curved connecting/joining members, in accordance with an exemplary aspect of the present invention;



FIG. 12 depicts a damping lattice configuration comprised of organic shaped connecting members, in accordance with an exemplary aspect of the present invention;



FIG. 13 depicts a damping lattice configuration comprised of organic-shaped and linearly-shaped connecting members, in accordance with an exemplary aspect of the present invention;



FIG. 14 depicts a top edge toward bottom edge view of a protective pad portion, in accordance with aspects of the present invention;



FIG. 15 depicts exemplary protrusions on a damping lattice for mating with exemplary channels in an impact shell for coupling the portions, in accordance with aspects of the present invention;



FIG. 16 depicts exemplary protrusions on a damping lattice for serving as a coupling member through one or more receiving chambers in an impact shell, in accordance with aspects of the present invention;



FIG. 17 depicts a cross-section view of a damping lattice coupled with an impact shell utilizing a gasket-like fit along a perimeter, in accordance with aspects of the present invention;



FIG. 18 depicts an exemplary protective pad with damping lattice integrated straps, in accordance with aspects of the present invention; and



FIG. 19 depicts a perspective view of the damping component formed with a sheet-like form, in accordance with aspects of the present invention.





DETAILED DESCRIPTION

The subject matter of embodiments of the present invention is described with specificity herein to meet statutory requirements. However, the description itself is not intended to limit the scope of this patent. Rather, the inventors have contemplated that the claimed subject matter might also be embodied in other ways, to include different elements or combinations of elements similar to the ones described in this document, in conjunction with other present or future technologies.


The present invention relates to a protective pad that is comprised of an impact shell and a damping component. The damping component may be formed by a plurality of connecting members that are separated from the impact shell by a plurality of extension members. The damping component may additionally or alternatively be formed by a sheet-like form that is separated from the impact shell by a plurality of extension members that extend between the solid sheet and the impact shell. The damping component absorbs a portion of an impact force that is distributed across the damping component by the impact shell. The geometry of the damping component may be configured to provide a desired level of impact attenuation at specific locations of the protective pad.


Accordingly, in one aspect, the present invention provides a protective pad. The protective pad is comprised of an impact shell having an exterior surface and an opposite interior surface. Further, the protective pad is comprised of a damping component positioned proximate the interior surface of the impact shell. The damping component is formed of an elastomeric material. The damping component is comprised of a plurality of interconnected joining members having an outer surface and an opposite inner surface and a plurality of extension members extending beyond the inner surface towards the interior surface of the impact shell.


In another aspect, the present invention provides a protective pad comprising an impact shell having an exterior surface and an opposite interior surface and a medial edge, an opposite lateral edge, a top edge, and an opposite bottom edge. The interior surface of the impact shell forms a curved profile extending outwardly in a direction of the outer surface from the medial edge to the lateral edge. The impact shell is formed from a material that is different from a damping component. However, it is contemplated that the impact shell and the damping component may be formed from a common material. The protective pad is also comprised of the damping component that is positioned proximate the interior surface of the impact shell. The damping component is comprised of a plurality of interconnected joining members having an outer surface and an opposite inner surface; a plurality of voids extending between the outer surface and the inner surface formed by the plurality of joining members; and a plurality of extension members extending between the inner surface of the damping lattice and the interior surface of the impact shell.


A third aspect of the present invention also provides a protective pad comprising a rigid impact shell having an exterior surface and an opposite interior surface curved between a medial edge and an opposite lateral edge. The protective pad is further comprised of a damping component coupled to the interior surface of the impact shell. The damping component may be formed of a thermoplastic elastomer. The damping component is comprised of a plurality of interconnected joining members having an outer surface and an opposite inner surface; a plurality of voids extending between the outer surface and the inner surface formed by the plurality of joining members; and a plurality of cylindrically-shaped extension members. Each of the plurality of cylindrically-shaped extension members extends from the inner surface of the interconnected joining members to a distal end. The distal end of one or more of the cylindrically-shaped extension members is coupled to the rigid impact shell. However, it is contemplated that the extension members may be of any shape and have any cross-sectional shape (e.g., oval, square, rectangular, organic, triangular, and star). Further, it is contemplated that the damping component is coupled with the impact shell in a variety of manners, such as by compression, gasket-like structures, ultrasonic welding, adhesives, mechanical connections, and the like. Similarly, it is contemplated that any portion of the damping component may be coupled with any portion of the impact shell.


A fourth aspect of the present invention provides a protective pad comprising an impact shell having an exterior surface and an opposite interior surface. The protective pad is further comprised of a damping component positioned proximate the interior surface of the impact shell. The damping component is formed of an elastomeric material. The damping component is comprised of a sheet-like form having an outer surface and an opposite inner surface; and, a plurality of extension members extending beyond the inner surface towards the interior surface of the impact shell.


Having briefly described an overview of embodiments of the present invention, a more detailed description follows.


The protective pad is contemplated as providing protection to one or more portions of a body or object. For example, it is contemplated that a protective pad implementing one or more aspects provided herein may be utilized to provide protection and/or force damping functions to a variety of body parts. Examples include, but are not limited to, shin guards, knee pads, hip pads, abdominal pads, chest pads, shoulder pads, arm pads, elbow pads, and implementation in the protection of the head (e.g., helmets). Additionally, it is contemplated that this concept is utilized on inanimate objects (e.g., posts, walls, vehicles). Therefore, it is contemplated that aspects provided herein may be useful in a variety of situations at a variety of locations.


A protective pad, as provided herein, is an article for reducing an effect of an impact force on an associated portion of a wearer. For example, a shin guard utilizing features discussed herein may reduce the perception of energy imparted on the shin region of a user through the use of the protective pad. This change in perception may be accomplished in a variety of ways. For example, the energy applied at a point of impact may be distributed over a greater surface area, such as through a rigid impact shell. Further, it is contemplated that a dissipating/absorbing material may provide a compressive function for absorbing and/or dissipating a portion of the impact force. Traditionally, a foam material may be used to provide this absorption-type functionality. However, foam-like material may have several disadvantages, such as poor response to washing (e.g., tendency to break down or otherwise lose protective qualities with repeated washes), the inability to transfer moisture and air from an inner surface to an outer surface, and weight issues.


Therefore, aspects of the present invention look to provide at least some of the advantages of a protective pad (e.g., energy distribution and energy absorption) while reducing some of the disadvantages associated with a traditional protective pad.



FIG. 1 illustrates an exemplary protective pad 100 in accordance with aspects of the present invention. For example, the protective pad 100 is depicted as a shin guard in an as-worn position on a leg of a wearer. In this example, the shin guard protective pad 100 has a top edge 110, a bottom edge 112, a lateral edge 108, and a medial edge (not visible as depicted). The protective pad 100 curves from the medial edge to the lateral edge 108 to form a curved outer (and interior) surface about the wearer's shin region of her leg.


The protective pad illustrated in FIG. 1 is further comprised of a first strap 114 and a second strap 116. As will be discussed in greater detail with respect to FIG. 18, the straps may be formed as part of the damping component. Further, it is contemplated that the straps may extend from a first side (e.g., medial side) and couple on an opposite side (e.g., lateral side). The coupling of the strap may occur with the impact shell 102 and/or a portion of the damping component.


While the protective pad 100 of FIG. 1 is depicted as being secured to the wearer's leg utilizing a plurality of straps, it is contemplated that an alternative securing mechanism may be implemented. For example, the protective pad may be maintained in a position by a pocket in other articles of clothing, permanently/temporarily coupled to one or more other articles (e.g., pants, socks, shirt, and girdle), temporary adhesives, sleeve-like articles, and the like. As will be discussed hereinafter, an ability of the protective pad 100 to move (e.g., slide, shift, compress, deform) slightly with an impact force may provide advantages achieved by aspects discussed herein; therefore, it is contemplated that a securing mechanism may allow for that type of movement.



FIG. 2 depicts a medial perspective view of the protective pad 100, in accordance with aspects of the present invention. In particular, an impact shell 101 is depicted. The impact shell 101 provides at least a distributive function (among other functions) to the protective pad 100. For example, the impact shell 101 is contemplated as being formed from a rigid material, such as a polymer (e.g., polypropylene, woven polypropylene, polyethylene, polystyrene, polyester, polycarbonate, polyamide, and the like), carbon fiber, metals (e.g., aluminum, titanium), natural materials (e.g., bamboo), and other materials. Further, it is contemplated a plurality of materials may be used in the formation of the impact shell 101. For example, lamination of sheet-like materials may form an impact shell with a variety of characteristics. Additionally, it is contemplated that various regions of a shin guard may be formed by different materials (e.g., along a centerline a denser portion/type of material than along the perimeter regions). Further, it is contemplated that multiple independent portions may, in combination, form the impact shell. Each of the independent portions may be formed from one or more materials that may be similar or different.


The impact shell 101 is depicted in this example as having a curved exterior surface 102 that curves from the medial edge 106 to a lateral edge. In an exemplary aspect, the interior surface (not depicted) curves in a near parallel manner as the exterior surface 102 (outer surface). However, it is contemplated that based on a varied thickness of the impact shell 101 along the length of the curve, the interior and the exterior surface 102 may not be parallel (e.g., have a common radius). Further, in an exemplary aspect, a consistent curved profile is not achieved across the length extending between the medial edge 106 and a lateral edge based on the organic shape of the underlying body part when in an as-worn position. Therefore, when discussed herein, the curved nature of the impact shell (and the damping component to be discussed hereinafter) is not limited to a continuously constant curve, but instead to the general curve-like aspect implemented to protect an underlying portion of a wearer.



FIG. 3 depicts a front perspective view of the protective pad 100, in accordance with aspects of the present invention. The protective pad 100 is depicted with the exterior surface 102 of the impact shell 101 forward facing. The impact shell 101, as previously discussed, has a perimeter defined, at least in part, by the top edge 110, the lateral edge 108, the bottom edge 112, and the medial edge 106. As used herein, the terms medial and lateral are relative terms that merely are intended to convey a concept of a first side edge and a second side edge. This terminology is used to bring awareness to the mirror-imaging that may be used for a protective pad intended for use on a left portion (e.g., left leg) of the body and a protective pad intended for use on a right portion (e.g., right leg) of the body.


While not depicted, it is contemplated that the impact shell (and/or other portions of the protective pad) may be formed from two or more portions. For example, it is contemplated that a first portion forms a lateral portion and a second portion forms a medial portion of the impact shell. The two portions may be flexibly coupled using one or more materials and/or mechanisms. In an exemplary aspect, it is contemplated that an underlying damping component may form at least a portion of a coupling mechanism to maintain the first portion and the second portion in a desired relative orientation. Further, it is contemplated that a first portion may be formed from a first material and a second portion may be formed from a second material. For example, a location on a protective pad that demands a greater reliance to impact forces may be formed from a first material that is more reliant, but more dense than a second material forming a second portion in a less prone to impact location. It is contemplated that materials, sizes, and locations may be adjusted to achieve a variety of benefits, such as durability, weight savings, ventilation, and the like.



FIG. 4 depicts a back perspective of the protective pad 100, in accordance with aspects of the present invention. In this example, a damping component 201 is illustrated. The damping component 201 is comprised of a plurality of joining members 202 forming a network of interconnected members that, in combination, form a lattice-like structure. For example, a mesh-like geometric pattern may be formed by the joining members. Various geometric configurations of joining members will be discussed in closer detail hereinafter with respect to FIGS. 7-10.


An exemplary damping component 201 provides a damping effect for an impact force experienced by the impact shell 101. For example, the damping component 201 may absorb and/or dissipate some of the impact energy prior to its being transferred to the wearer of the protective pad 100. This damping, dissipation, and/or absorption effect may be accomplished through a variety of characteristics. For example, it is contemplated that an elastomeric material forms the damping component 201 in an exemplary aspect. An elastomeric material may include a thermoplastic elastomer, a thermoset elastomer, rubber, synthetic rubber, and other materials that demonstrate a low Young's modulus and a high yield strain. Examples of elastomer material include, but are not limited to, a GLS 311-147 thermoplastic elastomer available from the PolyOne Corporation of Avon Lake, Ohio. An exemplary elastomer may exhibit a tensile strength (yield, 23° C.) ranging from 0.8-8.7 MPa, a Shore Hardness (A) of 16-56, and an elongation at break (@23° C.) of up to 1200% (e.g., about 1000%, 800%,). However, while exemplary ranges are provided, it is contemplated that additional materials exhibiting characteristics greater than or less than one or more of the provided ranges in one or more of the provided characteristics may also/alternatively be utilized. Further, alternative materials are contemplated.


In addition to dissipating, damping, and/or absorbing impact energy through a material selection, a geometric organization of the joining members may also facilitate reducing a perceived impact force. As will be discussed hereinafter with respect to FIGS. 7-10, the thickness, length, void size, and void geometry may all affect the perceived level of impact energy. For example, longer joining members forming the lattice structure may result in a “looser” lattice that is more flexible and less resistant to deformation. Similarly, a diamond-shaped void between the joining members may be more susceptible to deformation in a skewing direction than a triangle-like void. The skewing of the lattice may be more effective for absorbing off-axis impact forces (e.g., tangential impacts to the impact shell). Additionally, the thicker the joining members forming the damping lattice, the more resistant to deformation the damping component may be (and therefore providing less damping characteristics as perceived by a wearer). Additionally, as will be discussed, the offset of an extension member, the cross-sectional shape of an extension member and the size/shape of an extension member void may all affect a perceived level of impact force.


The damping component 201 of FIG. 4 depicts an outer surface 204 formed by a plurality of interconnected joining members 202. The joining members 202 may be formed in a common manufacturing process, such as injection molding, such that the joining members as-a-whole form a lattice network of the damping component 201. The joining members 202 define a plurality of voids, such as a void 216. The void 216 extends through the outer surface 204 and an inner surface 206 (not identified) of the joining members. For example, when two or more joining members form a two-dimensional shape, which may be organic in nature and/or linear in nature, that internal void not occupied by a portion of one of the members is an exemplary void.


At an intersection of two or more joining members an extension member 208 may be located (but not in all aspects), as will be discussed in greater detail with respect to FIG. 5 hereinafter. Further, associated with one or more extension members, an extension member void 214 may extend through the extension member and the joining member outer surface 204. Similar to the extension member, the extension member void will be discussed in greater detail hereinafter.


The outer surface 204 forms a user-contacting surface, in an exemplary aspect. For example, when in an as-worn position, the outer surface 204 may be user contacting (e.g., positioned adjacent to the user's body). However, it is contemplated that one or more additional articles (e.g., sock, pant leg, sleeve, lining, water absorbing materials, adhesives, tacky materials, and the like) may be disposed between the outer surface 204 and the wearer's body when in an in-use position. Therefore, the term “user-contacting surface” is generally descriptive of a direction of orientation when in an as-used state, but not limiting to requiring direct user contact.


As depicted in FIG. 4, the damping component 201 may generally conform to the interior surface of the impact shell 101 geometry. For example, if the interior surface of the impact shell 101 has a curved profile, the damping component 201, when coupled to the interior surface, assumes a similar curved profile. However, it is contemplated that one or more geometric attributes of the damping component 201 may introduce a different profile (e.g., variable offsets by extension members, variable joining member thickness, points of coupling between the damping component and the interior surface), as will be discussed in FIG. 14 hereinafter.


An extension member 208 may extend from the inner surface (206 in FIG. 6) of the damping component 201 outwardly toward the inner surface (104 in FIG. 6) of the impact shell 101. An extension member void may extend through at least a portion of the extension member. For example, an extension member void 214 is a cavity of space that passes through the outer surface of the damping component 201 through the offset length of the extension member and out the distal end of the extension member. However, it is contemplated that an extension member void may only extend a portion of the extension member and/or connecting member. Further, it is contemplated that the extension member void may not be present in one or more extension members. As with the extension members, it is contemplated that an extension member void may have any shape, size, and/or orientation. For example, it is contemplated that an extension member void may have a similar cross-sectional shape to an associated extension member. Additionally, it is contemplated that an extension member void may have a different cross-section shape from an associated extension member. Examples of cross sectional shapes include, but are not limited to, circle, oval, rectangular, organic in nature, star-like, triangular, or any other shape.


An extension member void may provide enhanced impact attenuation characteristics through the introduction of crumple zone-type functionality. For example, the inclusion of a void-like space provides an area in which a portion of the damping component 201 (extension member and/or connecting member) may deform to absorb an impact force. Further, it is contemplated that the inclusion of the extension member voids may provide a mass reduction option that enhances the usability and desirability of the resulting protective pad. Further yet, it is contemplated that an extension member void may provide a channel through which a bonding agent is introduced to the impact shell for maintaining the impact shell and damping component in a coupled state.



FIG. 4 also depicts four exemplary coupling points 118, 120, 122, and 124. The coupling points may include locations at which the damping component is coupled to the impact shell. For example, it is contemplated that the coupling points may represent points of a bonding agent, ultrasonic welding, mechanical fasteners, compression fittings, protrusions extending through the impact shell, and the like. While four exemplary coupling points are depicted, it is contemplated that any number and/or location of coupling points may be utilized. Further, it is contemplated that the coupling points are instead coupling areas that span in a variety of shapes, sizes, and directions (e.g., linear, perimeter, shape contoured, and the like).


In an exemplary aspect, the damping component may be coupled with the impact shell at one or more coupling points (or areas) by way of an overmold process. For example, it is contemplated that a material (e.g., TPE) different from the impact shell may be overmolded to the impact shell in an area at which the damping component is to be coupled. For example, it is contemplated that an inner surface of the impact shell may be overmolded with a TPE film (or any material suitable for coupling with the damping component). The damping component, which may be formed from a TPE material, may then be ultrasonically welded to the TPE film of the impact shell. The TPE film may provide a material to which the damping component may be coupled when the underlying impact shell material is less capable.



FIG. 5 depicts a perspective view of the damping component formed with a lattice, in accordance with aspects of the present invention. The inner surface 206 is exposed along with a number of exemplary extension members 208, extension member voids 214, and voids 216 between joining members 202. Also illustrated is the concept of an offset 210. The offset 210 is the length that an extension member extends from the inner surface 206. This offset distance may form a compressible void between the connecting members of the damping lattice and the impact shell. While the extension members 208 are depicted as having a cylindrical shape, it is contemplated that any shape may be implemented. For example, a conical shape having a base extending from a lattice or sheet-like form, a conical shape having a distal end formed by the base, a pyramid shape (with a base at any location), a spherical shape, a prismatic shape, a cuboid shape, any-numbered-ahedron shape, and the like. Further, it is contemplated that an organic form may be implemented. A combination of shapes/forms may be utilized in any combination.



FIG. 6 depicts a profile view of a portion of an exemplary protective pad, in accordance with aspects of the present invention. The impact shell 101 is depicted as forming a lower portion of FIG. 6. In an exemplary aspect, the inner surface 104 is coupled, at least in one or more locations, with a distal end 212 of an extension member, such as the extension member 208. As previously discussed, it is contemplated that portions of the damping component 201 that are able to contact the impact shell may not be coupled with the impact shell. For example, it is contemplated that the damping component may be placed under tension (e.g., stretched) across a curved inner surface of the impact shell such that the inner surface curves away from the damping component 201. In this example, the distal ends of extension members 208 may come in contact with the inner surface of the impact shell when an impact force results in sufficient forces to overcome elastic properties of the damping component, which in turn applies additional tension that allows the damping component to stretch and conform, at least in part, to the shape of the impact shell. Further, it is contemplated that portions of the damping component other than the distal ends couple with the impact shell (e.g., a perimeter element, an extension member protrusion).


The extension member 208 is depicted as extending from the inner surface 104 of the impact shell 101 to the inner surface 206 formed by the joining members 202 of the damping component 201. Also depicted are the extension member voids 214 extending through the entire thickness of the damping lattice 201. Further, it is contemplated that a void may also extend through the impact shell such that a ventilation channel is formed. A void (not depicted) extending through the impact shell 101 may correspond to an extension member void and/or it may not correspond (e.g., not align) with an extension member void and instead provide a mass reduction and/or ventilation option from the exterior surface 102 to the inner surface 104.


The offset 210 is depicted as remaining consistent among the illustrated extension members. However, it is contemplated that an offset distance may vary with particular extension members, as will be discussed with respect to FIG. 14 hereinafter.


While a thickness between the exterior surface 102 and the inner surface 104 is depicted as remaining constant for the impact shell 101, it is contemplated that thickness may vary. Further, while a contiguous material is depicted as forming the impact shell 101, it is contemplated that multiple materials may also be used. Similarly, the thickness extending between the outer surface 204 and the inner surface 206 of the damping component 201 is depicted as remaining constant. However, it is contemplated that the thickness may vary with location. Further, the extension members 208 are depicted having substantially parallel profile sides; however, it is contemplated that any relative orientation may be used (e.g., tapered profile allowing for an increasing resistance to compression with distance of deflection).



FIGS. 7-13 depict exemplary configuration for extension members, extension member voids, and connecting members of a damping component, in accordance with aspects of the present invention. In particular, FIG. 7 depicts a diamond-like joining member 202 (connecting member) configuration having commonly sized extension members 208 and extension member voids 214 at each intersection of connecting members, in accordance with aspects of the present invention. The resulting void 216 is a rectangular-shaped void having four primary edges defined by the joining members 202.



FIG. 8 depicts a damping lattice configuration comprised of four similarly sized connecting members 912, 914, 916, and 918, in accordance with an exemplary aspect of the present invention. Further, similarly sized/shaped extension members (902, 904, 906, and 908) are located at the intersections of the similarly-sized connecting members. The damping lattice is also comprised of two additional connecting members 920 and 922 that extend from the extension members 908 and 904. The connecting members 920 and 922 are joined at a location identifiable by an extension member 910. As a result of the above configuration, a triangular void 924 is formed between the connecting members 912, 914, 920, and 922. The triangular void may provide greater resistance to deformation in a lateral direction (e.g., a tangential impact to the protective pad) as a result of inherent geometric characteristics of a triangle compared to a rectangular shape.


While two connecting members 920 and 922 are illustrated, it is contemplated that a single connecting member may span the distance between the extension members 904 and 908. Similarly, it is contemplated that an extension member may be located at any position along one or more connecting members. Further, while connecting members are discussed as discrete elements, it is contemplated that connecting members of a damping lattice are a contiguously formed element without discrete portions.



FIG. 9 depicts a damping lattice configuration comprising multiple sized extension members and extension member voids, in accordance with aspects of the present invention. For example, it is contemplated that a damping lattice is comprised of a first extension member 1002, a second extension member 1004, and a third extension member 1006. The first extension member 1002 and the second extension member 1004 share a common cylindrical shape, but of a different diameter. The first extension member 1002 has a larger diameter than the second extension member 1004. In an exemplary embodiment, the first extension member may provide a greater resistance to compression based on the larger diameter; therefore, it may be suitable for locations on a protective pad where such characteristics are desired (e.g., edges, near bone structures, near soft-tissue structures, near anticipated points of impact). Conversely, the second extension member 1004 may be desired in a location in which a great degree of relative impact absorption is desired. Both the first extension member 1002 and the second extension member 1004 share similarly sized extension member voids 1008 and 1010. Further, it is contemplated that an extension member void depth may also vary without affecting a cross-section size.


The third extension member 1006 is sized similar to the first extension member 1002. However, an extension member void 1012 of the third extension member 1006 is larger in size relative to the extension member voids 1008 and 1010. A larger extension member void may provide a greater volume of space for deformation of the extension member, which may result in a greater degree of impact force absorption.


It is understood that the size, shape, and combination of elements (i.e., connecting members, extension members, and extension member voids) may be in any order, fashion, and/or relationship. Therefore, while specific examples have been illustrated, it is contemplated that any combination of those elements may be used in connection with one another to form one or more portions of a damping component.



FIG. 10 depicts a damping lattice configuration comprised of a plurality of connecting members (1110, 1112, 1116, and 1118) and a plurality of extension members (1102, 1104, 1106, and 1108), which in combination form a void 1120, in accordance with aspects of the present invention. In this exemplary configuration the connecting members 1118 and 1116 are of a similar length that is longer than the connecting members 1110 and 1112. As a result, the void 1120 is a diamond-like shape.



FIG. 11 depicts a damping lattice configuration comprised of curved connecting/joining members, in accordance with an exemplary aspect of the present invention. In particular, FIG. 11 depicts two connecting members 1122 and 1124 extending from an extension member 208 to terminate at another extension member, which results in a void 1126. The void 1126 is defined, at least in part, by the curved connecting members. While the connecting member 1122 is depicted as having a minor-image curve to the connecting member 1124, it is contemplated that any shape (e.g., linear, organic, or any combination) may be used. Further, as will be discussed with respect to FIG. 13 hereinafter, it is contemplated that combinations of linear and organic shaped connecting members may be used concurrently. As with the other void shapes and connecting member shapes discussed herein, it is contemplated that any size, orientation, and ultimate shape may be implemented in any combination at any location to achieved desired damping results, such as impact force attenuation.



FIG. 12 depicts a damping lattice configuration comprised of organic shaped connecting members, in accordance with an exemplary aspect of the present invention. FIG. 12 is comprised of a plurality of various shapes and sizes of connecting members, such as connecting members 1202, 1204, and 1206. While a linear connecting member may be utilized to extend from a first extension member to a second extension member, it is contemplated that an organic connecting member, such as the connecting member 1202, incorporates one or more curves, bends, or other variations that may extend the length of the connecting member beyond a pure linear aspect. The addition of organic forms may provide additional damping properties by allowing additional movement in the damping lattice upon impact.


While not depicted in the figures explicitly, it is contemplated that an extension member may be represented as an increase in the thickness of the connecting members relative to a thickness at a different location along the connecting member. For example, it is contemplated that along the connecting member 1204 the depth increases at a portion, such as the middle of the upwardly curved center portion to effectively form an offset as previously discussed with respect to the offset 210 of FIG. 6. Stated differently, a change in thickness of a connecting member allows for at least a portion of the inner surface of the connecting member to be offset from an inner (i.e., closest) surface of the impact shell.



FIG. 13 depicts a damping lattice configuration comprised of organic-shaped and linearly-shaped connecting members, in accordance with an exemplary aspect of the present invention. In particular, FIG. 13 illustrates that different connecting member lengths and shapes may be used in combination. For example, a connecting member 1302 is linear in shape, but extends a similar ultimate length as a connecting member 1304 that is more organic in shape. Similarly, it is contemplated that yet an additional connecting member 1306 may extend a greater distance from a common extension member 208. Further, it is contemplated that any width, thickness, length, shape, cross-sectional shape, material, color, and combinations thereof may be implemented in exemplary aspects of a damping lattice.



FIG. 14 depicts a top edge toward bottom edge view of a protective pad portion, in accordance with aspects of the present invention. The protective pad is comprised of the impact shell 101 and the damping component 201. In this example, the impact shell 101 curves outwardly towards an exterior surface 102. The curve of the impact shell may be defined by a radius 1206 extending from an imaginary point 1212 on an axis 1201.


The damping component 201 may be formed such that it is comprised of extension members giving different offset distances. For example, a first offset 1202 may be greater than a second offset 1204. Depending on the impact shell shape, this variation in offset may be introduced to provide a consistent curved outer surface 204 of the damping component (e.g., compensating for an irregular curved impact shell). Alternatively, the variations in offset distances may be used to introduce an irregular curved profile on the outer surface 204 of the damping component 201 to better form to an organic shape of a wearer. Further, it is contemplated that the offset distance may be altered to achieve desired impact attenuation characteristics at strategic locations (e.g., along soft tissue contact areas, along bone regions).


Further, as depicted in FIG. 14, it is contemplated that as opposed to the impact shell 101 and the damping component 201 sharing a common curve center, an offset center (e.g., 1212 and 1210) may be utilized. In an exemplary aspect, the offset center is commensurate with an offset length of an extension member (e.g., 1202). In yet another exemplary aspect, a radius 1208 of the damping component 201 may vary with location. For example, the radius may increase as it rotates at a greater angle of deflection from the axis 1201. In this example, the offset 1202 may be larger than the offset 1204, when the radius 1206 changes a smaller amount (if at all) for a comparable angle of deflection.


Consequently, variations in connecting members, extension members, extension member voids, voids, offsets, curved profiles, materials, and the like may all contribute to a variety of contemplated aspects of a protective pad comprised of an impact shell and a damping component. Although the protective pad construction is described above by referring to particular embodiments, it should be understood that the modifications and variations could be made to the protective pad construction described without departing from the intended scope of protection provided by the following claims.



FIG. 15 depicts exemplary protrusions on a damping component for mating with exemplary channels in an impact shell for coupling the portions, in accordance with aspects of the present invention. As previously discussed, the damping component 201 may be coupled with the impact shell 101 through a variety of different mechanisms and means. For example, as depicted in FIG. 15, it is contemplated that one or more channels may be formed in the impact shell 101 that are functional for receiving one or more protrusions extending from the damping component. The channels may extend along a perimeter portion of the impact shell 101, along an interior portion of the impact shell 101, or any other portions of the impact shell, such as an inner surface of the impact shell. The length, shape (both cross-section and along the surface of the impact shell), size, and location may vary and are contemplated as including a range of options. For example, it is contemplated that a first channel having a first shape may extend along a first portion of the impact shell and a second channel having a different size, shape, and/or length may extend along or through a second portion of the impact shell.


Examples of different channels are depicted in FIG. 15. For example, a rectangular cross-section channel 1504, a ‘T’-shaped cross-section channel 1508, a barbed cross-section 1512, and an expansion ‘T’-shaped cross-section channel 1516 are provided. It is contemplated that additional forms may be implemented in exemplary aspects.


Examples of different protrusions are depicted as extending from the damping component. For example, a rectangular cross-section protrusion 1502, a ‘T’-shaped protrusion 1506, a barbed protrusion 1510 and a rounded protrusion 1514 are provided.


Different combinations of protrusions and channels may provide different functional advantages. For example, the rectangular protrusion 1502 and rectangular channel 1504 may be adapted to prevent lateral movement between the damping component and the impact shell while still allowing for a decoupling aspect. The ‘T’-shaped protrusion 1506 and the ‘T’-shaped channel 1508 may provide a high resistance to decoupling by forces non-parallel to the channel. However, this arrangement may still allow for the decoupling of the damping component from the impact shell by a sliding action that guides the protrusion through the channel. The rounded protrusion 1514 may be adapted for expanding/compressing to fill a portion of the receiving channel, such as the barbed cross-section channel 1512 or the ‘T’-shaped cross-section channel 1516. In this example, the rounded protrusion may compress in portions to expand into the barb-like extensions of the receiving channel 1512. Similarly, the rounded protrusion 1514 may ultimately take on a ‘T’-like shape as it is compressed into the receiving channel form 1516. This compressive type fit may provide resistance to decoupling between the damping component and the impact shell.


While the discussion is focused on the protrusions extending from the damping component and the channels formed in the impact shell, it is contemplated that one or more protrusion may extend from the impact shell and one or more channels may be formed in the damping component. Further, it is contemplated that protrusions are integrally formed with the base material from which they extend (e.g., damping component material). Additionally, it is contemplated that the protrusions are formed from a different material or during a different process.



FIG. 16 depicts exemplary protrusions on a damping component for serving as a coupling member through one or more receiving chambers in an impact shell, in accordance with aspects of the present invention. As opposed to a channel extending for a length, the receiving chambers 1606 and 1610 are cavities within the receiving material that allow for the maintaining of a received protrusion 1608 and/or 1612, which may be likened to a rivet-like connection in some examples. For example, the receiving chamber 1606 may allow for a recessed integration of the protrusion 1608 as it extends through the impact shell 101 from the damping component 201. To maintain a coupled relationship, the protrusion 1608 is formed with a stem 1602 having a smaller cross-section than the head of the protrusion. The head, in this example, is rounded to provide an easier insertion through a receiving chamber insertion hole that is then occupied by the stem 1602. While a recessed head is depicted, it is contemplated that a recessed head may not be implemented in an exemplary aspect.


The protrusion 1612 depicts a different cross-section shape at a head portion than the protrusion 1608. A stem portion 1604 extends through a receiving chamber insertion hole to the recessed portion of the receiving portion 1610. While the recessed portion is depicted as extending to an outer surface, it is contemplated that the receiving chamber may instead be a void within the impact shell that does not extend all of the way to the outer surface, which then may provide the appearance of a uniform outer surface to the impact shell.


As previously discussed with respect to FIG. 15, it is contemplated that the protrusions and the receiving chambers may be formed in either the damping component 201 or the impact shell 101 in exemplary aspects.



FIG. 17 depicts a cross-section view of a damping component coupled with an impact shell utilizing a gasket-like fit along a perimeter, in accordance with aspects of the present invention. The cross-sectional view of the damping component 201 and the impact shell 101 represents at least two different mechanisms for using a gasket-like coupling. A gasket-like coupling includes the extension of a portion of the damping component 201 from the inner surface of the impact shell 101 to the outer surface 102. This may be accomplished by a lip portion 1712 that extends along a portion of the damping component, such as the perimeter, to extend around a portion of the impact shell, such as an edge perimeter. The damping component 201 may form a receiving channel 1714 in which the perimeter edge of the impact shell is maintained. In this example, the inner surface of the impact shell may be proximate the inner surface of the damping component and the outer surface 102 of the impact shell may be proximate the lip portion 1712 along a perimeter portion. As a result, the lip portion encloses a portion of the impact shell to form a coupling bond between the damping component and the impact shell, in this exemplary aspect.


In an additional exemplary aspect, it is contemplated that a protrusion portion 1704 may extend through the impact shell 101 and mate with a lip portion 1708. For example, it is contemplated that a distal end portion of the protrusion portion may be bonded (e.g., welded, tacked, chemically secured) to an inner portion 1706 of the lip 1708. It is also contemplated that the protrusion 1704 may extend through the lip portion 1708 and form a mechanical fastener. Further, it is contemplated that the protrusion 1704 is coupled, either permanently or temporarily, to the impact shell where it extends through the impact shell.


It is contemplated that the protrusion 1704 may be located at any location relative to the impact shell (or the damping component). For example, it is contemplated that the protrusion 1704 (and any number of similar protrusions) may be positioned along a perimeter to pass through the receiving channel 1714 at any location. Additionally, it is contemplated that the protrusion, which may be any shape, size, length, material (similar to and/or different from the damping component), is located at any location.



FIG. 18 depicts an exemplary protective pad with damping component integrated straps, in accordance with aspects of the present invention. An outer surface 102 of the impact shell 101 is depicted with a first strap 1802 and a second strap 1804 extending from the lateral side 108. In an exemplary aspect, the first strap 1802 and the second strap 1804 may extend to the opposite side of the protective pad (e.g., medial side), as depicted by motion lines 1810 and 1820. Each of the straps may then be secured to the protective pad to maintain the protective pad in an as-worn position on a user.


The first strap includes a closure protrusion 1806. The closure protrusion 1806 is depicted as a portion of the strap 1802 extending beyond a surface, such as the inner surface. The impact shell may have a receiving cavity 1808 for receiving the closure protrusion. Similar concepts discussed with respect to FIGS. 15 and 16 for shapes, sizes, and the like of protrusions, channels, and chambers may be applicable to the receiving cavity 1808 and/or the closure protrusion 1806. It is contemplated that the closure protrusion may fit within the receiving cavity to maintain the strap 1802 in a desired coupled (e.g., decoupleable) state.


Similarly, the second strap 1804 is illustrated with an alternative arrangement having a first closure protrusion 1812 and a second closure protrusion 1814. Respective receiving cavities 1816 and 1818 are formed on the opposite side of the protective pad (e.g., formed in the impact shell, the damping component, and/or a combination) for receiving the closure protrusions. It is contemplated that any combination of closure protrusions and receiving cavities may be used in any combination. Further, it is contemplated that additional components (e.g., hook and loop material, snaps, buttons, clips, lacing, and the like) may also or alternatively be used to couple a strap to the protective pad.


Returning to the straps 1802 and 1804, it is contemplated that the straps are formed as part of the damping component. For example, in a common forming (e.g., molding) operation each of the straps are formed from the same material as is used to form the damping component. Further, it is contemplated that the straps may be considered a connecting member that extends from an edge portion of the protective pad. Further, while medial and lateral sides are called out for purposes of explaining FIG. 18, it is contemplated that a strap may originate from or terminate at any portion of the protective pad. Further, while the straps are depicted in a linear shape, it is understood that any shape, size, and orientation may be implemented.


Further, it is contemplated that rather than have the protrusions extending from the damping component they may alternatively or in addition extend from the impact shell (either the inner or outer surfaces). Further, it is contemplated that sizing of the strap may be accomplished by a series of receiving cavities or protrusions extending along a portion of the strap and/or the impact shell. For example, it is contemplated that a series of receiving cavities extends along the outer surface of the impact shell in a pattern that may be matched by two or more protrusions extending along the length of a strap.



FIG. 19 depicts a perspective view of the damping component formed with a sheet-like form 1901, in accordance with aspects of the present invention. An inner surface 1906 of the sheet-like form 1901 is exposed along with a number of exemplary extension members 1908 and extension member voids 1914. Also illustrated is the concept of an offset 1910. The offset 1910 is the length that an extension member extends from the inner surface 1906.


In this example, an outer surface 1904 is opposite the inner surface 1906. A thickness of material extending between the inner surface 1906 and the outer surface 1904 may vary with location to achieve varied physical properties, such as elasticity, impact force attenuation, and the like. In this example, the sheet-like form 1901 may not include a void extending between the inner surface 1906 and the outer surface 1904. However, it is contemplated that one or more of the extension member voids 1914 may extend from a distal end of one or more of the extension members 1908, through the extension members, and through the sheet-like form 1901. In this example, an extension member void extending through the outer surface 1904 may form an aperture at the outer surface 1904. This aperture may be effective for facilitating the movement of air and/or moisture. Further, it is contemplated that the aperture may be effective for facilitating a better contact surface between the user and the damping component.


While not depicted, it is contemplated that a combination of a lattice and a sheet-like form may be implemented to form at least a portion of a damping component. For example, a first portion may be a sheet-like form and a second portion of the damping component may be a lattice formed from a plurality of connecting members. The first portion and the second portion may be positioned in particular zones of the protective pad to realize listed advantages of each form.


While the concepts provided herein discuss the concept of a pad and depict a shin-guard pad in particular, it is contemplated that this concept extends to all types of force attenuation applications. For example, as previously discussed, features provided herein may be utilized in connection with helmets, clothing, barriers, armor, and other applications.

Claims
  • 1. A shin guard comprising: an impact shell having an exterior surface and an opposite interior surface;a damping lattice positioned proximate the interior surface of the impact shell, the damping lattice is formed of an elastomeric material,wherein the damping lattice includes at least three joining members joined to one another at intersections to form a perimeter of a 2-dimensional geometric shape, the 2-dimensional shape having at least three sides that bound a void positioned central to the at least three joining members, the at least three joining members having an outer surface and an opposite inner surface, the opposite inner surface facing towards the interior surface of the impact shell;wherein the damping lattice includes a plurality of extension members coupled to the at least three joining members at the intersections, the plurality of extension members extending from the opposite inner surface towards the interior surface of the impact shell, each of the plurality of extension members having a distal end adjacent to the interior surface of the impact shell; andwherein upon receipt of an impact force, one or more of the plurality of extension members contacts the interior surface of the impact shell at the distal end of the one or more of the plurality of extension members.
  • 2. The shin guard of claim 1, wherein the impact shell is formed from at least one material selected from the following: a) a rigid polymer material;b) a woven polymer material; orc) a carbon fiber-based material.
  • 3. The shin guard of claim 1, wherein the elastomeric material is a thermoset or a thermoplastic elastomer.
  • 4. The shin guard of claim 1, wherein the at least three joining members are formed as a contiguous portion.
  • 5. The shin guard of claim 1, wherein the at least three joining members are comprised of a first member of a first length and a second member of a second length, wherein the first length is greater than the second length.
  • 6. The shin guard of claim 1, wherein the outer surface of the at least three joining members is configured to form a user-contacting surface when in an as-worn position.
  • 7. The shin guard of claim 1, wherein the plurality of extension members are cylindrical in shape.
  • 8. The shin guard of claim 1, wherein each of the plurality of extension members are comprised of an extension member void.
  • 9. The shin guard of claim 8, wherein the extension member void is cylindrical in shape.
  • 10. The shin guard of claim 1, wherein the plurality of extension members are comprised of a first extension member extending a first distance beyond the inner surface and a second extension member extending a second distance beyond the inner surface, the first distance is greater than the second distance.
  • 11. A shin guard comprising: an impact shell having an exterior surface and an opposite interior surface and a medial edge, an opposite lateral edge, a top edge, and an opposite bottom edge, the interior surface of the impact shell having a curved profile extending outwardly in a direction of the exterior surface from the medial edge to the lateral edge, the curved profile is configured to form a curve about a wearer's shin when the shin guard is in an as-worn position, the impact shell formed from a first material;a damping lattice positioned proximate the interior surface of the impact shell, the damping lattice is formed of a second material that is different from the first material,wherein the damping lattice includes at least three joining members joined to one another at intersections to form a perimeter of a 2-dimensional geometric shape, the 2-dimensional shape having at least three sides that bound a void positioned central to the at least three joining members, the at least three joining members including a first joining member having a first length and a second joining member having a second length longer than the first length, such that the 2-dimensional shape is non-equilateral, the at least three joining members having an outer surface and an opposite inner surface, the opposite inner surface facing towards the interior surface of the impact shell, and the void extending between the outer surface and the opposite inner surface; andwherein the damping lattice includes a plurality of extension members coupled to the at least three joining members at the intersections, the plurality of extension members extending from the opposite inner surface towards the interior surface of the impact shell, each of the plurality of extension members having a distal end that contacts the interior surface of the impact shell when an impact force causes the damping lattice to conform to the curved profile of the impact shell.
  • 12. The shin guard of claim 11, wherein the at least three joining members form a uniform thickness from which the plurality of extension members extend.
  • 13. The shin guard of claim 11, wherein the plurality of extension members are comprised of a first cylindrically-shaped extension member and a second cylindrically-shaped extension member, the first cylindrically-shaped extension member having a different diameter cross section than the second cylindrically-shaped extension member.
  • 14. The shin guard of claim 11, wherein the plurality of extension members are comprised of a first extension member comprised of a first extension member void extending from a distal end of the first extension member toward the inner surface of the at least three joining members.
  • 15. The shin guard of claim 14, wherein the first extension member void passes through the distal end of the first extension member and the inner surface of the at least three joining members.
  • 16. The shin guard of claim 14, wherein the plurality of extension members are comprised of a second extension member comprised of a second extension member void, wherein the first extension member void and the second extension member void have a different size cross-sectional geometry.
  • 17. A shin guard comprising: an impact shell having an exterior surface and an opposite interior surface; anda damping lattice positioned proximate the interior surface of the impact shell, the damping lattice is formed of an elastomeric material,wherein the damping lattice includes one or more sets of at least three joining members joined to one another at intersections to form a perimeter of a 2-dimensional geometric shape, the 2-dimensional shape having at least three sides that bound a void positioned central to the one or more sets of at least three joining members, the one or more sets of at least three joining members a having an outer surface and an opposite inner surface; andwherein the damping lattice includes a plurality of extension members extending from the opposite inner surface and towards the interior surface of the impact shell, the plurality of extension members including a first extension member extending from a first intersection of a first set of at least three joining members and having a first cross section taken along a reference plane extending parallel to the opposite inner surface and a first distal end in contact with the interior surface of the impact shell, the plurality of extension members including a second extension member extending from a second intersection of a second set of at least three joining members and having a second cross section taken along the reference plane and a second distal end adjacent to the interior surface of the impact shell, the first cross section being larger than the second cross section and the first intersection being different from the second intersection.
  • 18. The shin guard of claim 17, wherein the one or more sets of at least three joining members are comprised of a first member of a first length and a second member of a second length, wherein the first length is greater than the second length.
  • 19. The shin guard of claim 17, wherein the first extension member extends a first distance beyond the inner surface and the second extension member extends a second distance beyond the inner surface, the first distance being greater than the second distance.
  • 20. The shin guard of claim 17, wherein the first extension member includes a first extension member void and the second extension member includes a second extension member void, wherein the first extension member void and the second extension member void have a different size cross-sectional geometry.
US Referenced Citations (21)
Number Name Date Kind
3514156 Fields May 1970 A
4993076 Dierickx Feb 1991 A
5007111 Adams Apr 1991 A
5524641 Battaglia Jun 1996 A
5853844 Wen Dec 1998 A
5940888 Sher Aug 1999 A
6615832 Chen Sep 2003 B1
6654960 Cho Dec 2003 B2
8166573 Chung et al. May 2012 B1
20020188997 Lyden Dec 2002 A1
20040019950 Rast Feb 2004 A1
20060179538 Dodd Aug 2006 A1
20080290704 Chipkar Nov 2008 A1
20090276933 Dodd Nov 2009 A1
20100007115 Wootton Jan 2010 A1
20100129573 Kim May 2010 A1
20100205722 Kim Aug 2010 A1
20100299812 Maddux et al. Dec 2010 A1
20110131695 Maddux et al. Jun 2011 A1
20120090068 Glass et al. Apr 2012 A1
20130232674 Behrend et al. Sep 2013 A1
Foreign Referenced Citations (9)
Number Date Country
2207091 Sep 1995 CN
4128958 Mar 1993 DE
29719930 Mar 1999 DE
10219521 Nov 2003 DE
1588636 Oct 2005 EP
2002017938 Jan 2002 JP
2008111213 May 2008 JP
2008214841 Sep 2008 JP
2009102268 Aug 2009 WO
Non-Patent Literature Citations (14)
Entry
“Elastomer.” Wikipedia. Wikimedia Foundation, n.d. Web. Jun. 19, 2015.
“Foraminous.” The Free Dictionary. Farlex, n.d. Web. Jun. 19, 2015.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration in PCT/US13/29813 dated May 16, 2013, 21 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration in PCT/US13/058772 dated Feb. 11, 2014, 43 pages.
International Preliminary Report on Patentability dated Sep. 9, 2014 in Application No. PCT/US2013/029813, 7 pages.
International Preliminary Report on Patentability dated Sep. 24, 2015 in Application No. PCTUS2013/058772, 8 pages.
Chinese Office Action with Search Report dated Aug. 16, 2016 in Chinese Patent Application No. 2013800746148, 7 pages.
European Search Report dated Oct. 18, 2016 in European Patent Application No. 13877524.2, 8 pages.
European Search Report dated Nov. 17, 2015 in European Patent Application No. 13757868.8, 8 pages.
Final Office Action dated Apr. 4, 2016 in U.S. Appl. No. 13/832,730, 27 pages.
Office Action dated Jan. 31, 2017 in Japanese Patent Application No. 2016-500089, 4 pages.
Non-Final Office Action dated Jan. 17, 2017 in U.S. Appl. No. 13/832,730, 22 pages.
Final Office Action dated Aug. 30, 2017 in U.S. Appl. No. 13/832,730, 27 pages.
Non-Final Office Action dated Oct. 21, 2015 in U.S. Appl. No. 13/832,730, 20 pages.
Related Publications (1)
Number Date Country
20130234376 A1 Sep 2013 US