The invention relates to a protective screen for the screening off of a suction space and of a suction duct connected to it.
A reactor in a nuclear power plant is surrounded by a safety container of concrete and steel, the so-called containment. Furthermore, the reactor is equipped with an emergency cooling system (termed Emergency Core Cooling or ECC in English) in order to cool the reactor core in the event of a malfunction or incident. In such a case the water is sucked in from the lowermost part of the safety container, the so-called sump, by emergency cooling pumps via suction ducts and circulated through the reactor core.
In the design scenario for the emergency cooling system it is assumed that insulation debris and chunks of concrete which arise in an incident can fall down into the sump and/or be washed down into the sump by the downwardly flowing water. In order that the debris do not impair the ability of the emergency cooling system to operate, special screen elements, referred to as protective screens herein, are provided in front of the inlet openings of the suction ducts which lead to the emergency cooling pumps. These protective screens have the task of keeping back the debris resulting from the incident and simultaneously ensuring an adequate through-flow of water. In this connection it must be ensured that the pressure drop caused by the debris does not exceed the permissible limiting value.
Previously known protective screens used in nuclear power plants with pressure water reactors (PWR) are mainly formed as flat grid segments which have only a small screen surface and which in the event of contamination with fibrous debris materials produce an impermissibly high pressure drop. Protective screen elements of corrugated and perforated sheet metal offer a larger effective screen area. However, deformations occur under pressure loading which restrict the size of such protective screen elements. A cylindrical suction screen is described in EP 0 818 227 A1 which admittedly has a very large effective screen area but can only be used in rare cases in the sump region of a PWR nuclear power plant, because the direct environment of the inlet openings of the suction ducts is constructed in such a way that it is unsuitable for the use of cylindrical suction screens. A suction space for the installation of protective screen elements with a suitable screen area is mainly provided in front of the inlet openings of the suction ducts. For space reasons the suction space in the sump region of a PWR nuclear power plant is, on average, relatively shallow.
An object of the present invention is to make available a protective screen the effective screen area of which is substantially larger, for example several times larger, than the area which results from the external dimensions and which can be used for the screening off of the suction space and of a suction duct connected to it in the sump region of a PWR nuclear power plant.
This object is satisfied with the protective screen described in accordance with the embodiments of the present invention. The protective screen in accordance with the invention for the screening off of the suction space and of the suction duct connected thereto, in particular of a suction space and a suction duct in an emergency cooling system of a nuclear power plant, includes at least one screen wall element which has a suction side and an outflow side. The screen wall element is built up from one or more modular rectangular (or four-cornered) cassette units, with the cassette units each containing a plurality of suction pockets open towards the suction side, wherein the screen pockets are surrounded by outflow gaps, the outflow gaps being connected to the outflow side or open towards the outflow side.
The cassette units can preferably be placed in a row, for example in one direction in order to assemble the screen wall element in the desired size.
The screen pockets are preferably each surrounded on four sides by outflow gaps.
In a preferred embodiment the cassette units contain spaced-apart walls and/or intermediate walls and bent perforated wall segments, in particular essentially U-shaped, bent, perforated wall segments between the walls and/or the intermediate walls in order to form suction pockets. A plurality of U-shaped bent wall sections can advantageously be formed in an elongate, meander-shaped part. The walls and/or the intermediate walls of the cassette units are preferably formed as double walls and/or outflow gaps. The suction pockets preferably have a depth of greater than 0.1 m, in particular greater than 0.2 m.
In a preferred embodiment the walls and/or the intermediate walls of the cassette units are clamped against one another by connection elements such as for example bolts or pins. The spacing between two walls and/or intermediate walls and/or the spacing between the two sides of a double wall is preferably determined by spacer elements.
In a further preferred embodiment the walls and/or the intermediate walls and/or the U-shaped bent wall segments are manufactured from perforated, preferably pierced sheet metal.
The protective screen in accordance with the invention has the advantage that relatively large area and comparatively shallow screen wall elements can be assembled with the cassette units. I.e. the length and width of the screen wall elements can be selected in a wide range, while the thickness is typically significantly smaller in comparison to the length and/or width. Furthermore, it is possible to assemble a plurality of screen wall elements into a larger protective screen and/or a protective screen with a complex shape. Thus, the protective screens in accordance with the invention are particularly suited for the screening off of the suction space and of a suction duct connected to it in the sump region of a PWR nuclear power plant, where suction spaces of different sizes have to be screened off and the height which is available is restricted.
The protective screen in accordance with the invention is particularly suited for the retro-fitting to existing plants in which the protective screen with an inadequate screen area is intended to be replaced or has to be replaced by a protective screen with a larger effective screen area. It is particularly advantageous that the pocket-like design of the screen surface enables a penetration flow which can flow away in five directions. The protective screens in accordance with the invention typically have an effective screen area which is five to twenty times larger than a protective screen consisting of a planar screen surface with corresponding outer dimensions. Thanks to the larger effective screen area, the debris and materials which cover the screen area and the water penetration speed give rise to a substantially lower through-flow resistance, so that the pressure drop which arises across the protective screen is correspondingly reduced.
A further advantage of the protective screen in accordance with the invention is the pressure loadability of the screen wall elements assembled from the cassette units. The walls and intermediate walls respectively of the cassette units which are held under stress and the limbs of the U-shaped bent wall segments form a grid-like network of reinforcing ribs so that the cassette units have a high degree of shape stability and can be loaded with a higher pressure than, for example, a corrugated sheet metal of corresponding size.
Further advantageous embodiments can be understood from the following description taken in conjunction with the accompanying drawings.
a is a cross-section through two adjacently disposed suction pockets in accordance with a further variant,
b is a longitudinal section through a row of suction pockets in accordance with the variant shown in
c is a perspective view of a suction pocket in accordance with the variant shown in
In the embodiment the protective screen 1 and the suction space 3 are arranged below a water level 8 which covers over the sump region of a safety container not shown in
In
In a preferred embodiment a plurality of boundary surfaces of a suction space are screened off by means of screen wall elements. In this manner it is, for example, possible to form a suction body, or a screen body, which is matched to the constructional environment.
a shows a cross-section through two suction pockets lying alongside one another in accordance with a further variant of the present invention. The walls and the intermediate walls are likewise executed in this variant as double walls 14.1′, 14.1″, 14.2′, 14.2″, 15.1′, 15.1″. The double walls are for example each formed from two, perforated, spaced-apart wall parts which are designed so that the double walls are closed off towards the suction side whereas they are open towards the outflow side. Respective, perforated, U-shaped, bent wall segments 16.1, 16.2 are arranged between double walls 14.1′, 14.1″, 14.2′, 14.2″, 15.1′, 15.1″ and form suction pockets 17.1, 17.2 together with the double walls. The double walls serve in this arrangement as lateral outflow gaps 21, 21.1, 21.2 through which lateral penetration flows can flow away out of the suction pockets. The reference numeral 25 thereby designates the suction side inflow direction and the reference numeral 26 the outflow direction. Further penetration flows out of the suction pockets flow through the perforated, U-shaped, bent wall segments 16.1, 16.2. The double walls 14.1′, 14.1″, 14.2′, 14.2″, 15.1′, 15.1″ and/or the wall parts of the same are connected by means of connection elements 18.1, 18.2, which can for example be formed as screws, threaded bolts or pins, and can be clamped against one another. The mutual spacing of the wall parts in the double walls can for example be fixed by spacer elements 24, 24.1, 24.2, while the distance between the double walls is determined by the perforated, U-shaped, bent wall segments 16.1, 16.2.
b shows a longitudinal section through a row of suction pockets in accordance with the variant shown in
The suction pockets in accordance with the variant shown in
In comparison to planar protective screens of conventional construction the protective screens in accordance with the present invention have a substantially larger effective screen area for the same length and width. Debris and materials which cover the suction surface thus cause a substantially lower through-flow resistance, so that the pressure drop which arises across this protective screen of the invention is correspondingly reduced. A further advantage of the protective screen in accordance with the invention is the comparatively high shape stability and ability to be loaded with pressure as well as the robust structure which facilitates installation work and repair work.
Number | Date | Country | Kind |
---|---|---|---|
04405055 | Jan 2004 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3326382 | Bozek et al. | Jun 1967 | A |
4049406 | Rivers | Sep 1977 | A |
4225328 | Stiehl | Sep 1980 | A |
4376091 | Netkowicz et al. | Mar 1983 | A |
5080699 | Ho et al. | Jan 1992 | A |
5283812 | Verdier | Feb 1994 | A |
5483564 | Matzner et al. | Jan 1996 | A |
5705054 | Hyrsky | Jan 1998 | A |
5759389 | Fernando et al. | Jun 1998 | A |
5759398 | Kielbowicz | Jun 1998 | A |
5759399 | Bilanin et al. | Jun 1998 | A |
5867551 | Toshihiko | Feb 1999 | A |
6491818 | Dwyer et al. | Dec 2002 | B2 |
7211190 | Kielbowicz | May 2007 | B2 |
20030196950 | Kraft | Oct 2003 | A1 |
Number | Date | Country |
---|---|---|
689687 | Aug 1999 | CH |
3004682 | Aug 1981 | DE |