Reference will now be made to the accompanying drawings, showing by way of illustration a particular embodiment of the present invention and in which:
Referring now to
The shell 10 includes a top portion 16 formed to cover a top and front part of the head of the wearer, a bottom portion 18 adapted to cover the jaw and throat of the wearer, and side portions 20 interconnecting the top and bottom portions 16, 18. The top, bottom and side portions 16, 18, 20 frame a window 22, which is usually covered by a wire cage (not shown) such as to protect the face of the wearer while minimizing visual obstruction. A plurality of holes 24 may be defined through the shell 10 to provide ventilation and/or to receive various attachment members such as straps therein. Such a goaltender's helmet configuration is known and will not be further detailed therein.
Although the present invention will be described herein as being applied to a goaltender's mask, it is understood that the described shell structure can be applied to any other adequate type of protective element including, but not limited to, a back plate of a goaltender's helmet, other types of hockey helmets, baseball helmets and lacrosse helmets.
Referring to
The outer layer 26 is resistant and defines an aesthetic outer surface 32 of the shell 10, i.e. a surface suitable for application of a surface finish thereon such as paint, ink, varnish, etc. without substantial preparation of the surface, and preferably with no preparation of the surface at all. In a particular embodiment, the outer layer 26 is made of a suitable rigid thermoplastic such as ABS (acrylonitrile butadiene styrene). Other suitable rigid thermoplastics include, for example, polyethylene, polypropylene and polycarbonate. As such, the outer surface 32 of the shell 10, defined by the outer layer 26, necessitates no or minimal preparation before the application of, for example, team colors and/or a team logo.
The inner layer 30 has a higher impact resistance than the outer layer 26 and is made of a high resistance material such as, for example, a composite including carbon fibers in an epoxy resin matrix. Alternate materials for the inner layer 30 include fiber reinforced plastics or composites including polyethylene fibers, vinylon fibers, fiberglass, carbon fibers, aramid fibers, basalt fibers, and combinations thereof.
The intermediate layer 28 is substantially thinner than the outer and inner layers 26, 30 but still forms a distinct layer of the shell 10. In a particular embodiment, the intermediate layer 28 is a film a few millimeters thick. The intermediate layer 28 is made of a material adapted to form a chemical bond with the resin of the inner layer 30 such as to provide an improved adhesion between the outer and inner layers 26, 30, i.e. an increased bond strength when compared to the adhesion of the outer and inner layers 26, 30 in direct contact with one another. Appropriate materials for the intermediate layer 28 include polymer films such as polyamide copolymers or urethane blend copolymers, which form a bond with epoxy resin contained in a particular embodiment of the inner layer 30.
In a particular embodiment, the intermediate layer 28 has a Young's modulus which is substantially lower than that of the outer and inner layers 26, 30, i.e. the intermediate layer 28 is substantially more flexible than the outer and inner layers 26, 30. Because of this flexibility, the intermediate layer 28 is deformed upon an impact received on the outer surface 32 of the outer layer 26, and as such acts as a dampener absorbing part of the impact energy through that deformation.
The outer layer 26, intermediate layer 28 and inner layer 30 are assembled according to the following. First, the outer layer 26 and intermediate layer 28 are adhered to each other and preformed to define the shape of the shell 10. Referring to
Alternately, the outer layer 26 can be preformed alone, and the copolymer of the intermediate layer 28 can be mixed with a solvent and pulverized on the preformed outer layer 26 to form the intermediate layer 28 adhered thereto.
Referring to
In a particular embodiment, the inner layer 30 includes a fiber mat 36 which is malleable, and is also preshaped prior to assembly with the outer and intermediate layers 26, 28, for example through vacuum molding. With the outer and intermediate layers 26, 28 in the support 34, the preshaped fiber mat 36 is placed over the intermediate layer 28.
Alternately, the pre-shaping of the fiber mat 36 can be omitted and the fibers can be shaped directly through application over the intermediate layer 28 if the fiber mat 36 is flexible enough. The fiber mat 36 can be replaced by fibers having any other adequate configuration, including several plies of fiber material with or without resin therebetween.
Resin 37 or another adequate curable material is poured over the fiber mat 36, the adequate quantity of resin 37 being determined through experimentation. Alternately, one or several plies of composite material in prepreg form, i.e. already including resin which is minimally cured, can replace the fiber mat 35, provided the prepreg is flexible enough to conform to the shape of the shell 10; the separate application of the resin 37 is omitted since resin is already provided in the prepreg.
Referring to
In a particular embodiment, the bladder 38 is filled with hot water at a pressure of approximately 15 psi. The heat of the bladder 38 accelerates the cure of the resin 37, thus reducing manufacturing time. Alternately, the bladder 38 can be filled with air or with any other appropriate fluid. With resins that are curable under pressure at room temperature, such as epoxy resin, the bladder 38 can be filled with a room temperature fluid. With resins necessitating heat to cure, the bladder 38 is filled with a hot fluid.
When the resin 37 is cured, the cover 35 is opened, the assembled layers 26, 28, 30 are removed from the support 34 and the excess material is trimmed. The various holes 24 and the window 22 (shown in
The embodiments of the invention described above are intended to be exemplary. Those skilled in the art will therefore appreciate that the foregoing description is illustrative only, and that various alternate configurations and modifications can be devised without departing from the spirit of the present invention. Accordingly, the present invention is intended to embrace all such alternate configurations, modifications and variances which fall within the scope of the appended claims.