This invention relates in general to earth-boring rotary cone drill bits and in particular to a protective device for protecting the seal for each cone from damage due to debris.
An earth-boring bit of the type concerned herein has a bit body with at least one bearing pin, normally three, and a cone rotatably mounted to each bearing pin. Each cone has cutting elements for disintegrating the earth formation as the bit body rotates. The bearing spaces between the cavity of the cone and the bearing pin are filled with a lubricant. A seal is located near the mouth of the cone cavity for sealing lubricant from drilling fluid.
In drilling service, debris, whether it originates from the bearing or the bore hole, might find its way to the seal and cause wear. One type of seal comprises an elastomeric member with an inner diameter in sliding engagement with the bearing pin and an outer diameter that is normally in static engagement with the cone. This type of seal forms a nip area with the bearing pin and invites debris to accumulate near and migrate into the sealing interface. The accumulated debris causes wear and leakage.
Another type of seal employs primary metal-to-metal face seals energized by an elastomeric ring. One type of seal assembly employs a secondary elastomeric seal exterior of the energizer ring to protect the primary seal. The secondary seal takes up precious space, and the assembly requires pressure compensation for the space between the two seals.
Other designs use an elastomeric ring that has a more wear-resistant elastomeric layer upon the inner diameter. The more wear-resistant layer may comprise a different elastomer, or it may be made up of a wear-resistant fabric.
In this invention, a seal protector having a porous interface is mounted with the porous interface in sliding engagement with one of the annular surfaces of the seal area for protecting the primary seal. Preferably, the protector comprises a brush or a set of bristles that can repel or trap debris but does not seal.
The brush can be bonded or molded to the seal. In one embodiment, the exposed surface of the brush is initially recessed from the inner diameter of the seal by an amount determined by the intended squeeze of the seal once installed. When the seal is deformed between the bearing pin and seal groove base, the exposed surface of the brush is flush with the inner diameter of the seal.
In another embodiment, the exposed surface of the brush is flush with the inner diameter of the seal when the seal is in its natural undeformed condition. When the seal is deformed between the bearing pin and seal groove base, the bristles of the brush deflect against the bearing pin.
In still another embodiment, the inner diameter of the seal on the lubricant side of the seal is smaller than on the drilling fluid side. The brush is bonded to the inner diameter of the seal on the drilling fluid side, thus is initially recessed. When the seal is deformed between the seal groove and the bearing pin, the brush comes into substantial contact with the bearing pin.
In a fourth embodiment, the brush is mounted to the cavity of the cone on the drilling fluid side of the seal groove. A flat spacer washer may be located in the seal groove between the seal and the brush to support and stabilize the brush.
Referring to
A lubricant passage 25 extends through each bit leg 13 from a compensator 27 to the bearing spaces within cavity 19. A seal 29 seals lubricant within the bearing spaces. Compensator 27 reduces the pressure differential across seal 29, which is exposed to borehole pressure on its rearward side and lubricant pressure on its forward side.
Referring to
Seal 29 comprises an elastomeric ring having an outer diameter 35 and an inner diameter 37. Preferably, outer diameter 35 and inner diameter 37 are generally cylindrical, and preferably the forward and rearward side surfaces 38 of seal 29 are generally flat. Other shapes are feasible for seal 29.
In this embodiment, a seal protector 39 is mounted to seal inner diameter 37 for rotation therewith. Seal protector 39 is a flexible annular member that has an axial width that is less than the axial width of seal inner diameter 37 from one seal side surface 38 to the other. In this embodiment only one protector 39 is shown, although more than one could be mounted to seal inner diameter 37. Unlike seal 19, seal protector 39 does not seal to the dynamic seal area formed on bearing pin 15. Rather, it comprises a porous surface to allow migration of fluid but to trap, repel or block debris. The inner diameter of seal protector 39 is preferably substantially the same as the outer diameter of bearing pin 15 once installed.
In the embodiment of
Seal protector 39 preferably comprises a brush member having a set of bristles 45, shown schematically in
In the embodiment of
Referring to
During the operation of the embodiment of
Drilling fluid debris tends to enter the clearance between bit leg 13 and back face 33, and this debris can become trapped in the nip area of dynamic seal surface 41. The debris causes wear of dynamic seal 41, and some of the debris may migrate forward past dynamic seal surface 41. Protector 39 will tend to repel or trap the debris, preventing it from entering the nip area of dynamic seal surface 40. Similarly, some debris may be generated internally within the bearing spaces, and some of this debris may migrate rearward past dynamic seal surface 40. Protector 39 tends to repel or trap this debris, preventing it from entering the nip area of dynamic seal surface 41.
In the embodiment of
In the embodiment of
In the embodiment of
Also, in this embodiment, a spacer washer 71 may be located in groove 65. Spacer washer 71 is a flat disk sandwiched between seal 73 and groove side wall 66. The inner diameter of spacer washer 71 is substantially flush with the inner diameter of the set of bristles 69 for providing support to bristles 69. Spacer washer 71 is preferably adhesively bonded to groove side wall 66. Spacer washer 71 need not seal against bearing pin 63. Seal 73 may be conventional in this embodiment, having a dynamic seal surface 75 on its inner diameter and a static seal surface 77 on its outer diameter.
The invention has significant advantages. The protector provides protection against debris contact with elastomeric seal nip areas. The protector does not require any additional seal gland space. The additional protection provided by the protector prolongs the life of the seal and thus the life of the drill bit.
While the invention has been shown in only a few of its forms, it should be apparent to those skilled in the art that it is not so limited but is susceptible to various changes without departing from the scope of the invention. For example, although all of the embodiments show the protector mounted to a component that rotates relative to the bearing pin, alternately, the protector could be stationarily mounted to the bearing pin and in sliding contact with part of the cone.
| Number | Name | Date | Kind |
|---|---|---|---|
| 3921735 | Dysart | Nov 1975 | A |
| 4610319 | Kalsi | Sep 1986 | A |
| 4688651 | Dysart | Aug 1987 | A |
| 4696480 | Jornhagen | Sep 1987 | A |
| 4790396 | Fuller | Dec 1988 | A |
| 4981182 | Dysart | Jan 1991 | A |
| 5509670 | Wheeler | Apr 1996 | A |
| 6123337 | Fang et al. | Sep 2000 | A |
| 6170830 | Cawthorne et al. | Jan 2001 | B1 |
| 6179296 | Cawthorne et al. | Jan 2001 | B1 |
| 6196339 | Portwood et al. | Mar 2001 | B1 |
| 6598690 | Peterson | Jul 2003 | B2 |
| 6679500 | Maurer et al. | Jan 2004 | B1 |
| Number | Date | Country |
|---|---|---|
| 2387192 | Oct 2003 | GB |
| Number | Date | Country | |
|---|---|---|---|
| 20080073124 A1 | Mar 2008 | US |