Proteolysis in silico: statistics, structural chemistry, and biology

Information

  • Research Project
  • 8162946
  • ApplicationId
    8162946
  • Core Project Number
    R01GM098835
  • Full Project Number
    1R01GM098835-01
  • Serial Number
    98835
  • FOA Number
    PA-10-067
  • Sub Project Id
  • Project Start Date
    9/30/2011 - 12 years ago
  • Project End Date
    8/31/2015 - 8 years ago
  • Program Officer Name
    PREUSCH, PETER
  • Budget Start Date
    9/30/2011 - 12 years ago
  • Budget End Date
    8/31/2012 - 11 years ago
  • Fiscal Year
    2011
  • Support Year
    1
  • Suffix
  • Award Notice Date
    9/15/2011 - 12 years ago

Proteolysis in silico: statistics, structural chemistry, and biology

DESCRIPTION (provided by applicant): This proposal will provide information, new algorithms, and computational tools for predicting proteolytic events. The ultimate goal is to make accurate proteome-wide predictions of the substrates for any given protease. However, our current effort will focus mainly on matrix metalloproteases (MMPs), caspases, and several protein convertases (PCs) belonging to the serine protease family because a vast amount of experimental information on those proteases is already available at the Sanford-Burnham Medical Research Institute. Our approach can be easily extended to any other proteases when a statistically significant number of substrates become available for deriving a specificity profile. The unique feature of the proposed prediction method is combining sequence-based predictions with other factors. These include: structural features of the substrates, cooperative interactions, and co-localization and co-expression of substrates and proteases. We will also include information about SNPs (single nucleotide polymorphisms) and PTMs (posttranslational modifications) of the residues in the vicinity of the cleavage sites in protein substrates. These two effects can modify the proteolytic event by turning it off or by creating a new possible cleavage site. Such modifications can lead to diseases or syndromes. The proteolytic events, e.g., protease-substrate pairs, will be mapped onto the known regulatory networks. All the information that is collected and tools that are developed will be freely available on the PMAP Web site (www.proteolysis.org) for use by the biomedical research community. Because proteases usually have more than a dozen substrates, and because the substrates often differ in normal physiology vs. pathology, the impact of this project could be immense. Rather than identifying protease substrates on a one-by-one basis, our predictions will produce very-well-annotated sets of substrates that will likely have biological significance. PUBLIC HEALTH RELEVANCE: Proteolysis is a biological process involving hydrolysis of the peptide bonds in proteins. We propose to design a computational approach for predicting substrates for proteinases in human proteome that takes into account accurate amino acid sequence specificity and structural and biological factors. This computational approach will help detect aberrations in the processing, regulation, and degradation of proteins leading to disease or syndromes.

IC Name
NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES
  • Activity
    R01
  • Administering IC
    GM
  • Application Type
    1
  • Direct Cost Amount
  • Indirect Cost Amount
  • Total Cost
    362900
  • Sub Project Total Cost
  • ARRA Funded
    False
  • CFDA Code
    859
  • Ed Inst. Type
  • Funding ICs
    NIGMS:362900\
  • Funding Mechanism
    Research Projects
  • Study Section
    MSFD
  • Study Section Name
    Macromolecular Structure and Function D Study Section
  • Organization Name
    SANFORD-BURNHAM MEDICAL RESEARCH INSTIT
  • Organization Department
  • Organization DUNS
    020520466
  • Organization City
    LA JOLLA
  • Organization State
    CA
  • Organization Country
    UNITED STATES
  • Organization Zip Code
    920371005
  • Organization District
    UNITED STATES