The present invention relates to power generation. The equation E=mc2 implies that a large amount of energy is locked up inside fermionic matter. Traditional combustion releases energy by breaking down molecular chemical bonds, which results in inconvenient emissions and leaves the large energy of individual atomic nuclei untapped.
Free neutrons exist only a short time before they decay (approximately 15 minutes). Neutrons are composed of three quarks, one ‘up quark’ and two ‘down quarks’. In neutron beta decay one of the two ‘down quarks’ switches to an ‘up quark’, emitting an electron and a neutrino. The remaining proton is left with two ‘up quarks’ and one ‘down quark’. The present invention aims at the remaining ‘down quark’ or either one of the remaining ‘up quarks’ to trigger the decay of the proton, thereby converting it into energy. Mass is a force, and by countering nucleon constituents in the right place, with the right amount of countervailing force, mass can be destroyed to release energy.
The main object of the present invention is to unlock the vast stores of energy inside of nucleons.
In one embodiment, ionized protium, in gas or plasma form, is employed. Hydrogen has several isotopes, the most common of which is 1H, protium, consisting of one proton and one electron. With the electrons stripped away, what remains are individual positively charged protons.
One embodiment of the present invention consists of two arms attached to a central pivot and which rotate circumferentially in opposite directions. The arms are designed such that they can pass through each other without hindrance at variable rates of speed (one arm passing inside the other, for example).
Firmly attached to the end of each arm is a coil, both of approximately similar size. They are constructed such that the coils, just as the arms that hold them, may pass through each other without hindrance at variable rates of speed.
One of the coils (Coil A) is a solenoid, an electromagnet. When current runs through the coil a magnetic field of proportional magnitude runs down the center of the coil. This magnetic field can be switched on and off at will.
The other coil (Coil B) is sized proportionally to Coil A such that it can pass through inside Coil A and thus into or across the magnetic field of Coil A when that field is turned on.
In one embodiment of the invention, Coil B is a hollow tube constructed of semi-conductor material with a semi-conductor layer on the inside surface of the tube which can convert photons into electricity or collect electrons directly.
In one embodiment, Coil B is additionally wrapped with a nonmagnetic conductor which will minimally interact with the magnetic field of Coil A, but also form a magnetic field inside and down the center of Coil B when conducting.
In one embodiment, Coil B is wrapped with an RF coil. Magnetic resonance is a property that relates to the spins of atomic nuclei. When Coil B is filled with protium and the magnetic field from the RF coil is turned on, the spins of the protons inside the tube line up in accordance with the magnetic field, pointing magnetically either north or south, thereby manifesting two different spin states, a higher energy spin state and a lower energy spin state. By injecting an RF frequency of the proper strength (a function of the strength of Coil B's magnetic field), the lower energy spin states can be converted to higher energy spin states, such that all the protons inside Coil B will be oriented in the same direction within the magnetic field.
When the RF frequency is turned off, the protons that were ‘upped’ to the higher energy spin state will ‘relax’ to the lower energy spin state by emitting a photon: at this moment these relaxing protons can be slammed at a high rate of speed into the magnetic field of Coil A, triggering the destruction of some proportion of these protons inside Coil B, converting them into energy, which is then collected from Coil B.
Alternatively the magnetic field inside Coil B can be used to hold the protons in place at an optimal angle based on the size of the machine and other variables, as the protons collide into the magnetic field of Coil A. The protons can be slammed into the opposing field of Coil A or ‘ground’ through the opposing fields.
A timing device may coordinate the speed of the arm rotations, turns the magnetic fields of Coil A and Coil B on and off in proper sequence and synchronizes the injection of any RF signal.
a and 4b illustrate two views of Coil B, a side-view and a cross-sectional view.
The present disclosure relates generally to a power generation system which unlocks the energy of particles by driving them at a high rate of speed into a magnetic field. The required high rate of speed will vary depending. on the size of machine, amount of energy to be produced, and other variables. In any event, it should be a speed sufficient to destroy the particles within the environment of the particular device. The precise speed required for a given device can be fine-tuned by one skilled in the art.
According to the Lorentz force law, a particle carrying 1 coulomb of charge and passing through a magnetic field of 1 tesla at a speed of 1 meter per second, experiences a force of 1 newton. By increasing the speed at which a particle passes through a magnetic field, the force the particle experiences will increase accordingly.
By holding the particles in place with an additional magnetic field and adjusting the angle at which they strike the primary magnetic field, the force imposed by the primary field can be concentrated to specific loci to destroy mass.
In one embodiment, the stimulated emission of photons by the particles provides a target.
In one embodiment, the collision with the magnetic field replicates matter/anti-matter annihilation.
In one embodiment, the force of the magnetic field acting on positively charged particles overcomes the mutual electrostatic repulsion of the Coulomb barrier, fusing nuclei and releasing energy.
The present disclosure relates generally to power generation by the destruction of mass with magnetic force. Mass is inherent in the constituents of nucleons and can be countered by an equivalent amount of contrary force delivered by a magnetic field targeted to nucleons, which can be held in place by one or more secondary magnetic fields, so as to control the locality of contact. The targeted nucleons might also be held in place by other means, such as by the density of the nucleon matter or by other properties of the nucleon matter, or by being held in a ‘trap’ or a channel when collided with the primary and other fields. Nucleons are collided into magnetic force in order to impose enough force upon each nucleon individually to counter the force of its mass, and thereby destroy it and release its energy as per the equation E=mc2.
In one embodiment, energy output is in the form of electrons which are conducted through the semi-conducting or conducting material on the inner surface of Coil B towards utilization.
In one embodiment, the energy is collected by a photo-electric inner surface 4 of Coil B and conducted through the semi-conductor material of Coil B, through Arm B towards utilization, or by using the encasement itself as an electrode, whether through direct contact with Coil B or across the medium separating Coil B from the encasement. Other embodiments may include other methods of power conversion, such as heat being conducted through Coil B to the surrounding medium inside the encasement, or heat being conducted through direct contact between Coil B and the encasement.
Other embodiments of the power generating system may include a design whereby two or more wheels of arms bring matching coils together in gear-like fashion. Another embodiment may design a hollow tube component to pass through the solenoid coil across the length of the magnetic field or around the length of a magnetic field created within a ‘looped’ circular solenoid. Other embodiments may only move one arm with one hollow tube while creating the magnetic collision field directly from the encasement. In one embodiment multiple arms holding hollow tubes are spun and collided into a single collision field and in another embodiment one hollow tube is collided into multiple collision fields. In one embodiment the hollow coiled tube is constructed so that it may spin on its axis at variable speed while being rotated circumferentially. In one embodiment two plates are spun in opposite directions, one plate with the mass particles, the other with one or more magnetic fields to destroy the mass particles as the two spinning plates are ‘sandwiched’ together. In one embodiment nucleons are shot from a gun into one or more magnetic fields that are either stationary or in motion. In one embodiment two or more concentric cylinders are spun in opposite directions within each other to collide nucleons with magnetic fields.
In one embodiment of the present disclosure, the power generation device is connected to an electrolytic cell which feeds the hollow tube with particles. In one embodiment of the present invention, the electrolytic cell performs the electrolysis of water to feed the hollow tube with hydrogen.
It should of course be understood, that the description and the drawings herein are merely illustrative, and it will be apparent that various modifications, combinations and changes can be made of the structures disclosed without departing from the spirit of the invention and from the scope of the appended claims.
This application claims priority from U.S. application No. 61/460,364, filed Dec. 30, 2010 and which is incorporated by reference in its entirety.
| Number | Date | Country | |
|---|---|---|---|
| 61460364 | Dec 2010 | US |