Provider portal

Information

  • Patent Grant
  • 10853454
  • Patent Number
    10,853,454
  • Date Filed
    Wednesday, November 29, 2017
    7 years ago
  • Date Issued
    Tuesday, December 1, 2020
    4 years ago
Abstract
Various systems and methods are provided that graphically allow health insurance company personnel to identify patient diagnoses that are not accounted for by the health insurance company. Furthermore, the various systems and methods graphically allow health insurance company personnel to identify patients that have not submitted claims for documented ailments or conditions. Thus, the health insurance company may be able to improve its chances of receiving transfer payments from other health insurance companies and/or receiving higher star ratings.
Description
TECHNICAL FIELD

The present disclosure relates to systems and techniques for data integration, analysis, and visualization.


BACKGROUND

Prior to the passing of the Patient Protection and Affordable Care Act (PPACA), insurers were permitted to charge higher premiums for individuals with preexisting conditions (e.g., cancer, heart disease, diabetes, etc.) because such individuals cost the insurer proportionally more in comparison to healthier members. This caused insurance for the sickest and oldest of Americans to be all but unaffordable in many cases. To combat this, individual plans offered via state and federally-administered exchanges are now limited in the scope of conditions that can be used in the pricing of a policy. For example, premiums can be adjusted upwards for individuals who are smokers and/or based on age. However, insurers cannot price the terminal cancer patient out of a policy. The most expensive premium for a given individual on a plan is also capped at three times the cheapest premium on the plan.


However, the fact remains that individuals with preexisting conditions still cost insurers more than healthy individuals. The government, worried that insurers may try to find ways to discriminate against the sickest individuals, implemented a program of risk adjustment. The premise is that insurers that can prove they are insuring a sicker population in comparison to other insurers will be eligible for transfer payments. Thus, insurers with healthier individuals will send money to those with sicker individuals.


In addition, every Medicare Advantage plan offered by insurers is given a rating according to a five-star quality rating system. The whole-number star rating is assigned by virtue of performance across over 50 individual metrics that come from the Healthcare Effectiveness Data and Information Set (HEDIS), the Consumer Assessment of Healthcare Providers and Systems (CAHPS), the Centers for Medicare and Medicaid Services (CMS), the Health Outcomes Survey (HOS), and/or the Independent Review Entity (IRE). The star rating may generally measure the quality of a plan and customer satisfaction with a plan.


Before the PPACA was implemented, insurers received bonus payments based upon the star ratings given to their plans. For example, insurers received a 5% bonus for 5 stars, a 4% bonus for 4 stars, and so forth. Under the PPACA, new performance payments have been added. For example, 4 or 5-star plans will get an additional 1.5% on top of the initial determined amount. These bonus payments increase over time, reaching towards 5% by 2014. Thus, the star rating system has gained more importance under the PPACA.


Over time, insurers can receive claims from healthcare providers. The claims can be used to determine transfer payments and star ratings. However, such a collection may include a large number of claims and/or related data that may be stored in an electronic data store or memory. For example, such a collection of claims may include hundreds of thousands, millions, tens of millions, hundreds of millions, or even billions of claims and/or related data, and may consume significant storage and/or memory. Determination, selection, and analysis of relevant claims and/or related data within such a collection may be extremely difficult for an insurer. Furthermore, processing of such a large collection of claims and/or related data (e.g., as an employee of an insurer uses a computer to sift and/or search through huge numbers of claims and/or related data) may be extremely inefficient and consume significant processing and/or memory resources.


SUMMARY

The systems, methods, and devices described herein each have several aspects, no single one of which is solely responsible for its desirable attributes. Without limiting the scope of this disclosure, several non-limiting features will now be discussed briefly.


Embodiments of the present disclosure relate to the automatic selection of a subset of the received claims and/or related data and to the generation of graphical user interfaces that display the subset. The subset of claims and/or related data may include far fewer claims and/or related data (e.g., several orders of magnitude smaller) than the collection described above. In various embodiments, the graphical user interfaces allow health insurance company personnel to identify patient diagnoses that are not accounted for by the health insurance company. Furthermore, the graphical user interfaces allow health insurance company personnel to identify patients that have not submitted claims for documented ailments or conditions. Accordingly, in an embodiment, processing of the subset of claims and/or related data may be to optimize computing resources as compared to the collection described above. Thus, the health insurance company may be able to improve its chances of receiving transfer payments from other health insurance companies and/or receiving higher star ratings.


One aspect of the disclosure provides a computing system configured to process a large amount of dynamically updating data. The computing system comprises a network interface coupled to a data network for receiving and transmitting one or more packet flows. The computing system further comprises a computer processor. The computing system further comprises a computer readable storage medium storing program instructions configured for execution by the computer processor in order to cause the computing system to access medical data associated with a plurality of patients, wherein the medical data comprises an ailment identified as affecting the respective patient. The computer readable storage medium further stores program instructions configured for execution by the computer processor in order to access a plurality of medical claims, wherein each medical claim corresponds to at least one of the plurality of patients and is associated with one of a plurality of healthcare providers. The computer readable storage medium further stores program instructions configured for execution by the computer processor in order to determine a first set of medical claims in the plurality of medical claims that comprise claims for reimbursement for treatments of ailments not identified as affecting the respective patient. The computer readable storage medium further stores program instructions configured for execution by the computer processor in order to generate a user interface comprising a provider window depicting a selectable list of one or more of the plurality of healthcare providers, and a claim adjustment window. The user interface may be configured to receive a selection of a first healthcare provider in the list of healthcare providers and, in response to selection of the first healthcare provider, display, in the claim adjustment window, one or more medical claims in the first set of medical claims that are each associated with the first healthcare provider.


The computing system of the preceding paragraph can have any sub-combination of the following features: the user interface further comprises a gaps in care window; where the program instructions are further configured to cause the computing system to determine a first set of patients in the plurality of patients that have not submitted, during a first period of time, a claim for reimbursement for a treatment of an ailment identified as affecting the respective patient, where the user interface is further configured to display, in the gaps in care window for each user in the first set of patients that is associated with the first healthcare provider, a notification to contact the respective patient; the user interface is further configured to display, in the provider window, a plurality of histograms, and where each histogram is associated with a healthcare provider in the plurality of healthcare providers; each histogram is configured to indicate a number of medical claims in the first set of medical claims that are associated with the respective provider when the claim adjustment window is selected; each histogram is configured to indicate a number of patients in the first set of patients that are associated with the respective provider when the gaps in care window is selected; each histogram comprises information displayed using a logarithmic scale; where the program instructions are further configured to cause the computing system to receive a selection of a first notification to contact a first patient in the first set of patients, where the user interface is configured to display, in the gaps in care window, a schedule window that overlaps at least a portion of the first notification, where the schedule window comprises an option to indicate that an appointment has been scheduled with the first patient and an option to indicate that the appointment with the first patient has been completed; the gaps in care window comprises a new window and a scheduled appointment window, where the new window comprises the first notification, and where the user interface is further configured to display, in the scheduled appointment window and not the new window, the first notification in connection with a selection of the option to indicate that the appointment has been scheduled with the first patient; the gaps in care window comprises a first notification to contact a first patient in the first set of patients and a notification number associated with the first notification that indicates a number of reasons to contact the first patients; the user interface is further configured to display, in the gaps in care window, a second notification to contact the first patient and a third notification to contact the first patient in connection with a selection of the first notification; and the user interface comprises a sort button, and where the sort button, when selected, causes the claim adjustment window to display the one or more medical claims in the first set of medical claims in one of an alphabetical order, an order based on date, or an order based on importance of the respective medical claim.


Another aspect of the disclosure provides a computer-implemented method of processing a large amount of dynamically updating data. The computer-implemented method comprises, as implemented by one or more computer systems comprising computer hardware and memory, the one or more computer systems configured with specific executable instructions, accessing medical data associated with a plurality of users, wherein the medical data comprises an ailment identified as affecting the respective user. The computer-implemented method further comprises accessing a plurality of user claims, wherein each user claim corresponds to at least one of the plurality of users and is associated with one of a plurality of healthcare providers. The computer-implemented method further comprises determining, based on the accessed medical data, a first set of users claims in the plurality of user claims that comprise claims for reimbursement for treatments of ailments not identified as affecting the respective user. The computer-implemented method further comprises generating a user interface comprising a provider window depicting a selectable list of one or more of the plurality of healthcare providers, and a claim adjustment window. The computer-implemented method further comprises receiving a selection of a first healthcare provider in the list of healthcare providers. In response to selection of the first healthcare provider, the computer-implemented method further comprises updating the claim adjustment window of the user interface to include one or more user claims in the first set of user claims that are each associated with the first healthcare provider.


The computer-implemented method of the preceding paragraph can have any sub-combination of the following features: the user interface further comprises a gaps in care window; where the computer-implemented method further comprises determining a first set of users in the plurality of users that have not submitted, during a first period of time, a claim for reimbursement for a treatment of an ailment identified as affecting the respective user, and updating the gaps in care window, for each user in the first set of users that is associated with the first healthcare provider, to include a notification to contact the respective user; and where the computer-implemented method further comprises updating the provider window to include a plurality of histograms, wherein each histogram is associated with a healthcare provider in the plurality of healthcare providers.


Another aspect of the disclosure provides a non-transitory computer-readable medium comprising one or more program instructions recorded thereon, the instructions configured for execution by a computing system comprising one or more processors in order to cause the computing system to access medical data associated with a plurality of users, wherein the medical data comprises an ailment identified as affecting the respective user. The computer-readable medium further comprises one or more program instructions configured for execution in order to cause the computing system to access a plurality of user claims, wherein each user claim corresponds to at least one of the plurality of users and is associated with one of a plurality of healthcare providers. The computer-readable medium further comprises one or more program instructions configured for execution in order to cause the computing system to determine a first set of users claims in the plurality of user claims that comprise claims for reimbursement for treatments of ailments not identified as affecting the respective user. The computer-readable medium further comprises one or more program instructions configured for execution in order to cause the computing system to generate a user interface comprising a selectable list of one or more of the plurality of healthcare providers. The computer-readable medium further comprises one or more program instructions configured for execution in order to cause the computing system to receive a selection of a first healthcare provider in the list of healthcare providers. The computer-readable medium further comprises one or more program instructions configured for execution in order to cause the computing system to, in response to selection of the first healthcare provider, update the user interface to include one or more user claims in the first set of user claims that are each associated with the first healthcare provider.


The non-transitory computer-readable medium of the preceding paragraph can have any sub-combination of the following features: where the instructions are further configured to cause the computing system to determine a first set of users in the plurality of users that have not submitted, during a first period of time, a claim for reimbursement for a treatment of an ailment identified as affecting the respective user, and update the user interface, for each user in the first set of users that is associated with the first healthcare provider, to include a notification to contact the respective user; where the instructions are further configured to cause the computing system to update the user interface to include a plurality of histograms, and where each histogram is associated with a healthcare provider in the plurality of healthcare providers; and each histogram is configured to indicate a number of user claims in the first set of user claims that are associated with the respective provider.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a block diagram of a system for collecting and analyzing claims.



FIG. 2 illustrates a user interface displaying claims adjustments for review.



FIGS. 3A-C illustrate user interfaces displaying the selection and archiving of a pending claim adjustment.



FIG. 4 illustrates a user interface displaying gaps in care for review.



FIGS. 5A-5K illustrate user interfaces displaying the selection, scheduling, and completion of a gaps in care item.



FIGS. 6A-6B illustrate user interfaces displaying the expansion of gaps in care items that have been combined for a single patient.



FIGS. 7A-7B illustrate user interfaces displaying the expansion of scheduled and unscheduled gaps in care items that have been combined for a single patient.



FIG. 8 is a flowchart depicting an illustrative operation of displaying claims adjustments.



FIG. 9 illustrates a computer system with which certain methods discussed herein may be implemented.





DETAILED DESCRIPTION OF SPECIFIC EMBODIMENTS

Overview


As described above, the Patient Protection and Affordable Care Act (PPACA) allows for insurers that can prove they are insuring a sicker population in comparison to other insurers to be eligible for transfer payments. Thus, insurers may have an incentive to ensure that their risk pool looks as unappealing as possible. In other words, insurers may have an incentive to make sure everyone with expensive chronic diseases or other ailments that are indicative of an unhealthy individual are properly accounted for.


In addition, as described above, every Medicare Advantage plan offered by insurers is given a rating according to a five-star quality rating system that has gained more importance under the PPACA. Thus, insurers may be looking to improve their plan ratings in order to receive the extra benefits provided by the PPACA.


Accordingly, disclosed herein are various systems and methods that allow insurers to collect and analyze medical and/or pharmaceutical claims such that the ailments of insured individuals can be properly accounted for and/or the star ratings for plans can be improved or at least maintained. For example, the various systems described herein may determine, based on received claims, patient diagnoses that are not accounted for by a health insurance company and display such information in a user interface. Thus, health insurance company personnel may be able to visually identify such discrepancies and update the health insurance company records accordingly. As another example, the various systems described herein may identify patients that have not submitted claims for documented ailments or conditions. Such information may be displayed in a user interface as well. Thus, health insurance company personnel may be able to identify patients who may not be seeking treatment (or may have failed to report that treatments were acquired) and contact such patients to schedule appointments, thereby working to improve and/or maintain a plan's star rating.


Claim Collection and Analysis System Overview



FIG. 1 illustrates a block diagram of a system 100 for collecting and analyzing claims. The system 100 comprises one or more providers 110, an insurer device 130, a provider portal 135, a prescription and medical claims data sever 140, a patient 150, and a network 120.


In the embodiment illustrated in FIG. 1, the one or more providers 110 (e.g., doctors, hospitals, pharmacies, etc.), which may be implemented by one or more first physical computing devices, are communicatively connected to the prescription and medical claims data server 140, which may be implemented by one or more second physical computing devices, over the network 120. Similarly, the insurer device 130 (e.g., operated by an insurance company, such as Blue Cross, Health Net, or Kaiser Permanente) may be implemented by one or more third physical computing devices and may be communicatively connected to the prescription and medical claims data server 140 over the network 120. The prescription and medical claims data server 140 can be operated by the insurance company or can be operated by a third party (e.g., a company that contracts with an insurance company, a healthcare provider, etc.). The patient 150, which may be implemented by one or more fourth physical computing devices, may likewise be communicatively connected to the insurer device 130 over the network 120. In some embodiments, each such physical computing device may be implemented as a computer system including some or all of the components illustrated in the example computing system 900 of FIG. 9. For example, the one or more providers 110, the insurer device 130, the prescription and medical claims data server 140, and/or the patient 150 may be implemented in a computer system as a set of program instructions recorded on a machine-readable storage medium.


The one or more providers 110 represent devices operated by healthcare providers (e.g., doctors, hospitals, pharmacies, etc.). Healthcare personnel (e.g., doctors, nurses, pharmacists, hospital or clinic staff, etc.) may submit medical and/or pharmaceutical claims to insurance companies (e.g., health insurance companies) on behalf of patients. Medical claims may include claims that are submitted to insurance companies to receive payment for medical services administered by the healthcare provider. Likewise, pharmaceutical claims may include claims that are submitted to insurance companies to receive payment for drugs distributed by the healthcare provider. These claims may be transmitted to the prescription and medical claims data server 140 for storage and/or for access by the insurer device 130. In some embodiments, information related to patient ailments entered into electronic medical record (EMR) systems (e.g., referred to herein as “EMR data”) may also be transmitted to the prescription and medical claims data server 140 for storage and used in a manner as described herein with the medical and/or pharmaceutical claims. In some embodiments, lab claims and/or lab results may also be transmitted to the prescription and medical claims data server 140 for storage and used in a manner as described herein with the medical and/or pharmaceutical claims.


The insurer device 130 represents a device operated by a health insurance company that allows insurance company personnel to analyze pharmaceutical and/or medical claims received from the prescription and medical claims data server 140 and identify expected pharmaceutical and/or medical claims that were not received, for example. In an embodiment, the insurer device comprises a provider portal 135, which allows insurance company personnel to analyze claims, manipulate claims, identify claims that were not received, and/or contact patients via a graphical user interface (GUI). For example, the provider portal 135 may include GUI logic. The GUI logic may be a set of program instructions configured for execution by one or more computer processors of the insurer device 130, which are operable to receive user input and to display a graphical representation of claims using the approaches described herein. The GUI logic may be operable to receive user input from, and display a graphical representation of the claims, in a GUI that is provided on a display (not shown) of the insurer device 130 and/or another computing device that is in communication with the provider portal 135.


The prescription and medical claims data server 140 may be implemented as a special-purpose computer system having logical elements. In an embodiment, the logical elements may comprise program instructions recorded on one or more machine-readable storage media. Alternatively, the logical elements may be implemented in hardware, firmware, or a combination thereof.


When executed by one or more processors of the computer system, logic in the prescription and medical claims data server 140 is operable to receive, store, analyze, and/or manipulate claims and/or identify claims that were not received according to the techniques described herein. For example, the prescription and medical claims data server 140 may comprise the provider portal 135 (not shown), which can then be accessed by another device, such as the insurer device 130, via a network interface (e.g., a browser). In one embodiment, the provider portal 135 and/or the prescription and medical claims data server 140 may be implemented in a Java Virtual Machine (JVM) that is executing in a distributed or non-distributed computer system. In other embodiments, the provider portal 135 and/or the prescription and medical claims data server 140 may be implemented as a combination of programming instructions written in any programming language (e.g. C++ or Visual Basic) and hardware components (e.g., memory, CPU time) that have been allocated for executing the program instructions.


In an embodiment, the network 120 includes any communications network, such as the Internet. The network 120 may be a wired network, a wireless network, or a combination of the two. For example, network 120 may be a local area network (LAN) and/or a wireless area network (WAN).


Claims Adjustments



FIG. 2 illustrates a user interface 200 displaying claims adjustments for review. As illustrated in FIG. 2, the interface 200 includes a first pane 210 and a second pane 212. The first pane 210 may include a list of tasks and a list of healthcare providers. For example, the tasks may include an inbox 214 and an archived box 216. The list of healthcare providers may include healthcare providers 218A-L. For illustrative purposes, the inbox 214 and the healthcare provider 218A are selected in the first pane 210. The second pane 212 may include a claims adjustments tab 220 and a gaps in care tab 222. For illustrative purposes, the claims adjustments tab 220 is selected. The user interface 200 may be generated and/or displayed by the provider portal 135 as described above.


In an embodiment, the claim adjustments tab 220 includes a list of claims adjustments. As used herein, claims adjustments comprise claims for reimbursement submitted on behalf of individuals that relate to treatments for ailments or conditions not identified by an insurance company as affecting the respective individual. For example, the prescription and medical claims data server 140 may receive claims for reimbursements submitted on behalf of patients. The prescription and medical claims data server 140 and/or a data store accessible by the insurer device 130 (not shown) may store a record of the ailments or conditions a patient has been diagnosed with. Such record may be maintained by the health insurance company. The prescription and medical claims data server 140 and/or the insurer device 130 may compare patient diagnoses with claims submitted on behalf of the respective patients. Any claims that do not correspond with a patient diagnosis may be flagged and provided to the provider portal 135.


The claim adjustments tab 220 may include pending claims adjustments (e.g., claims adjustments for which corresponding patient records have not yet been updated) when the inbox 214 is selected. The claims adjustments tab 220 may include completed claims adjustments (e.g., claims adjustments for which corresponding patient records have been updated) when the archived box 216 is selected. For example, the insurer device 130 can be used to update the record of the ailments or conditions a patient has been diagnosed with based on the claims adjustments such that the records are kept accurate. Pending claims adjustments may indicate that the record has not been updated and completed claims adjustments may indicate that the record has been updated. Thus, the claim adjustments tab 220 allows health insurance company personnel to view unreported diagnoses and update their records accordingly to increase the possibility of receiving transfer payments from other health insurance companies and/or other third parties.


The claims adjustments that are displayed in the user interface 200 may be organized by healthcare providers. For example, the claim adjustments displayed when the claims adjustments tab 220 is selected and when the healthcare provider 218A is selected may be for individuals that are patients of the healthcare provider 218A. The claim adjustments tab 220 may indicate a number of claim adjustments that are associated with the selected healthcare provider 218A-L.


Each claim adjustment may include a patient identification and claim information. For example, claim adjustment 230 includes a patient identification of “Patient #200016382” and claim information including a claim number (e.g., Claim #155385), a date the claim was made (e.g., Sep. 22, 2013), and claim notes (e.g., a diagnosis that is missing, the type of prescriptions used by the individual, when the prescriptions were used, etc.).


The inbox 214 may be associated with task number 215. The task number 215 may represent a total number of pending claims adjustments and a total number of pending gaps in care, which are described in greater detail below, for all individuals associated with the healthcare providers 218A-L.


The first pane 210 may further include a sort button 217. When selected, a user may be able to sort healthcare providers 218A by name, by location, by type of practice, by number of claims adjustments, by number of gaps in care, by risk posed by the healthcare provider (e.g., a larger number of claims adjustments and/or gaps in care may be riskier than a smaller number of the same), and/or the like.


Likewise, the second pane 212 may include a sort button 227. When selected, a user may be able to sort the claim adjustments listed in the claim adjustments tab 220 by patient name or number, by date, by type of ailment or condition, by importance, severity, or urgency (e.g., a missed diagnosis of cancer may be considered more important to record than a missed diagnosis of depression), and/or the like.


In an embodiment, the first pane 210 includes graphs, such as histograms or stacked bar graphs, associated with each of the healthcare providers 218A-L. For example, the healthcare provider 218L is associated with the graph 244. Each graph includes a first box that represents a number of pending claims adjustments and a second box that represents a number of pending gaps in care. For example, the graph 244 includes first box 240 and second box 242. The graphs may be based on a linear scale, a logarithmic scale, and/or the like. Each of the graphs may have the same and/or a different scale. Thus, the width of the first box and/or the second box may represent an absolute number of claims adjustments or gaps in care when compared to the widths of other first boxes and second boxes and/or may represent a relative number of claims adjustments to gaps in care with respect to the particular healthcare provider.



FIGS. 3A-C illustrate user interfaces 300 displaying the selection and archiving of a pending claim adjustment 332. As illustrated in FIG. 3A, a user on behalf of a health insurance company, using a cursor 350, may select the claim adjustment 332. For example, the user may select the claim adjustment 332 by placing the cursor 350 over a portion of the claim adjustment 332 (e.g., the box in the claim adjustment 332 next to the patient identification) and performing a selection operation (e.g., clicking a mouse button, tapping a touch interface, double-tapping a touch interface, etc.). The claim adjustment 332 may be selected by the user if the user has cleared the claim (e.g., updated the insurance company records such that the diagnosed ailment or condition of the patient is recorded accordingly). As illustrated in FIG. 3A, the cursor 350 is a mouse pointer, but may be any other indicia in other embodiments.


As illustrated in FIG. 3B, once the claim adjustment 332 is selected, the claim adjustment 332 disappears from the claim adjustments 220 tab. In addition, the task number 215 is reduced (e.g., from 1644 to 1643) and the number of claims adjustments listed in the claims adjustments tab 220 is reduced. Furthermore, in a graph 344 associated with the healthcare provider 218A, the width of a first box 340 may be reduced to reflect the reduced number of pending claims adjustments. The claim adjustment 332 is moved to the archived box, which is displayed when the archived box 216 is selected, as illustrated in FIG. 3C.



FIG. 4 illustrates a user interface 400 displaying gaps in care for review. As illustrated in FIG. 4, the gaps in care tab 222 is selected. As used herein, gaps in care are items that indicate a patient or healthcare provider has not submitted a claim for reimbursement for a treatment of an ailment or condition identified as affecting the patient at some previous time. A gaps in care item may be generated if the claim has not been submitted within a certain period of time (e.g., a calendar year). For example, a patient may have been diagnosed with diabetes, yet the patient may not have scheduled an appointment to treat the condition during the calendar year. Thus, a gaps in care item may be generated for the patient. Generation of the gaps in care item may also depend on the eligibility of a patient (e.g., gender, age, etc.). As described above, the prescription and medical claims data server 140 and/or a data store accessible by the insurer device 130 (not shown) may store a record of the ailments or conditions a patient has been diagnosed with. Such data may be received directly from the providers 110. Such data may also be generated based on appointment information received and stored by the prescription and medical claims data server 140 and/or the data store accessible by the insurer device 130. The appointment information may include information relating to the last appointments scheduled (and attended) by the patient for a particular ailment or condition. The prescription and medical claims data server 140 and/or the insurer device 130 may compare patient diagnoses with claims submitted on behalf of the respective patients. If no claims correspond with a particular patient diagnosis, the lack of a claim for that patient may be flagged and provided to the provider portal 135.


In an embodiment, the gaps in care tab 222 includes a new items window 460 and a scheduled appointments window 462. The new items window 460 includes pending gaps in care items (e.g., gaps in care items for which appointments with patients have not been scheduled) and the scheduled appointments window 462 includes scheduled gaps in care items (e.g., gaps in care items for which appointments with patients have been scheduled).


A gaps in care item may include a patient identification, notes, and/or contact information for the patient. For example, the gaps in care item 430 includes a patient identification (e.g., Patient #200010065), notes (e.g., make appointment for diabetes), and a phone number for the patient. The contact information (e.g., the phone number) may be selected to connect the user with the patient, such as the patient 150 as illustrated in FIG. 1.


In some embodiments, there are multiple gaps in care items associated with a single patient. In such circumstances, the gaps in care items may be grouped together and such grouping may be indicated. For example, the gaps in care item 432 includes a box 433 with a number inside (e.g., 2). The number may represent a number of gaps in care items associated with the patient.


The graphs in the first pane 210 may transition from one view when the claims adjustments tab 220 is selected to a second view when the gaps in care tab 222 is selected. For example, the first box and the second box may switch places, visualized via a continuous animation. As illustrated in FIG. 4, the second box 242 and the first box 240 in the graph 244 have switched places.



FIGS. 5A-5K illustrate user interfaces 500 displaying the selection, scheduling, and completion of a gaps in care item 534. As illustrated in FIG. 5A, a user on behalf of a health insurance company, using a cursor 550, may select the gaps in care item 534. When the sort button 227 is selected, a user may be able to sort the gaps in care items listed in the gaps in care tab 222 by patient name or number, by date, by type of ailment or condition, by importance, severity, or urgency (e.g., a missed appointment for cancer treatments may be considered more important to identify than a missed appointment for treatments for depression), and/or the like.


The gaps in care item 534 may be selected by the user if the user has contacted the patient to schedule an appointment and/or if the appointment has occurred, for example. As illustrated in FIG. 5B, a window 552 appears in the new items window 460 when a gaps in care item, such as the gaps in care item 534, is selected. The window 552 may comprise a “mark as scheduled” selection and a “mark as complete” selection. As illustrated in FIG. 5C, the user using the cursor 550 may select either selection. If “mark as scheduled” is selected, the gaps in care item 534 is moved from the new items window 460 to the scheduled appointments window 462, as illustrated in FIG. 5D. Alternatively, if “mark as complete” is selected, the gaps in care item 534 is removed from the new items window 460 and is visible when the archived box 216 is selected (e.g., which displays gaps in care items that are completed), as illustrated in FIG. 5I.


As illustrated in FIG. 5E, the user may select the gaps in care item 534 when it appears in the scheduled appointments window 462 using the cursor 550. Upon selecting a gaps in care item in the scheduled appointments window 462, such as the gaps in care item 534, a window 554 may appear in the scheduled appointments window 462, as illustrated in FIG. 5F. The window 554 may comprise a “mark as new” selection and a “mark as complete” selection. As illustrated in FIG. 5G, the user using the cursor 550 may select either selection. If “mark as new” is selected, the gaps in care item 534 is moved from the scheduled appointments window 462 to the new items window 460, as illustrated in FIG. 5A. Alternatively, if “mark as complete” is selected, the gaps in care item 534 is removed from the scheduled appointments window 462, as illustrated in FIG. 5H, and is visible when the archived box 216 is selected, as illustrated in FIG. 5I.


Furthermore, as illustrated in FIG. 5H, the task number 215 may decrease (e.g., from 1644 to 1643) once a gaps in care item, such as the gaps in care item 534, is marked as complete. In addition, the second box 342 may be adjusted (e.g., the width of the second box 342 may be reduced) to reflect the completion of a gaps in care item.


As illustrated in FIG. 5I, the user may select the archived box 216 to view completed gaps in care items. The completed gaps in care items may be displayed in an archived item window 560. As illustrated in FIG. 5J, the user may select the gaps in care item 534 using the cursor 550.


Upon selection of the gaps in care item 534, a window 556 may appear in the archived item window 560, as illustrated in FIG. 5K. The window 556 may comprise a “mark as new” selection and a “mark as scheduled” selection. If “mark as new” is selected, the gaps in care item 534 is moved from the archived item window 560 to the new items window 460, as illustrated in FIG. 5A. Alternatively, if “mark as scheduled” is selected, the gaps in care item 534 is moved from the archived item window 560 to the scheduled appointments window 462, as illustrated in FIG. 5D.



FIGS. 6A-6B illustrate user interfaces 600 displaying the expansion of gaps in care items that have been combined for a single patient. As illustrated in FIG. 6A, the user may select the gaps in care item 432, which is a gaps in care item that indicates multiple gaps in care items are associated with the patient, using a cursor 650. In an embodiment, upon selection of the gaps in care item 432, the gaps in care item 432 expands to show gaps in care items 632A-B, which are both associated with the same patient, as illustrated in FIG. 6B.



FIGS. 7A-7B illustrate user interfaces 700 displaying the expansion of scheduled and unscheduled gaps in care items that have been combined for a single patient. As illustrated in FIG. 7A, the user may select the gaps in care item 432 using a cursor 750. In an embodiment, upon selection of the gaps in care item 432, the gaps in care item 432 expands to show gaps in care items 732A-B, which are both associated with the same patient, as illustrated in FIG. 7B.



FIG. 7B further illustrates that the gaps in care item 732B has already been scheduled. The gaps in care item 732B is displayed in both the new items window 460 and the scheduled appointments window 462. For example, the gaps in care item 732B displayed in the new items window 460 includes a link (e.g., with the wording “SCHEDULED”) to the same gaps in care item 732B displayed in the scheduled appointments window 462. The link, when selected, may provide information on a time and/or location when the appointment for the gaps in care item 732B has been scheduled. Thus, the user may readily access such information so that an appointment for the gaps in care item 732A may be scheduled near or at the same time and/or location as the appointment for the gaps in care item 732B.


Example Process Flow



FIG. 8 is a flowchart 800 depicting an illustrative operation of displaying claims adjustments. Depending on the embodiment, the method of FIG. 8 may be performed by various computing devices, such as by the insurer device 130 and/or the prescription and medical claims data server 140. For ease of discussion, the method is discussed herein with reference to insurer device 130 and the provider portal 135 of the insurer device 130. Depending on the embodiment, the method of FIG. 8 may include fewer and/or additional blocks and the blocks may be performed in an order different than illustrated.


In block 802, medical data associated with a plurality of users is accessed. For example, the medical data may include diagnosis data for a plurality of patients (e.g., ailments or conditions that a patient is diagnosed with). The medical data may be accessed from the providers 110 and/or the prescription and medical claims data server 140 and provided to the insurer device 130.


In block 804, a plurality of user claims are accessed. In an embodiment, the user claims are prescription claims and/or medical claims. In a further embodiment, the plurality of user claims are each associated with a healthcare provider in a plurality of healthcare providers.


In block 806, a first set of user claims in the plurality of user claims that comprise claims for reimbursement for treatments of ailments not identified as affecting the respective user is determined. In an embodiment, the determination is made based on comparing the received medical data with claims received on behalf of each respective patient.


In block 808, a user interface is generated that comprises a provider window and a claim adjustment window. In an embodiment, the provider window comprises a selectable list of one or more of the plurality of healthcare providers.


In block 810, a selection of a first healthcare provider in the list of the one or more of the plurality of healthcare providers is received. In block 812, the claim adjustment window is updated to include one or more user claims in the first set of user claims that are associated with the first healthcare provider.


Implementation Mechanisms


According to one embodiment, the techniques described herein are implemented by one or more special-purpose computing devices. The special-purpose computing devices may be hard-wired to perform the techniques, or may include digital electronic devices such as one or more application-specific integrated circuits (ASICs) or field programmable gate arrays (FPGAs) that are persistently programmed to perform the techniques, or may include one or more general purpose hardware processors programmed to perform the techniques pursuant to program instructions in firmware, memory, other storage, or a combination. Such special-purpose computing devices may also combine custom hard-wired logic, ASICs, or FPGAs with custom programming to accomplish the techniques. The special-purpose computing devices may be desktop computer systems, server computer systems, portable computer systems, handheld devices, networking devices or any other device or combination of devices that incorporate hard-wired and/or program logic to implement the techniques.


Computing device(s) are generally controlled and coordinated by operating system software, such as iOS, Android, Chrome OS, Windows XP, Windows Vista, Windows 7, Windows 8, Windows Server, Windows CE, Unix, Linux, SunOS, Solaris, iOS, Blackberry OS, VxWorks, or other compatible operating systems. In other embodiments, the computing device may be controlled by a proprietary operating system. Conventional operating systems control and schedule computer processes for execution, perform memory management, provide file system, networking, I/O services, and provide a user interface functionality, such as a graphical user interface (“GUI”), among other things.


For example, FIG. 9 is a block diagram that illustrates a computer system 900 upon which an embodiment may be implemented. For example, any of the computing devices discussed herein, such as the insurer device 130, the prescription and medical claims data server 140, the providers 110, and the patient 150 may include some or all of the components and/or functionality of the computer system 900.


Computer system 900 includes a bus 902 or other communication mechanism for communicating information, and a hardware processor, or multiple processors, 904 coupled with bus 902 for processing information. Hardware processor(s) 904 may be, for example, one or more general purpose microprocessors.


Computer system 900 also includes a main memory 906, such as a random access memory (RAM), cache and/or other dynamic storage devices, coupled to bus 902 for storing information and instructions to be executed by processor 904. Main memory 906 also may be used for storing temporary variables or other intermediate information during execution of instructions to be executed by processor 904. Such instructions, when stored in storage media accessible to processor 904, render computer system 900 into a special-purpose machine that is customized to perform the operations specified in the instructions.


Computer system 900 further includes a read only memory (ROM) 908 or other static storage device coupled to bus 902 for storing static information and instructions for processor 904. A storage device 910, such as a magnetic disk, optical disk, or USB thumb drive (Flash drive), etc., is provided and coupled to bus 902 for storing information and instructions.


Computer system 900 may be coupled via bus 902 to a display 912, such as a cathode ray tube (CRT) or LCD display (or touch screen), for displaying information to a computer user. An input device 914, including alphanumeric and other keys, is coupled to bus 902 for communicating information and command selections to processor 904. Another type of user input device is cursor control 916, such as a mouse, a trackball, or cursor direction keys for communicating direction information and command selections to processor 804 and for controlling cursor movement on display 912. This input device typically has two degrees of freedom in two axes, a first axis (e.g., x) and a second axis (e.g., y), that allows the device to specify positions in a plane. In some embodiments, the same direction information and command selections as cursor control may be implemented via receiving touches on a touch screen without a cursor.


Computing system 900 may include a user interface module to implement a GUI that may be stored in a mass storage device as executable software codes that are executed by the computing device(s). This and other modules may include, by way of example, components, such as software components, object-oriented software components, class components and task components, processes, functions, attributes, procedures, subroutines, segments of program code, drivers, firmware, microcode, circuitry, data, databases, data structures, tables, arrays, and variables.


In general, the word “module,” as used herein, refers to logic embodied in hardware or firmware, or to a collection of software instructions, possibly having entry and exit points, written in a programming language, such as, for example, Java, Lua, C or C++. A software module may be compiled and linked into an executable program, installed in a dynamic link library, or may be written in an interpreted programming language such as, for example, BASIC, Perl, or Python. It will be appreciated that software modules may be callable from other modules or from themselves, and/or may be invoked in response to detected events or interrupts. Software modules configured for execution on computing devices may be provided on a computer readable medium, such as a compact disc, digital video disc, flash drive, magnetic disc, or any other tangible medium, or as a digital download (and may be originally stored in a compressed or installable format that requires installation, decompression or decryption prior to execution). Such software code may be stored, partially or fully, on a memory device of the executing computing device, for execution by the computing device. Software instructions may be embedded in firmware, such as an EPROM. It will be further appreciated that hardware modules may be comprised of connected logic units, such as gates and flip-flops, and/or may be comprised of programmable units, such as programmable gate arrays or processors. The modules or computing device functionality described herein are preferably implemented as software modules, but may be represented in hardware or firmware. Generally, the modules described herein refer to logical modules that may be combined with other modules or divided into sub-modules despite their physical organization or storage


Computer system 900 may implement the techniques described herein using customized hard-wired logic, one or more ASICs or FPGAs, firmware and/or program logic which in combination with the computer system causes or programs computer system 900 to be a special-purpose machine. According to one embodiment, the techniques herein are performed by computer system 900 in response to processor(s) 904 executing one or more sequences of one or more instructions contained in main memory 906. Such instructions may be read into main memory 906 from another storage medium, such as storage device 910. Execution of the sequences of instructions contained in main memory 906 causes processor(s) 904 to perform the process steps described herein. In alternative embodiments, hard-wired circuitry may be used in place of or in combination with software instructions.


The term “non-transitory media,” and similar terms, as used herein refers to any media that store data and/or instructions that cause a machine to operate in a specific fashion. Such non-transitory media may comprise non-volatile media and/or volatile media. Non-volatile media includes, for example, optical or magnetic disks, such as storage device 910. Volatile media includes dynamic memory, such as main memory 906. Common forms of non-transitory media include, for example, a floppy disk, a flexible disk, hard disk, solid state drive, magnetic tape, or any other magnetic data storage medium, a CD-ROM, any other optical data storage medium, any physical medium with patterns of holes, a RAM, a PROM, and EPROM, a FLASH-EPROM, NVRAM, any other memory chip or cartridge, and networked versions of the same.


Non-transitory media is distinct from but may be used in conjunction with transmission media. Transmission media participates in transferring information between nontransitory media. For example, transmission media includes coaxial cables, copper wire and fiber optics, including the wires that comprise bus 802. Transmission media can also take the form of acoustic or light waves, such as those generated during radio-wave and infra-red data communications.


Various forms of media may be involved in carrying one or more sequences of one or more instructions to processor 804 for execution. For example, the instructions may initially be carried on a magnetic disk or solid state drive of a remote computer. The remote computer can load the instructions into its dynamic memory and send the instructions over a telephone line using a modem. A modem local to computer system 900 can receive the data on the telephone line and use an infra-red transmitter to convert the data to an infra-red signal. An infra-red detector can receive the data carried in the infra-red signal and appropriate circuitry can place the data on bus 902. Bus 902 carries the data to main memory 906, from which processor 904 retrieves and executes the instructions. The instructions received by main memory 906 may retrieve and execute the instructions. The instructions received by main memory 906 may optionally be stored on storage device 910 either before or after execution by processor 904.


Computer system 900 also includes a communication interface 918 coupled to bus 902. Communication interface 918 provides a two-way data communication coupling to a network link 920 that is connected to a local network 922. For example, communication interface 918 may be an integrated services digital network (ISDN) card, cable modem, satellite modem, or a modem to provide a data communication connection to a corresponding type of telephone line. As another example, communication interface 918 may be a local area network (LAN) card to provide a data communication connection to a compatible LAN (or WAN component to communicated with a WAN). Wireless links may also be implemented. In any such implementation, communication interface 918 sends and receives electrical, electromagnetic or optical signals that carry digital data streams representing various types of information.


Network link 920 typically provides data communication through one or more networks to other data devices. For example, network link 920 may provide a connection through local network 922 to a host computer 924 or to data equipment operated by an Internet Service Provider (ISP) 926. ISP 926 in turn provides data communication services through the world wide packet data communication network now commonly referred to as the “Internet” 928. Local network 922 and Internet 928 both use electrical, electromagnetic or optical signals that carry digital data streams. The signals through the various networks and the signals on network link 920 and through communication interface 918, which carry the digital data to and from computer system 900, are example forms of transmission media.


Computer system 900 can send messages and receive data, including program code, through the network(s), network link 920 and communication interface 918. In the Internet example, a server 930 might transmit a requested code for an application program through Internet 928, ISP 926, local network 922 and communication interface 918.


The received code may be executed by processor 904 as it is received, and/or stored in storage device 910, or other non-volatile storage for later execution.


Terminology

Each of the processes, methods, and algorithms described in the preceding sections may be embodied in, and fully or partially automated by, code modules executed by one or more computer systems or computer processors comprising computer hardware. The processes and algorithms may be implemented partially or wholly in application-specific circuitry.


The various features and processes described above may be used independently of one another, or may be combined in various ways. All possible combinations and subcombinations are intended to fall within the scope of this disclosure. In addition, certain method or process blocks may be omitted in some implementations. The methods and processes described herein are also not limited to any particular sequence, and the blocks or states relating thereto can be performed in other sequences that are appropriate. For example, described blocks or states may be performed in an order other than that specifically disclosed, or multiple blocks or states may be combined in a single block or state. The example blocks or states may be performed in serial, in parallel, or in some other manner. Blocks or states may be added to or removed from the disclosed example embodiments. The example systems and components described herein may be configured differently than described. For example, elements may be added to, removed from, or rearranged compared to the disclosed example embodiments.


Conditional language, such as, among others, “can,” “could,” “might,” or “may,” unless specifically stated otherwise, or otherwise understood within the context as used, is generally intended to convey that certain embodiments include, while other embodiments do not include, certain features, elements and/or steps. Thus, such conditional language is not generally intended to imply that features, elements and/or steps are in any way required for one or more embodiments or that one or more embodiments necessarily include logic for deciding, with or without user input or prompting, whether these features, elements and/or steps are included or are to be performed in any particular embodiment.


Any process descriptions, elements, or blocks in the flow diagrams described herein and/or depicted in the attached figures should be understood as potentially representing modules, segments, or portions of code which include one or more executable instructions for implementing specific logical functions or steps in the process. Alternate implementations are included within the scope of the embodiments described herein in which elements or functions may be deleted, executed out of order from that shown or discussed, including substantially concurrently or in reverse order, depending on the functionality involved, as would be understood by those skilled in the art.


It should be emphasized that many variations and modifications may be made to the above-described embodiments, the elements of which are to be understood as being among other acceptable examples. All such modifications and variations are intended to be included herein within the scope of this disclosure. The foregoing description details certain embodiments of the invention. It will be appreciated, however, that no matter how detailed the foregoing appears in text, the invention can be practiced in many ways. As is also stated above, it should be noted that the use of particular terminology when describing certain features or aspects of the invention should not be taken to imply that the terminology is being re-defined herein to be restricted to including any specific characteristics of the features or aspects of the invention with which that terminology is associated. The scope of the invention should therefore be construed in accordance with the appended claims and any equivalents thereof.

Claims
  • 1. A system comprising: a computer processor; anda computer readable storage medium storing a plurality of program instructions configured for execution by the computer processor, wherein the plurality of program instructions, when executed, cause the computing system to: access a plurality of health claims associated with an entity;determine a first set of health claims in the plurality of health claims and a second set of health claims in the plurality of health claims;cause a user interface to be rendered, the user interface comprising a first window, a second window, and an interactive element, wherein the first window depicts the entity, wherein the first window further depicts a first stacked bar graph associated with the entity, wherein the first stacked bar graph comprises a first box and a second box, wherein a width of the first box is based on a number of health claims in the first set of health claims, and wherein a width of the second box is based on a number of health claims in the second set of health claims;receive a selection of the entity;in response to the selection of the entity, cause one or more health claims in the first set of health claims to be displayed in the second window;receive an indication of a selection of a first health claim in the one or more health claims in the first set of health claims;in response to reception of the indication of the selection of the first health claim, no longer display, in the second window, the first health claim, andcause the width of the first box of the first stacked bar graph to decrease from a first width to a second width less than the first width to reflect a reduced number of health claims in the first set of health claims; andin response to a selection of the interactive element, initiate a communication between the system and a physical computing device associated with a user.
  • 2. The system of claim 1, wherein the program instructions are further configured to cause the computing system to identify a first set of users that have not submitted, during a first period of time, a second health claim in the plurality of health claims for reimbursement for a treatment of an ailment identified as affecting the respective user, wherein the user interface is further configured to display, in a third window, for each user in the first set of users that is associated with the entity, a notification to contact the respective user.
  • 3. The system of claim 2, wherein the program instructions are further configured to cause the computing system to receive a selection of a first notification to contact a first user in the first set of users, wherein the user interface is further configured to display, in the third window, a schedule window that overlaps at least a portion of the first notification, wherein the schedule window comprises an option to indicate that an appointment has been scheduled with the first user and an option to indicate that the appointment with the first user has been completed.
  • 4. The system of claim 3, wherein the third window comprises a new window and a scheduled appointment window, wherein the new window comprises the first notification, and wherein the user interface is further configured to display, in the scheduled appointment window and not the new window, the first notification in connection with a selection of the option to indicate that the appointment has been scheduled with the first user.
  • 5. The system of claim 2, wherein the third window comprises a first notification to contact a first user in the first set of users and a notification number associated with the first notification that indicates a reason to contact the first user.
  • 6. The system of claim 5, wherein the user interface is further configured to display, in the third window, a second notification to contact the first user and a third notification to contact the first user in connection with a selection of the first notification.
  • 7. The system of claim 1, wherein the first stacked bar graph comprises information displayed using a logarithmic scale.
  • 8. The system of claim 1, wherein the user interface comprises a sort button, and wherein the sort button, when selected, causes the second window to display the one or more health claims in the first set of health claims in one of an alphabetical order, an order based on date, or an order based on importance of the respective medical claim.
  • 9. The system of claim 1, wherein health claims in the first set of claims that are associated with a first user comprise health claims for reimbursement for treatment of a first ailment, and wherein the first ailment is not identified by the entity as affecting the first user.
  • 10. A computer-implemented method comprising: as implemented by one or more computer systems comprising a computer processor and main memory, the one or more computer systems configured with specific executable instructions, accessing a plurality of health claims associated with an entity;determining a first set of health claims in the plurality of health claims and a second set of health claims in the plurality of health claims;causing a user interface to be rendered, the user interface comprising a first window, a second window, and an interactive element, wherein the first window depicts the entity, wherein the first window further depicts a first stacked bar graph associated with the entity, wherein the first stacked bar graph comprises a first box and a second box, and wherein a width of the first box is based on a number of health claims in the first set of health claims, and wherein a width of the second box is based on a number of health claims in the second set of health claims;receiving a selection of the entity;in response to the selection of the entity, causing one or more health claims in the first set of health claims to be displayed in the second window;receive an indication of a selection of a first health claim in the one or more health claims in the first set of health claims;in response to reception of the indication of the selection of the first health claim, no longer display, in the second window, the first health claim, andcause the width of the first box of the first stacked bar graph to decrease from a first width to a second width less than the first width to reflect a reduced number of health claims in the first set of health claims; andin response to a selection of the interactive element, initiating a communication between the one or more computer systems and a physical computing device associated with a user.
  • 11. The method of claim 10, further comprising: identifying a first set of users that have not submitted, during a first period of time, a second health claim in the plurality of health claims for reimbursement for a treatment of an ailment identified as affecting the respective user; andupdating a third window in the user interface, for each user in the first set of users that is associated with the entity, to include a notification to contact the respective user.
  • 12. The method of claim 10, wherein health claims in the first set of health claims that are associated with a first user comprise health claims for reimbursement for treatment of a first ailment, and wherein the first ailment is not identified by the entity as affecting the first user.
  • 13. The method of claim 10, wherein the first stacked bar graph comprises information displayed using a logarithmic scale.
  • 14. The method of claim 10, further comprising receiving a selection of a first notification to contact a first user, wherein the user interface is further configured to display a schedule window that overlaps at least a portion of the first notification, and wherein the user interface comprises an option to indicate that an appointment has been scheduled with the first user and an option to indicate that the appointment with the first user has been completed.
  • 15. The method of claim 14, wherein the user interface is further configured to display a new window and a scheduled appointment window, wherein the new window comprises the first notification, and wherein the user interface is further configured to display, in the scheduled appointment window and not the new window, the first notification in connection with a selection of the option to indicate that the appointment has been scheduled with the first user.
  • 16. A non-transitory computer-readable medium comprising one or more program instructions recorded thereon, the instructions configured for execution by a computing system comprising one or more processors in order to cause the computing system to: access a plurality of health claims associated with a first entity;determine a first set of health claims in the plurality of health claims and a second set of health claims in the plurality of health claims;cause a user interface to be rendered, the user interface comprising a first window, a second window, and an interactive element, wherein the first window depicts the entity, wherein the first window further depicts a first stacked bar graph associated with the entity, wherein the first stacked bar graph comprises a first box and a second box, wherein a width of the first box is based on a number of health claims in the first set of health claims, and wherein a width of the second box is based on a number of health claims in the second set of health claims;receive a selection of the entity;in response to the selection of the entity, cause one or more health claims in the first set of health claims to be displayed in the second window;receive an indication of a selection of a first health claim in the one or more health claims;in response to reception of the indication of the selection of the first health claim, no longer display, in the second window, the first health claim, andcause the width of the first box of the first stacked bar graph to decrease from a first width to a second width less than the first width to reflect a reduced number of health claims in the first set of health claims; andin response to a selection of the interactive element, initiate a communication between the computing system and a physical computing device associated with a user.
  • 17. The medium of claim 16, wherein the instructions are further configured to cause the computing system to: identify a first set of users that have not submitted, during a first period of time, a second health claim in the plurality of health claims for reimbursement for a treatment of an ailment identified as affecting the respective user; andupdate the user interface, for each user in the first set of users that is associated with the entity, to include a notification to contact the respective user.
  • 18. The medium of claim 16, wherein health claims in the first set of health claims that are associated with a first user comprise health claims for reimbursement for treatment of a first ailment, and wherein the first ailment is not identified by the entity as affecting the first user.
  • 19. The medium of claim 16, wherein the first stacked bar graph comprises information displayed using a logarithmic scale.
  • 20. The medium of claim 17, wherein the updated user interface comprises a first notification to contact a first user in the first set of users and a notification number associated with the first notification that indicates a reason to contact the first user.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 14/222,364, entitled “PROVIDER PORTAL” and filed on Mar. 21, 2014, which is hereby incorporated by reference in its entirety.

US Referenced Citations (545)
Number Name Date Kind
5241625 Epard et al. Aug 1993 A
5670987 Doi et al. Sep 1997 A
5819226 Gopinathan et al. Oct 1998 A
5826021 Mastors et al. Oct 1998 A
5832218 Gibbs et al. Nov 1998 A
5845300 Comer Dec 1998 A
5878434 Draper et al. Mar 1999 A
5892900 Ginter et al. Apr 1999 A
5893072 Zizzamia Apr 1999 A
5897636 Kaeser Apr 1999 A
5966706 Biliris et al. Oct 1999 A
5999911 Berg et al. Dec 1999 A
6006242 Poole et al. Dec 1999 A
6057757 Arrowsmith et al. May 2000 A
6065026 Cornelia et al. May 2000 A
6094643 Anderson et al. Jul 2000 A
6134582 Kennedy Oct 2000 A
6161098 Wallman Dec 2000 A
6219053 Tachibana et al. Apr 2001 B1
6232971 Haynes May 2001 B1
6237138 Hameluck et al. May 2001 B1
6243706 Moreau et al. Jun 2001 B1
6243717 Gordon et al. Jun 2001 B1
6279018 Kudrolli et al. Aug 2001 B1
6341310 Leshem et al. Jan 2002 B1
6369835 Lin Apr 2002 B1
6370538 Lamping et al. Apr 2002 B1
6430305 Decker Aug 2002 B1
6463404 Appleby Oct 2002 B1
6505196 Drucker et al. Jan 2003 B2
6519627 Dan et al. Feb 2003 B1
6523019 Borthwick Feb 2003 B1
6549944 Weinberg et al. Apr 2003 B1
6714936 Nevin, III Mar 2004 B1
6820135 Dingman Nov 2004 B1
6839745 Dingari et al. Jan 2005 B1
6944821 Bates et al. Sep 2005 B1
6978419 Kantrowitz Dec 2005 B1
6980984 Huffman et al. Dec 2005 B1
7058648 Lightfoot et al. Jun 2006 B1
7086028 Davis et al. Aug 2006 B1
7089541 Ungar Aug 2006 B2
7139800 Bellotti et al. Nov 2006 B2
7168039 Bertram Jan 2007 B2
7171427 Witowski et al. Jan 2007 B2
7174377 Bernard et al. Feb 2007 B2
7213030 Jenkins May 2007 B1
7254555 Field Aug 2007 B2
7278105 Kitts Oct 2007 B1
7379903 Caballero et al. May 2008 B2
7383239 Bonissone Jun 2008 B2
7392254 Jenkins Jun 2008 B1
7403942 Bayliss Jul 2008 B1
7418431 Nies et al. Aug 2008 B1
7426654 Adams et al. Sep 2008 B2
7441182 Beilinson et al. Oct 2008 B2
7454466 Bellotti et al. Nov 2008 B2
7461158 Rider et al. Dec 2008 B2
7467375 Tondreau et al. Dec 2008 B2
7525422 Bishop et al. Apr 2009 B2
7617232 Gabbert et al. Nov 2009 B2
7627489 Schaeffer et al. Dec 2009 B2
7627812 Chamberlain et al. Dec 2009 B2
7634717 Chamberlain et al. Dec 2009 B2
7703021 Flam Apr 2010 B1
7716077 Mikurak May 2010 B1
7725547 Albertson et al. May 2010 B2
7756843 Palmer Jul 2010 B1
7757220 Griffith et al. Jul 2010 B2
7765489 Shah Jul 2010 B1
7770100 Chamberlain et al. Aug 2010 B2
7813937 Pathria et al. Oct 2010 B1
7818658 Chen Oct 2010 B2
7827045 Madill et al. Nov 2010 B2
7877421 Berger et al. Jan 2011 B2
7880921 Dattilo et al. Feb 2011 B2
7899796 Borthwick et al. Mar 2011 B1
7912842 Bayliss Mar 2011 B1
7917376 Bellin et al. Mar 2011 B2
7941321 Greenstein et al. May 2011 B2
7941336 Robin-Jan May 2011 B1
7958147 Turner et al. Jun 2011 B1
7962495 Jain et al. Jun 2011 B2
7962848 Bertram Jun 2011 B2
7966199 Frasher Jun 2011 B1
8001465 Kudrolli et al. Aug 2011 B2
8001482 Bhattiprolu et al. Aug 2011 B2
8010507 Poston et al. Aug 2011 B2
8015487 Roy et al. Sep 2011 B2
8036971 Aymeloglu et al. Oct 2011 B2
8046283 Burns Oct 2011 B2
8054756 Chand et al. Nov 2011 B2
8073857 Sreekanth Dec 2011 B2
8117022 Linker Feb 2012 B2
8126848 Wagner Feb 2012 B2
8214232 Tyler et al. Jul 2012 B2
8214490 Vos et al. Jul 2012 B1
8225201 Michael Jul 2012 B2
8229902 Vishniac et al. Jul 2012 B2
8230333 Decherd et al. Jul 2012 B2
8290838 Thakur et al. Oct 2012 B1
8301464 Cave et al. Oct 2012 B1
8302855 Ma et al. Nov 2012 B2
8364642 Garrod Jan 2013 B1
8417715 Bruckhaus et al. Apr 2013 B1
8429527 Arbogast Apr 2013 B1
8447722 Ahuja et al. May 2013 B1
8473454 Evanitsky et al. Jun 2013 B2
8484115 Aymeloglu et al. Jul 2013 B2
8489623 Jain et al. Jul 2013 B2
8489641 Seefeld et al. Jul 2013 B1
8514082 Cova et al. Aug 2013 B2
8515912 Garrod et al. Aug 2013 B2
8527461 Ducott, III et al. Sep 2013 B2
8538827 Dryer et al. Sep 2013 B1
8554579 Tribble et al. Oct 2013 B2
8554719 McGrew Oct 2013 B2
8577911 Stepinski et al. Nov 2013 B1
8578500 Long Nov 2013 B2
8589273 Creeden et al. Nov 2013 B2
8600872 Yan Dec 2013 B1
8601326 Kirn Dec 2013 B1
8620641 Farnsworth et al. Dec 2013 B2
8639522 Pathria et al. Jan 2014 B2
8639552 Chen et al. Jan 2014 B1
8655687 Zizzamia Feb 2014 B2
8666861 Li et al. Mar 2014 B2
8682696 Shanmugam Mar 2014 B1
8688573 Ruknoic et al. Apr 2014 B1
8689108 Duffield et al. Apr 2014 B1
8713467 Goldenberg et al. Apr 2014 B1
8732574 Burr et al. May 2014 B2
8744890 Bernier Jun 2014 B1
8798354 Bunzel et al. Aug 2014 B1
8799313 Satlow Aug 2014 B2
8812960 Sun et al. Aug 2014 B1
8903717 Elliot Dec 2014 B2
8924388 Elliot et al. Dec 2014 B2
8924389 Elliot et al. Dec 2014 B2
8938686 Erenrich et al. Jan 2015 B1
8949164 Mohler Feb 2015 B1
8984390 Aymeloglu et al. Mar 2015 B2
9032531 Scorvo et al. May 2015 B1
9058315 Burr et al. Jun 2015 B2
9100428 Visbal Aug 2015 B1
9105000 White et al. Aug 2015 B1
9129219 Robertson et al. Sep 2015 B1
9418337 Elser et al. Aug 2016 B1
9836580 Fendell et al. Dec 2017 B2
20010021936 Bertram Sep 2001 A1
20010027424 Torigoe Oct 2001 A1
20020032677 Morgenthaler et al. Mar 2002 A1
20020035590 Eibach et al. Mar 2002 A1
20020065708 Senay et al. May 2002 A1
20020095360 Joao Jul 2002 A1
20020095658 Shulman Jul 2002 A1
20020103705 Brady Aug 2002 A1
20020130907 Chi et al. Sep 2002 A1
20020147805 Leshem et al. Oct 2002 A1
20020174201 Ramer et al. Nov 2002 A1
20030033347 Bolle et al. Feb 2003 A1
20030036927 Bowen Feb 2003 A1
20030093401 Czahkowski et al. May 2003 A1
20030093755 O'Carroll May 2003 A1
20030105759 Bess et al. Jun 2003 A1
20030115481 Baird et al. Jun 2003 A1
20030126102 Borthwick Jul 2003 A1
20030163352 Surpin et al. Aug 2003 A1
20030177112 Gardner Sep 2003 A1
20030182313 Federwisch et al. Sep 2003 A1
20030200217 Ackerman Oct 2003 A1
20030208465 Yurko Nov 2003 A1
20030212718 Tester Nov 2003 A1
20040003009 Wilmot Jan 2004 A1
20040006523 Coker Jan 2004 A1
20040034570 Davis Feb 2004 A1
20040044648 Anfindsen et al. Mar 2004 A1
20040083466 Dapp et al. Apr 2004 A1
20040085318 Hassler et al. May 2004 A1
20040088177 Travis et al. May 2004 A1
20040095349 Bito et al. May 2004 A1
20040111480 Yue Jun 2004 A1
20040117387 Civetta et al. Jun 2004 A1
20040126840 Cheng et al. Jul 2004 A1
20040153418 Hanweck Aug 2004 A1
20040153451 Phillips et al. Aug 2004 A1
20040181554 Heckerman et al. Sep 2004 A1
20040205492 Newsome Oct 2004 A1
20040210763 Jonas Oct 2004 A1
20040236688 Bozeman Nov 2004 A1
20050010472 Quatse et al. Jan 2005 A1
20050028094 Allyn Feb 2005 A1
20050039116 Slack-Smith Feb 2005 A1
20050060184 Wahlbin Mar 2005 A1
20050086207 Heuer et al. Apr 2005 A1
20050091186 Elish Apr 2005 A1
20050097441 Herbach et al. May 2005 A1
20050108063 Madill et al. May 2005 A1
20050125715 Di Franco et al. Jun 2005 A1
20050131935 O'Leary et al. Jun 2005 A1
20050133588 Williams Jun 2005 A1
20050149455 Bruesewitz et al. Jul 2005 A1
20050149527 Berlin Jul 2005 A1
20050154628 Eckart et al. Jul 2005 A1
20050154769 Eckart et al. Jul 2005 A1
20050180330 Shapiro Aug 2005 A1
20050182654 Abolfathi et al. Aug 2005 A1
20050228699 Samuels Oct 2005 A1
20050262512 Schmidt et al. Nov 2005 A1
20060010130 Leff et al. Jan 2006 A1
20060026120 Carolan et al. Feb 2006 A1
20060026170 Kreitler et al. Feb 2006 A1
20060026561 Bauman et al. Feb 2006 A1
20060031779 Theurer et al. Feb 2006 A1
20060045470 Poslinski et al. Mar 2006 A1
20060053097 King et al. Mar 2006 A1
20060053170 Hill et al. Mar 2006 A1
20060059423 Lehmann et al. Mar 2006 A1
20060074866 Chamberlain et al. Apr 2006 A1
20060080139 Mainzer Apr 2006 A1
20060080316 Gilmore et al. Apr 2006 A1
20060080619 Carlson et al. Apr 2006 A1
20060129746 Porter Jun 2006 A1
20060136513 Ngo et al. Jun 2006 A1
20060142949 Helt Jun 2006 A1
20060143034 Rothermel Jun 2006 A1
20060143075 Carr et al. Jun 2006 A1
20060143079 Basak et al. Jun 2006 A1
20060149596 Surpin et al. Jul 2006 A1
20060178915 Chao Aug 2006 A1
20060218206 Bourbonnais et al. Sep 2006 A1
20060218491 Grossman et al. Sep 2006 A1
20060241974 Chao et al. Oct 2006 A1
20060253502 Raman et al. Nov 2006 A1
20060265417 Amato et al. Nov 2006 A1
20060277460 Forstall et al. Dec 2006 A1
20070000999 Kubo et al. Jan 2007 A1
20070011304 Error Jan 2007 A1
20070038646 Thota Feb 2007 A1
20070043686 Teng et al. Feb 2007 A1
20070061259 Zoldi et al. Mar 2007 A1
20070061752 Cory Mar 2007 A1
20070067285 Blume Mar 2007 A1
20070106582 Baker et al. May 2007 A1
20070113164 Hansen et al. May 2007 A1
20070136095 Weinstein Jun 2007 A1
20070150801 Chidlovskii et al. Jun 2007 A1
20070156673 Maga Jul 2007 A1
20070168871 Jenkins Jul 2007 A1
20070178501 Rabinowitz et al. Aug 2007 A1
20070185867 Maga Aug 2007 A1
20070192143 Krishnan et al. Aug 2007 A1
20070233756 D'Souza et al. Oct 2007 A1
20070239606 Eisen Oct 2007 A1
20070245339 Bauman et al. Oct 2007 A1
20070266336 Nojima et al. Nov 2007 A1
20070271317 Carmel Nov 2007 A1
20070284433 Domenica et al. Dec 2007 A1
20070295797 Herman et al. Dec 2007 A1
20070299697 Friedlander et al. Dec 2007 A1
20080005063 Seeds Jan 2008 A1
20080016155 Khalatian Jan 2008 A1
20080046481 Gould et al. Feb 2008 A1
20080069081 Chand et al. Mar 2008 A1
20080077597 Butler Mar 2008 A1
20080077642 Carbone et al. Mar 2008 A1
20080091693 Murthy Apr 2008 A1
20080103798 Domenikos et al. May 2008 A1
20080103996 Forman et al. May 2008 A1
20080109714 Kumar et al. May 2008 A1
20080126344 Hoffman et al. May 2008 A1
20080126951 Sood et al. May 2008 A1
20080140387 Linker Jun 2008 A1
20080140576 Lewis et al. Jun 2008 A1
20080155440 Trevor et al. Jun 2008 A1
20080172257 Bisker et al. Jul 2008 A1
20080172607 Baer Jul 2008 A1
20080195417 Surpin et al. Aug 2008 A1
20080195421 Ludwig et al. Aug 2008 A1
20080195672 Hamel et al. Aug 2008 A1
20080222038 Eden et al. Sep 2008 A1
20080222295 Robinson et al. Sep 2008 A1
20080228467 Womack et al. Sep 2008 A1
20080235199 Li et al. Sep 2008 A1
20080243711 Aymeloglu et al. Oct 2008 A1
20080249820 Pathria Oct 2008 A1
20080255973 El Wade et al. Oct 2008 A1
20080263468 Cappione et al. Oct 2008 A1
20080267386 Cooper Oct 2008 A1
20080270316 Guidotti et al. Oct 2008 A1
20080270438 Aronson et al. Oct 2008 A1
20080281580 Zabokritski Nov 2008 A1
20080281819 Tenenbaum et al. Nov 2008 A1
20080301042 Patzer Dec 2008 A1
20080313132 Hao et al. Dec 2008 A1
20080313243 Poston et al. Dec 2008 A1
20090012813 Berzansky Jan 2009 A1
20090018996 Hunt et al. Jan 2009 A1
20090031401 Cudich et al. Jan 2009 A1
20090043801 LeClair Feb 2009 A1
20090055208 Kaiser Feb 2009 A1
20090055487 Moraes et al. Feb 2009 A1
20090070162 Leonelli et al. Mar 2009 A1
20090076845 Bellin et al. Mar 2009 A1
20090089651 Herberger et al. Apr 2009 A1
20090094166 Aymeloglu et al. Apr 2009 A1
20090106178 Chu Apr 2009 A1
20090106242 McGrew Apr 2009 A1
20090112678 Luzardo Apr 2009 A1
20090112745 Stefanescu Apr 2009 A1
20090125359 Knapic May 2009 A1
20090125459 Norton et al. May 2009 A1
20090132953 Reed et al. May 2009 A1
20090150868 Chakra et al. Jun 2009 A1
20090164387 Armstrong et al. Jun 2009 A1
20090164934 Bhattiprolu et al. Jun 2009 A1
20090177492 Hasan et al. Jul 2009 A1
20090187546 Whyte et al. Jul 2009 A1
20090187548 Ji et al. Jul 2009 A1
20090198518 McKenzie et al. Aug 2009 A1
20090199106 Jonsson et al. Aug 2009 A1
20090216562 Faulkner et al. Aug 2009 A1
20090222287 Legorreta et al. Sep 2009 A1
20090228365 Tomchek et al. Sep 2009 A1
20090240529 Chess et al. Sep 2009 A1
20090248757 Havewala et al. Oct 2009 A1
20090249244 Robinson et al. Oct 2009 A1
20090271343 Vaiciulis et al. Oct 2009 A1
20090281839 Lynn et al. Nov 2009 A1
20090287470 Farnsworth et al. Nov 2009 A1
20090299830 West et al. Dec 2009 A1
20090307049 Elliott et al. Dec 2009 A1
20090313311 Hoffmann et al. Dec 2009 A1
20090313463 Pang et al. Dec 2009 A1
20090319418 Herz Dec 2009 A1
20090319891 MacKinlay Dec 2009 A1
20100030722 Goodson et al. Feb 2010 A1
20100031141 Summers et al. Feb 2010 A1
20100042922 Bradateanu et al. Feb 2010 A1
20100057622 Faith et al. Mar 2010 A1
20100070531 Aymeloglu et al. Mar 2010 A1
20100070842 Aymeloglu et al. Mar 2010 A1
20100070844 Aymeloglu et al. Mar 2010 A1
20100070897 Aymeloglu et al. Mar 2010 A1
20100082369 Prenelus et al. Apr 2010 A1
20100082541 Kottomtharayil Apr 2010 A1
20100082671 Li et al. Apr 2010 A1
20100094765 Nandy Apr 2010 A1
20100098318 Anderson Apr 2010 A1
20100114817 Broeder et al. May 2010 A1
20100114887 Conway et al. May 2010 A1
20100122152 Chamberlain et al. May 2010 A1
20100131502 Fordham May 2010 A1
20100145909 Ngo Jun 2010 A1
20100161735 Sharma Jun 2010 A1
20100169192 Zoldi et al. Jul 2010 A1
20100191563 Schlaifer et al. Jul 2010 A1
20100204983 Chung et al. Aug 2010 A1
20100223260 Wu Sep 2010 A1
20100235915 Memon et al. Sep 2010 A1
20100262688 Hussain et al. Oct 2010 A1
20100280851 Merkin Nov 2010 A1
20100293174 Bennett et al. Nov 2010 A1
20100306285 Shah et al. Dec 2010 A1
20100306713 Geisner et al. Dec 2010 A1
20100312837 Bodapati et al. Dec 2010 A1
20100313239 Chakra et al. Dec 2010 A1
20100324929 Petrasich et al. Dec 2010 A1
20100325581 Finkelstein et al. Dec 2010 A1
20110004626 Naeymi-Rad et al. Jan 2011 A1
20110047159 Baid et al. Feb 2011 A1
20110055074 Chen et al. Mar 2011 A1
20110060753 Shaked et al. Mar 2011 A1
20110061013 Bilicki et al. Mar 2011 A1
20110066497 Gopinath et al. Mar 2011 A1
20110078173 Seligmann et al. Mar 2011 A1
20110093327 Fordyce, III et al. Apr 2011 A1
20110099133 Chang et al. Apr 2011 A1
20110099628 Lanxner et al. Apr 2011 A1
20110131122 Griffin et al. Jun 2011 A1
20110153384 Horne et al. Jun 2011 A1
20110161409 Nair Jun 2011 A1
20110167105 Ramakrishnan et al. Jul 2011 A1
20110173093 Psota et al. Jul 2011 A1
20110179048 Satlow Jul 2011 A1
20110208565 Ross et al. Aug 2011 A1
20110208724 Jones et al. Aug 2011 A1
20110208822 Rathod Aug 2011 A1
20110213655 Henkin Sep 2011 A1
20110218955 Tang Sep 2011 A1
20110225482 Chan et al. Sep 2011 A1
20110225586 Bentley et al. Sep 2011 A1
20110231305 Winters Sep 2011 A1
20110246229 Pacha Oct 2011 A1
20110252282 Meek et al. Oct 2011 A1
20110258216 Supakkul et al. Oct 2011 A1
20110270604 Qi et al. Nov 2011 A1
20110270834 Sokolan et al. Nov 2011 A1
20110289397 Eastmond et al. Nov 2011 A1
20110291851 Whisenant Dec 2011 A1
20110295649 Fine Dec 2011 A1
20110307382 Siegel et al. Dec 2011 A1
20110310005 Chen et al. Dec 2011 A1
20110314007 Dassa et al. Dec 2011 A1
20110314024 Chang et al. Dec 2011 A1
20120004894 Butler Jan 2012 A1
20120011238 Rathod Jan 2012 A1
20120011245 Gillette et al. Jan 2012 A1
20120013684 Robertson et al. Jan 2012 A1
20120019559 Siler et al. Jan 2012 A1
20120022945 Falkenborg et al. Jan 2012 A1
20120036434 Oberstein Feb 2012 A1
20120054284 Rakshit Mar 2012 A1
20120059853 Jagota Mar 2012 A1
20120065987 Farooq et al. Mar 2012 A1
20120066166 Curbera et al. Mar 2012 A1
20120078595 Balandin et al. Mar 2012 A1
20120079363 Folting et al. Mar 2012 A1
20120084117 Tavares et al. Apr 2012 A1
20120084184 Raleigh Apr 2012 A1
20120084287 Lakshminarayan et al. Apr 2012 A1
20120096384 Albert Apr 2012 A1
20120131512 Takeuchi et al. May 2012 A1
20120144335 Abeln et al. Jun 2012 A1
20120158585 Ganti Jun 2012 A1
20120159362 Brown et al. Jun 2012 A1
20120173381 Smith Jul 2012 A1
20120188252 Law Jul 2012 A1
20120191446 Binsztok et al. Jul 2012 A1
20120196558 Reich et al. Aug 2012 A1
20120197657 Prodanovic Aug 2012 A1
20120197660 Prodanovic Aug 2012 A1
20120215784 King et al. Aug 2012 A1
20120221553 Wittmer et al. Aug 2012 A1
20120221580 Barney Aug 2012 A1
20120226523 Weiss Sep 2012 A1
20120226590 Love et al. Sep 2012 A1
20120245976 Kumar et al. Sep 2012 A1
20120246148 Dror Sep 2012 A1
20120278249 Duggal et al. Nov 2012 A1
20120310661 Greene Dec 2012 A1
20120323888 Osann, Jr. Dec 2012 A1
20120330973 Ghuneim et al. Dec 2012 A1
20130006655 Van Arkel et al. Jan 2013 A1
20130006668 Van Arkel et al. Jan 2013 A1
20130016106 Yip et al. Jan 2013 A1
20130046842 Muntz et al. Feb 2013 A1
20130054306 Bhalla Feb 2013 A1
20130057551 Ebert et al. Mar 2013 A1
20130061169 Pearcy et al. Mar 2013 A1
20130073377 Heath Mar 2013 A1
20130096968 Van Pelt et al. Apr 2013 A1
20130096988 Grossman et al. Apr 2013 A1
20130097130 Bingol et al. Apr 2013 A1
20130097482 Marantz et al. Apr 2013 A1
20130110746 Ahn May 2013 A1
20130117081 Wilkins et al. May 2013 A1
20130124193 Holmberg May 2013 A1
20130132348 Garrod May 2013 A1
20130151453 Bhanot et al. Jun 2013 A1
20130166348 Scotto Jun 2013 A1
20130166480 Popescu et al. Jun 2013 A1
20130185245 Anderson Jul 2013 A1
20130185307 El-Yaniv et al. Jul 2013 A1
20130224696 Wolfe et al. Aug 2013 A1
20130226318 Procyk Aug 2013 A1
20130226944 Baid et al. Aug 2013 A1
20130238616 Rose et al. Sep 2013 A1
20130238664 Hsu et al. Sep 2013 A1
20130246170 Gross et al. Sep 2013 A1
20130246537 Gaddala Sep 2013 A1
20130246597 Iizawa et al. Sep 2013 A1
20130262328 Federgreen Oct 2013 A1
20130262527 Hunter et al. Oct 2013 A1
20130263019 Castellanos et al. Oct 2013 A1
20130276799 Davidson Oct 2013 A1
20130282696 John et al. Oct 2013 A1
20130290011 Lynn et al. Oct 2013 A1
20130290825 Arndt et al. Oct 2013 A1
20130297619 Chandrasekaran et al. Nov 2013 A1
20130304770 Boero et al. Nov 2013 A1
20130325826 Agarwal et al. Dec 2013 A1
20140006404 McGrew et al. Jan 2014 A1
20140012724 O'Leary et al. Jan 2014 A1
20140012796 Petersen et al. Jan 2014 A1
20140019936 Cohanoff Jan 2014 A1
20140032506 Hoey et al. Jan 2014 A1
20140033010 Richardt et al. Jan 2014 A1
20140040371 Gurevich et al. Feb 2014 A1
20140052466 DeVille et al. Feb 2014 A1
20140058754 Wild Feb 2014 A1
20140058763 Zizzamia et al. Feb 2014 A1
20140058914 Song et al. Feb 2014 A1
20140068487 Steiger et al. Mar 2014 A1
20140081652 Klindworth Mar 2014 A1
20140095363 Caldwell Apr 2014 A1
20140095509 Patton Apr 2014 A1
20140108074 Miller et al. Apr 2014 A1
20140108380 Gotz et al. Apr 2014 A1
20140108985 Scott et al. Apr 2014 A1
20140123279 Bishop et al. May 2014 A1
20140129936 Richards et al. May 2014 A1
20140136237 Anderson et al. May 2014 A1
20140136285 Carvalho May 2014 A1
20140143009 Brice et al. May 2014 A1
20140149130 Getchius May 2014 A1
20140156527 Grigg et al. Jun 2014 A1
20140157172 Peery et al. Jun 2014 A1
20140164502 Khodorenko et al. Jun 2014 A1
20140189536 Lange et al. Jul 2014 A1
20140195515 Baker et al. Jul 2014 A1
20140214579 Shen et al. Jul 2014 A1
20140222521 Chait Aug 2014 A1
20140222752 Isman et al. Aug 2014 A1
20140222793 Sadkin et al. Aug 2014 A1
20140229554 Grunin et al. Aug 2014 A1
20140244284 Smith Aug 2014 A1
20140278479 Wang et al. Sep 2014 A1
20140282177 Wang et al. Sep 2014 A1
20140344230 Krause et al. Nov 2014 A1
20140358789 Boding et al. Dec 2014 A1
20140358829 Hurwitz Dec 2014 A1
20140366132 Stiansen et al. Dec 2014 A1
20150012509 Kirn Jan 2015 A1
20150046481 Elliot Feb 2015 A1
20150073929 Psota et al. Mar 2015 A1
20150073954 Braff Mar 2015 A1
20150085997 Biage et al. Mar 2015 A1
20150095773 Gonsalves et al. Apr 2015 A1
20150100897 Sun et al. Apr 2015 A1
20150106379 Elliot et al. Apr 2015 A1
20150134512 Mueller May 2015 A1
20150135256 Hoy et al. May 2015 A1
20150161611 Duke et al. Jun 2015 A1
20150186821 Wang et al. Jul 2015 A1
20150187036 Wang et al. Jul 2015 A1
20150188872 White Jul 2015 A1
20150235334 Wang et al. Aug 2015 A1
20150254220 Burr et al. Sep 2015 A1
20150269316 Hussam Sep 2015 A1
20150269334 Fendell et al. Sep 2015 A1
20150338233 Cervelli et al. Nov 2015 A1
20150379413 Robertson et al. Dec 2015 A1
20160004764 Chakerian et al. Jan 2016 A1
20160034578 Wang et al. Feb 2016 A1
Foreign Referenced Citations (35)
Number Date Country
2556460 Apr 2007 CA
102546446 Jul 2012 CN
103167093 Jun 2013 CN
102054015 May 2014 CN
102014103476 Sep 2014 DE
102014204827 Sep 2014 DE
102014204830 Sep 2014 DE
102014204834 Sep 2014 DE
102014213036 Jan 2015 DE
1672527 Jun 2006 EP
2487610 Aug 2012 EP
2778913 Sep 2014 EP
2778914 Sep 2014 EP
2858018 Apr 2015 EP
2869211 May 2015 EP
2889814 Jul 2015 EP
2892197 Jul 2015 EP
2963595 Jan 2016 EP
2980748 Feb 2016 EP
2366498 Mar 2002 GB
2513472 Oct 2014 GB
2513721 Nov 2014 GB
2514239 Nov 2014 GB
2517582 Feb 2015 GB
2013134 Jan 2015 NL
WO 01025906 Apr 2001 WO
WO 2001088750 Nov 2001 WO
WO 2005116851 Dec 2005 WO
WO 2008113059 Sep 2008 WO
WO 2009051987 Apr 2009 WO
WO 2009061501 May 2009 WO
WO 2010030913 Mar 2010 WO
WO 2010030914 Mar 2010 WO
WO 2010030919 Mar 2010 WO
WO 2012119008 Sep 2012 WO
Non-Patent Literature Citations (251)
Entry
Abdullah et al: “Analysis of Effectiveness of Apriori Algorithm in Medical Billing Data Mining”, 2008 International Conference on Emerging Technologies IEEE-ICET 2008, Rawalpindi, Pakistan (Year: 2008).
Anonymous, “A Real-World Problem of Matching Records,” Nov. 2006, <http://grupoweb.upf.es/bd-web/slides/ullman.pdf> pp. 1-16.
Brandel, Mary, “Data Loss Prevention Dos and Don'ts,” <http://web.archive.org/web/20080724024847/http://www.csoonline.com/article/221272/Dos_and_Don_ts_for_Data_Loss_Prevention>, Oct. 10, 2007, pp. 5.
Notice of Allowance for U.S. Appl. No. 14/222,364 dated Jul. 27, 2017.
Official Communication for U.S. Appl. No. 14/222,364 dated Jun. 24, 2016.
Official Communication for U.S. Appl. No. 14/222,364 dated Dec. 9, 2015.
Official Communication for U.S. Appl. No. 14/289,596 dated Aug. 5, 2015.
Official Communication for U.S. Appl. No. 14/518,757 dated Dec. 10, 2014.
Official Communication for U.S. Appl. No. 14/975,215 dated Jan. 4, 2018.
“A First Look: Predicting Market Demand for Food Retail using a Huff Analysis,” TRF Policy Solutions, Jul. 2012, pp. 30.
“A Tour of Pinboard,” <http://pinboard.in/tour> as printed May 15, 2014 in 6 pages.
Abbey, Kristen, “Review of Google Docs,” May 1, 2007, pp. 2.
Acklen, Laura, “Absolute Beginner's Guide to Microsoft Word 2003,” Dec. 24, 2003, pp. 15-18, 34-41, 308-316.
Adams et al., “Worklets: A Service-Oriented Implementation of Dynamic Flexibility in Workflows,” R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS, 4275, pp. 291-308, 2006.
AMNET, “5 Great Tools for Visualizing Your Twitter Followers,” posted Aug. 4, 2010, http://www.amnetblog.com/component/content/article/115-5-grate-tools-for-visualizing-your-twitter-followers.html.
Ananiev et al., “The New Modality API,” http://web.archive.org/web/20061211011958/http://java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/modality/ Jan. 21, 2006, pp. 8.
APPACTS, “Smart Thinking for Super Apps,” <http://www.appacts.com> Printed Jul. 18, 2013 in 4 pages.
Apsalar, “Data Powered Mobile Advertising,” “Free Mobile App Analytics” and various analytics related screen shots <http://apsalar.com> Printed Jul. 18, 2013 in 8 pages.
Bluttman et al., “Excel Formulas and Functions for Dummies,” 2005, Wiley Publishing, Inc., pp. 280, 284-286.
Bugzilla@Mozilla, “Bug 18726—[feature] Long-click means of invoking contextual menus not supported,” http://bugzilla.mozilla.org/show_bug.cgi?id=18726 printed Jun. 13, 2013 in 11 pages.
Capptain—Pilot Your Apps, <http://www.capptain.com> Printed Jul. 18, 2013 in 6 pages.
Celik, Tantek, “CSS Basic User Interface Module Level 3 (CSS3 UI),” Section 8 Resizing and Overflow, Jan. 17, 2012, retrieved from internet http://www.w3.org/TR/2012/WD-css3-ui-20120117/#resizing-amp-overflow retrieved on May 18, 2015.
Chaudhuri et al., “An Overview of Business Intelligence Technology,” Communications of the ACM, Aug. 2011, vol. 54, No. 8.
Chen et al., “Bringing Order to the Web: Automatically Categorizing Search Results,” CHI 2000, Proceedings of the SIGCHI conference on Human Factors in Computing Systems, Apr. 1-6, 2000, The Hague, The Netherlands, pp. 145-152.
Cohn, et al., “Semi-supervised clustering with user feedback,” Constrained Clustering: Advances in Algorithms, Theory, and Applications 4.1 (2003): 17-32.
Conner, Nancy, “Google Apps: The Missing Manual,” May 1, 2008, pp. 15.
Countly Mobile Analytics, <http://count.ly/> Printed Jul. 18, 2013 in 9 pages.
Definition “Identity”, downloaded Jan. 22, 2015, 1 page.
Definition “Overlay”, downloaded Jan. 22, 2015, 1 page.
Delicious, <http://delicious.com/> as printed May 15, 2014 in 1 page.
DISTIMO—App Analytics, <http://www.distimo.com/app-analytics> Printed Jul. 18, 2013 in 5 pages.
Dramowicz, Ela, “Retail Trade Area Analysis Using the Huff Model,” Directions Magazine, Jul. 2, 2005 in 10 pages, http://www.directionsmag.com/articles/retail-trade-area-analysis-using-the-huff-model/123411.
“E-MailRelay,” <http://web.archive.org/web/20080821175021/http://emailrelay.sourceforge.net/> Aug. 21, 2008, pp. 2.
Flurry Analytics, <http://www.flurry.com/> Printed Jul. 18, 2013 in 14 pages.
Galliford, Miles, “SnagIt Versus Free Screen Capture Software: Critical Tools for Website Owners,” <http://www.subhub.com/articles/free-screen-capture-software>, Mar. 27, 2008, pp. 11.
GIS-NET 3 Public _ Department of Regional Planning. Planning & Zoning Information for UNINCORPORATED LA County. Retrieved Oct. 2, 2013 from http://gis.planning.lacounty.gov/GIS-NET3_Public/Viewer.html.
Google Analytics Official Website—Web Analytics & Reporting, <http://www.google.com/analytics.index.html> Printed Jul. 18, 2013 in 22 pages.
Gorr et al., “Crime Hot Spot Forecasting: Modeling and Comparative Evaluation”, Grant 98-IJ-CX-K005, May 6, 2002, 37 pages.
“GrabUp—What a Timesaver!” <http://atlchris.com/191/grabup/>, Aug. 11, 2008, pp. 3.
Griffith, Daniel A., “A Generalized Huff Model,” Geographical Analysis, Apr. 1982, vol. 14, No. 2, pp. 135-144.
Gu et al., “Record Linkage: Current Practice and Future Directions,” Jan. 15, 2004, pp. 32.
Hansen et al., “Analyzing Social Media Networks with NodeXL: Insights from a Connected World”, Chapter 4, pp. 53-67 and Chapter 10, pp. 143-164, published Sep. 2010.
Hibbert et al., “Prediction of Shopping Behavior Using a Huff Model Within a GIS Framework,” Healthy Eating in Context, Mar. 18, 2011, pp. 16.
Hua et al., “A Multi-attribute Data Structure with Parallel Bloom Filters for Network Services”, HiPC 2006, LNCS 4297, pp. 277-288, 2006.
Huff et al., “Calibrating the Huff Model Using ArcGIS Business Analyst,” ESRI, Sep. 2008, pp. 33.
Huff, David L., “Parameter Estimation in the Huff Model,” ESRI, ArcUser, Oct.-Dec. 2003, pp. 34-36.
“HunchLab: Heat Map and Kernel Density Calculation for Crime Analysis,” Azavea Journal, printed from www.azavea.com/blogs/newsletter/v4i4/kernel-density-capabilities-added-to-hunchlab/ on Sep. 9, 2014, 2 pages.
JetScreenshot.com, “Share Screenshots via Internet in Seconds,” <http://web.archive.org/web/20130807164204/http://www.jetscreenshot.com/>, Aug. 7, 2013, pp. 1.
Johnson, Maggie “Introduction to YACC and Bison”, Handout 13, Jul. 8, 2005, in 11 pages.
Johnson, Steve, “Access 2013 on demand,” Access 2013 on Demand, May 9, 2013, Que Publishing.
Jul. 2015 Update Appendix 1: Examples published by the USPTO, 22 pages.
Keylines.com, “An Introduction to KeyLines and Network Visualization,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-White-Paper.pdf> downloaded May 12, 2014 in 8 pages.
Keylines.com, “KeyLines Datasheet,” Mar. 2014, <http://keylines.com/wp-content/uploads/2014/03/KeyLines-datasheet.pdf> downloaded May 12, 2014 in 2 pages.
Keylines.com, “Visualizing Threats: Improved Cyber Security Through Network Visualization,” Apr. 2014, <http://keylines.com/wp-content/uploads/2014/04/Visualizing-Threats1.pdf> downloaded May 12, 2014 in 10 pages.
Kontagent Mobile Analytics, <http://www.kontagent.com/> Printed Jul. 18, 2013 in 9 pages.
Kwout, <http://web.archive.org/web/20080905132448/http://www.kwout.com/> Sep. 5, 2008, pp. 2.
Lim et al., “Resolving Attribute Incompatibility in Database Integration: An Evidential Reasoning Appoach,” Department of Computer Science, University of Minnesota, 1994, <http://reference.kfupm.edu.sa/content/r/e/resolving_attribute_incompatibility_in_d_531691.pdf> pp. 1-10.
Litwin et al., “Multidatabase Interoperability,” IEEE Computer, Dec. 1986, vol. 19, No. 12, http://www.lamsade.dauphine.fr/˜litwin/mdb-interoperability.pdf, pp. 10-18.
Liu, Tianshun, “Combining GIS and the Huff Model to Analyze Suitable Locations for a New Asian Supermarket in the Minneapolis and St. Paul, Minnesota USA,” Papers in Resource Analysis, 2012, vol. 14, pp. 8.
Localytics—Mobile App Marketing & Analytics <http://www.localytics.com/> Printed Jul. 18, 2013 in 12 pages.
Madden, Tom, “Chapter 16: The BLAST Sequence Analysis Tool,” The NCBI Handbook, Oct. 2002, pp. 1-15.
Manno et al., “Introducing Collaboration in Single-user Applications through the Centralized Control Architecture,” 2010, pp. 10.
Manske, “File Saving Dialogs,” <http://www.mozilla.org/editor/ui_specs/FileSaveDialogs.html>, Jan. 20, 1999, pp. 7.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.yahoo.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.bing.com.
Map of San Jose, CA. Retrieved Oct. 2, 2013 from http://maps.google.com.
Microsoft—Developer Network, “Getting Started with VBA in Word 2010,” Apr. 2010, <http://msdn.microsoft.com/en-us/library/ff604039%28v=office.14%29.aspx> as printed Apr. 4, 2014 in 17 pages.
Microsoft Office—Visio, “About connecting shapes,” <http://office.microsoft.com/en-us/visio-help/about-connecting-shapes-HP085050369.aspx> printed Aug. 4, 2011 in 6 pages.
Microsoft Office—Visio, “Add and glue connectors with the Connector tool,” <http://office.microsoft.com/en-us/visio-help/add-and-glue-connectors-with-the-connector-tool-HA010048532.aspx?CTT=1> printed Aug. 4, 2011 in 1 page.
Microsoft Windows, “Microsoft Windows Version 2002 Print Out 2,” 2002, pp. 1-6.
Microsoft, “Registering an Application to a URI Scheme,” <http://msdn.microsoft.com/en-us/library/aa767914.aspx>, printed Apr. 4, 2009 in 4 pages.
Microsoft, “Using the Clipboard,” <http://msdn.microsoft.com/en-us/library/ms649016.aspx>, printed Jun. 8, 2009 in 20 pages.
Mixpanel—Mobile Analytics, <https://mixpanel.com/> Printed Jul. 18, 2013 in 13 pages.
Nadeau et al., “A Survey of Named Entity Recognition and Classification,” Jan. 15, 2004, pp. 20.
Nin et al., “On the Use of Semantic Blocking Techniques for Data Cleansing and Integration,” 11th International Database Engineering and Applications Symposium, 2007, pp. 9.
Nitro, “Trick: How to Capture a Screenshot As PDF, Annotate, Then Share It,” <http://blog.nitropdf.com/2008/03/04/trick-how-to-capture-a-screenshot-as-pdf-annotate-it-then-share/>, Mar. 4, 2008, pp. 2.
Online Tech Tips, “Clip2Net—Share files, folders and screenshots easily,” <http://www.online-tech-tips.com/free-software-downloads/share-files-folders-screenshots/>, Apr. 2, 2008, pp. 5.
Open Web Analytics (OWA), <http://www.openwebanalytics.com/> Printed Jul. 19, 2013 in 5 pages.
O'Reilly.com, http://oreilly.com/digitalmedia/2006/01/01/mac-os-x-screenshot-secrets.html published Jan. 1, 2006 in 10 pages.
Piwik—Free Web Analytics Software. <http://piwik.org/> Printed Jul. 19, 2013 in 18 pages.
PYTHAGORAS COMMUNICATIONS LTD., “Microsoft CRM Duplicate Detection,” Sep. 13, 2011, https://www.youtube.com/watch?v=j-7Qis0D0Kc.
Qiang et al., “A Mutual-Information-Based Approach to Entity Reconciliation in Heterogeneous Databases,” Proceedings of 2008 International Conference on Computer Science & Software Engineering, IEEE Computer Society, New York, NY, Dec. 12-14, 2008, pp. 666-669.
“Refresh CSS Ellipsis When Resizing Container—Stack Overflow,” Jul. 31, 2013, retrieved from internet http://stackoverflow.com/questions/17964681/refresh-css-ellipsis-when-resizing-container, retrieved on May 18, 2015.
Schroder, Stan, “15 Ways to Create Website Screenshots,” <http://mashable.com/2007/08/24/web-screenshots/>, Aug. 24, 2007, pp. 2.
Sekine et al., “Definition, Dictionaries and Tagger for Extended Named Entity Hierarchy,” May 2004, pp. 1977-1980.
Sigrist, et al., “PROSITE, a Protein Domain Database for Functional Characterization and Annotation,” Nucleic Acids Research, 2010, vol. 38, pp. D161-D166.
SnagIt, “SnagIt 8.1.0 Print Out 2,” Software release date Jun. 15, 2006, pp. 1-3.
SnagIt, “SnagIt 8.1.0 Print Out,” Software release date Jun. 15, 2006, pp. 6.
SnagIt, “SnagIt Online Help Guide,” <http://download.techsmith.com/snagit/docs/onlinehelp/enu/snagit_help.pdf>, TechSmith Corp., Version 8.1, printed Feb. 7, 2007, pp. 284.
StatCounter—Free Invisible Web Tracker, Hit Counter and Web Stats, <http://statcounter.com/> Printed Jul. 19, 2013 in 17 pages.
TestFlight—Beta Testing on the Fly, <http://testflightapp.com/> Printed Jul. 18, 2013 in 3 pages.
Trak.io, <http://trak.io/> printed Jul. 18, 2013 in 3 pages.
UserMetrix, <http://usermetrix.com/android-analytics> printed Jul. 18, 2013 in 3 pages.
Valentini et al., “Ensembles of Learning Machines”, M. Marinaro and R. Tagliaferri (Eds.): WIRN VIETRI 2002, LNCS 2486, pp. 3-20.
Vose et al., “Help File for ModelRisk Version 5,” 2007, Vose Software, pp. 349-353. [Uploaded in 2 Parts].
Wang et al., “Research on a Clustering Data De-Duplication Mechanism Based on Bloom Filter,” IEEE 2010, 5 pages.
Warren, Christina, “TUAW Faceoff: Screenshot apps on the firing line,” <http://www.tuaw.com/2008/05/05/tuaw-faceoff-screenshot-apps-on-the-firing-line/>, May 5, 2008, pp. 11.
WIKIPEDIA, “Multimap,” Jan. 1, 2013, https://en.wikipedia.org/w/index.php?title=Multimap&oldid=530800748.
Zhao et al., “Entity Matching Across Heterogeneous Data Sources: An Approach Based on Constrained Cascade Generalization,” Data & Knowledge Engineering, vol. 66, No. 3, Sep. 2008, pp. 368-381.
International Search Report and Written Opinion in Application No. PCT/US2009/056703 dated Mar. 15, 2010.
Notice of Acceptance for Australian Patent Application No. 2013251186 dated Nov. 6, 2015.
Notice of Allowance for U.S. Appl. No. 12/556,307 dated Jan. 4, 2016.
Notice of Allowance for U.S. Appl. No. 14/225,084 dated May 4, 2015.
Notice of Allowance for U.S. Appl. No. 14/265,637 dated Feb. 13, 2015.
Notice of Allowance for U.S. Appl. No. 14/304,741 dated Apr. 7, 2015.
Notice of Allowance for U.S. Appl. No. 14/319,161 dated May 4, 2015.
Notice of Allowance for U.S. Appl. No. 14/323,935 dated Oct. 1, 2015.
Notice of Allowance for U.S. Appl. No. 14/479,863 dated Mar. 31, 2015.
Notice of Allowance for U.S. Appl. No. 14/552,336 dated Nov. 3, 2015.
Notice of Allowance for U.S. Appl. No. 14/746,671 dated Jan. 21, 2016.
Notice of Allowance for U.S. Appl. No. 14/805,313 dated Jun. 15, 2016.
Notice of Allowance for U.S. Appl. No. 14/923,364 dated May 6, 2016.
Official Communication for Australian Patent Application No. 2013251186 dated Mar. 12, 2015.
Official Communication for Australian Patent Application No. 2014201506 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2014201507 dated Feb. 27, 2015.
Official Communication for Australian Patent Application No. 2014203669 dated May 29, 2015.
Official Communication for Canadian Patent Application No. 2831660 dated Jun. 9, 2015.
Official Communication for European Patent Application No. 09813700.3 dated Apr. 3, 2014.
Official Communication for European Patent Application No. 12181585.6 dated Sep. 4, 2015.
Official Communication for European Patent Application No. 14158958.0 dated Apr. 16, 2015.
Official Communication for European Patent Application No. 14158958.0 dated Jun. 3, 2014.
Official Communication for European Patent Application No. 14158977.0 dated Jun. 10, 2014.
Official Communication for European Patent Application No. 14158977.0 dated Apr. 16, 2015.
Official Communication for European Patent Application No. 14187996.5 dated Feb. 12, 2015.
Official Communication for European Patent Application No. 14191540.5 dated May 27, 2015.
Official Communication for European Patent Application No. 14200246.8 dated May 29, 2015.
Official Communication for European Patent Application No. 14200298.9 dated May 13, 2015.
Official Communication for European Patent Application No. 15156004.2 dated Aug. 24, 2015.
Official Communication for European Patent Application No. 15179122.5 dated Sep. 11, 2015.
Official Communication for European Patent Application No. 15181419.1 dated Sep. 29, 2015.
Official Communication for European Patent Application No. 15184764.7 dated Dec. 14, 2015.
Official Communication for Great Britain Patent Application No. 1404486.1 dated May 21, 2015.
Official Communication for Great Britain Patent Application No. 1404486.1 dated Aug. 27, 2014.
Official Communication for Great Britain Patent Application No. 1404489.5 dated May 21, 2015.
Official Communication for Great Britain Patent Application No. 1404489.5 dated Aug. 27, 2014.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Jun. 11, 2015.
Official Communication for Great Britain Patent Application No. 1404499.4 dated Aug. 20, 2014.
Official Communication for Great Britain Patent Application No. 1404573.6 dated Sep. 10, 2014.
Official Communication for Great Britain Patent Application No. 1411984.6 dated Dec. 22, 2014.
Official Communication for Netherlands Patent Application No. 2011729 dated Aug. 13, 2015.
Official Communication for Netherlands Patent Application No. 2012417 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012421 dated Sep. 18, 2015.
Official Communication for Netherlands Patent Application No. 2012438 dated Sep. 21, 2015.
Official Communication for Netherlands Patent Application No. 2013134 dated Apr. 20, 2015.
Official Communication for New Zealand Patent Application No. 622389 dated Mar. 20, 2014.
Official Communication for New Zealand Patent Application No. 622404 dated Mar. 20, 2014.
Official Communication for New Zealand Patent Application No. 622439 dated Mar. 24, 2014.
Official Communication for New Zealand Patent Application No. 622439 dated Jun. 6, 2014.
Official Communication for New Zealand Patent Application No. 622473 dated Jun. 19, 2014.
Official Communication for New Zealand Patent Application No. 622473 dated Mar. 27, 2014.
Official Communication for New Zealand Patent Application No. 622513 dated Apr. 3, 2014.
Official Communication for New Zealand Patent Application No. 624557 dated May 14, 2014.
Official Communication for New Zealand Patent Application No. 628161 dated Aug. 25, 2014.
Official Communication for U.S. Appl. No. 12/556,307 dated Oct. 1, 2013.
Official Communication for U.S. Appl. No. 12/556,307 dated Feb. 13, 2012.
Official Communication for U.S. Appl. No. 12/556,307 dated Mar. 14, 2014.
Official Communication for U.S. Appl. No. 12/556,307 dated Sep. 2, 2011.
Official Communication for U.S. Appl. No. 12/556,307 dated Jun. 9, 2015.
Official Communication for U.S. Appl. No. 12/556,321 dated Jun. 6, 2012.
Official Communication for U.S. Appl. No. 12/556,321 dated Dec. 7, 2011.
Official Communication for U.S. Appl. No. 12/556,321 dated Jul. 7, 2015.
Official Communication for U.S. Appl. No. 13/669,274 dated Aug. 26, 2015.
Official Communication for U.S. Appl. No. 13/669,274 dated May 6, 2015.
Official Communication for U.S. Appl. No. 13/827,491 dated Dec. 1, 2014.
Official Communication for U.S. Appl. No. 13/827,491 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 13/827,491 dated Mar. 30, 2016.
Official Communication for U.S. Appl. No. 13/827,491 dated Oct. 9, 2015.
Official Communication for U.S. Appl. No. 13/831,791 dated Feb. 11, 2016.
Official Communication for U.S. Appl. No. 13/831,791 dated Mar. 4, 2015.
Official Communication for U.S. Appl. No. 13/831,791 dated Aug. 6, 2015.
Official Communication for U.S. Appl. No. 13/835,688 dated Jun. 17, 2015.
Official Communication for U.S. Appl. No. 13/835,688 dated Sep. 30, 2015.
Official Communication for U.S. Appl. No. 13/835,688 dated Jun. 7, 2016.
Official Communication for U.S. Appl. No. 13/949,043 dated Jan. 15, 2016.
Official Communication for U.S. Appl. No. 13/949,043 dated Oct. 15, 2013.
Official Communication for U.S. Appl. No. 13/949,043 dated May 7, 2015.
Official Communication for U.S. Appl. No. 14/014,313 dated Jun. 18, 2015.
Official Communication for U.S. Appl. No. 14/141,252 dated Oct. 8, 2015.
Official Communication for U.S. Appl. No. 14/170,562 dated Jul. 17, 2015.
Official Communication for U.S. Appl. No. 14/170,562 dated Mar. 19, 2014.
Official Communication for U.S. Appl. No. 14/170,562 dated Oct. 2, 2015.
Official Communication for U.S. Appl. No. 14/170,562 dated Sep. 25, 2014.
Official Communication for U.S. Appl. No. 14/170,562 dated Mar. 3, 2016.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 10, 2014.
Official Communication for U.S. Appl. No. 14/225,006 dated Sep. 2, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Dec. 21, 2015.
Official Communication for U.S. Appl. No. 14/225,006 dated Feb. 27, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Sep. 2, 2014.
Official Communication for U.S. Appl. No. 14/225,084 dated Feb. 20, 2015.
Official Communication for U.S. Appl. No. 14/225,084 dated Jan. 4, 2016.
Official Communication for U.S. Appl. No. 14/225,160 dated Feb. 11, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated Aug. 12, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated May 20, 2015.
Official Communication for U.S. Appl. No. 14/225,160 dated Oct. 22, 2014.
Official Communication for U.S. Appl. No. 14/225,160 dated Jul. 29, 2014.
Official Communication for U.S. Appl. No. 14/265,637 dated Sep. 26, 2014.
Official Communication for U.S. Appl. No. 14/289,596 dated Jul. 18, 2014.
Official Communication for U.S. Appl. No. 14/289,596 dated Jan. 26, 2015.
Official Communication for U.S. Appl. No. 14/289,596 dated Apr. 30, 2015.
Official Communication for U.S. Appl. No. 14/289,596 dated May 9, 2016.
Official Communication for U.S. Appl. No. 14/289,599 dated Jul. 22, 2014.
Official Communication for U.S. Appl. No. 14/289,599 dated May 29, 2015.
Official Communication for U.S. Appl. No. 14/289,599 dated Sep. 4, 2015.
Official Communication for U.S. Appl. No. 14/304,741 dated Mar. 3, 2015.
Official Communication for U.S. Appl. No. 14/304,741 dated Aug. 6, 2014.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/306,138 dated Dec. 3, 2015.
Official Communication for U.S. Appl. No. 14/306,147 dated Dec. 24, 2015.
Official Communication for U.S. Appl. No. 14/319,161 dated Jan. 23, 2015.
Official Communication for U.S. Appl. No. 14/449,083 dated Mar. 12, 2015.
Official Communication for U.S. Appl. No. 14/449,083 dated Oct. 2, 2014.
Official Communication for U.S. Appl. No. 14/449,083 dated Aug. 26, 2015.
Official Communication for U.S. Appl. No. 14/449,083 dated Apr. 8, 2016.
Official Communication for U.S. Appl. No. 14/451,221 dated Oct. 21, 2014.
Official Communication for U.S. Appl. No. 14/463,615 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Nov. 13, 2014.
Official Communication for U.S. Appl. No. 14/463,615 dated May 21, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Jan. 28, 2015.
Official Communication for U.S. Appl. No. 14/463,615 dated Dec. 9, 2015.
Official Communication for U.S. Appl. No. 14/479,863 dated Dec. 26, 2014.
Official Communication for U.S. Appl. No. 14/483,527 dated Jun. 22, 2015.
Official Communication for U.S. Appl. No. 14/483,527 dated Jan. 28, 2015.
Official Communication for U.S. Appl. No. 14/483,527 dated Oct. 28, 2015.
Official Communication for U.S. Appl. No. 14/516,386 dated Feb. 24, 2016.
Official Communication for U.S. Appl. No. 14/518,757 dated Dec. 1, 2015.
Official Communication for U.S. Appl. No. 14/518,757 dated Apr. 2, 2015.
Official Communication for U.S. Appl. No. 14/518,757 dated Jul. 20, 2015.
Official Communication for U.S. Appl. No. 14/552,336 dated Jul. 20, 2015.
Official Communication for U.S. Appl. No. 14/562,524 dated Nov. 10, 2015.
Official Communication for U.S. Appl. No. 14/562,524 dated Sep. 14, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Nov. 10, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Mar. 11, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 24, 2015.
Official Communication for U.S. Appl. No. 14/571,098 dated Aug. 5, 2015.
Official Communication for U.S. Appl. No. 14/631,633 dated Sep. 10, 2015.
Official Communication for U.S. Appl. No. 14/676,621 dated Oct. 29, 2015.
Official Communication for U.S. Appl. No. 14/676,621 dated Jul. 30, 2015.
Official Communication for U.S. Appl. No. 14/746,671 dated Nov. 12, 2015.
Official Communication for U.S. Appl. No. 14/800,447 dated Dec. 10, 2015.
Official Communication for U.S. Appl. No. 14/805,313 dated Dec. 30, 2015.
Official Communication for U.S. Appl. No. 14/813,749 dated Sep. 28, 2015.
Official Communication for U.S. Appl. No. 14/842,734 dated Nov. 19, 2015.
Official Communication for U.S. Appl. No. 14/923,374 dated Feb. 9, 2016.
Official Communication for U.S. Appl. No. 14/958,855 dated May 4, 2016.
Official Communication for U.S. Appl. No. 14/975,215 dated May 19, 2016.
Official Communication for U.S. Appl. No. 14/975,215 dated Jun. 21, 2017.
Official Communication for U.S. Appl. No. 14/975,215 dated Nov. 4, 2016.
Official Communication for U.S. Appl. No. 15/017,324 dated Apr. 22, 2016.
Official Communication for U.S. Appl. No. 15/181,712 dated Oct. 12, 2016.
Official Communication for U.S. Appl. No. 15/181,712 dated Jul. 5, 2017.
Related Publications (1)
Number Date Country
20180082031 A1 Mar 2018 US
Continuations (1)
Number Date Country
Parent 14222364 Mar 2014 US
Child 15826284 US