Providing communications using a distributed mobile architecture

Information

  • Patent Grant
  • 8780804
  • Patent Number
    8,780,804
  • Date Filed
    Tuesday, December 20, 2011
    12 years ago
  • Date Issued
    Tuesday, July 15, 2014
    10 years ago
  • Inventors
  • Original Assignees
  • Examiners
    • Moore, Jr.; Michael J
    Agents
    • Toler Law Group, PC
Abstract
A method includes receiving a call at a distributed mobile architecture (DMA) server. The DMA server includes a mobile switching center (MSC) module, a wireless transceiver, and a base station controller (BSC). The MSC module includes an authentication, authorization, and accounting (AAA) module configured to support generation of call detail records at the DMA server. The method includes routing the call from the DMA server to a communication device. The method further includes generating a call detail record associated with the call at the DMA server.
Description
FIELD OF THE DISCLOSURE

The present disclosure relates generally to the distributed mobile communication systems.


BACKGROUND

Access to basic telephony service is particularly important for rural and isolated communities. Telephony access allows small-scale enterprises, cooperatives, and farmers to obtain accurate information on fair prices for their products and to access regional and national markets. Access also reduces the cost of transportation and supports the local tourist industry. By bringing markets to people via telecommunications, rather than forcing people to leave in search of markets, urban migration is reduced and greater income and employment potential are generated in rural areas.


Unfortunately, the last decade of the telecommunications boom has not alleviated the disparities between urban and rural communities. The average imbalance, in terms of telephone penetration, in Asia, for example, is over ten to one and is often as high as (4) telephone lines per one-hundred (100) inhabitants, e.g., India and Pakistan, has a rural penetration of less than 0.2 per one-hundred (100). The situation is more acute in most African countries and in some parts of Latin America. By comparison, the disparity in average income level between urban and rural residents in the developing world is usually less than 4 to 1.


Current telephone systems are expensive to deploy. For example, a typical cellular system that includes a mobile switching center (MSC), a base station controller (BSC), and a home location register/visitor location register (HLR/VLR) can cost over $2.0 million. Moreover, such a system requires a minimum of ten thousand users in order to be economically viable. In many rural areas, the population is not large enough to support the installation of such a system. Further, in many cases, the conditions in which the equipment, e.g., the MSC, BSC, and HLR/VLR, are to be operated are extremely harsh and environmentally prohibitive. An alternative to such a cellular system can include a wired system, but the costs associated with deploying and maintaining land lines are too high for certain rural areas.





BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is pointed out with particularity in the appended claims. However, other features are described in the following detailed description in conjunction with the accompanying drawings in which:



FIG. 1 is a diagram of a distributed and associative communication system;



FIG. 2 is a diagram of a distributed management architecture server;



FIG. 3 is a flow chart to illustrate operating logic of a distributed management architecture server;



FIG. 4 is a flow chart to illustrate call hand-off logic of a distributed management architecture server;



FIG. 5 is a flow chart to illustrate group call logic of a distributed management architecture server;



FIG. 6 is a diagram of an exemplary communication system in which a distributed management architecture server can be incorporated;



FIG. 7 is a diagram of a wireless local loop communication system in which a distributed management architecture server can be incorporated;



FIG. 8 is a diagram of plural wireless local loop communication systems connected to the public switched telephone network via a single back-haul connection;



FIG. 9 is a diagram of a communication system in which a distributed management architecture server can be deployed to extend an existing cellular network;



FIG. 10 is a diagram of a communication system in which a distributed management architecture server can be deployed to cover urban fringe around an existing network;



FIG. 11 is a diagram of a communication system in which a single distributed management architecture server can be connected to plural base transceiver stations and can provide a single backhaul to the public switched telephone network;



FIG. 12 is a diagram of an in-building communication system in which a distributed management architecture server can be deployed;



FIG. 13 is a diagram of a mobile in-field communication system in which multiple distributed management architecture servers can be deployed via multiple vehicles;



FIG. 14 is a diagram of a communication system in which a distributed management architecture server can utilize a satellite connection as a backhaul connection;



FIG. 15 is a diagram of a communication system in which a distributed management architecture server can receive multiple backhaul signals via multiple satellite signals; and



FIG. 16 is a diagram of a communication system in which a single distributed management architecture server can be connected to multiple base transceiver stations.





DETAILED DESCRIPTION

In a particular embodiment, a communication apparatus is disclosed that includes a wireless transceiver and a computer readable storage medium. A mobile switching center (MSC) module is embedded in the computer readable storage medium. The MSC module includes an authentication, authorization, and accounting (AAA) module configured to support generation of a set of call detail records at the communication apparatus. A base station controller (BSC) module is also embedded in the computer readable storage medium. The communication apparatus is adapted to transmit Internet Protocol (IP) packet data received at the wireless transceiver to a second apparatus via a wireless peer-to-peer IP connection.


In another particular embodiment, a communication system is disclosed that includes a first communication apparatus and a second communication apparatus. The first communication apparatus includes a first wireless transceiver and a first computer readable storage medium. A first MSC module is embedded in the first computer readable storage medium. The first MSC module includes a first AAA module configured to support generation of a first set of call detail records at the first communication apparatus. A first BSC module is also embedded in the first computer readable storage medium. The second communication apparatus includes a second wireless transceiver and a second computer readable storage medium. A second MSC module is embedded in the second computer readable storage medium. The second MSC module includes a second AAA module configured to support generation of a second set of call detail records at the second communication apparatus. A second BSC module is also embedded in the second computer readable storage medium. The first communication apparatus is adapted to transmit IP packet data received at the first wireless transceiver to the second communication apparatus via a wireless peer-to-peer IP connection. The second communication apparatus is adapted to transmit IP packet data received at the second wireless transceiver to the first communication apparatus via the wireless peer-to-peer IP connection.


In another particular embodiment, a portable communication apparatus is disclosed that includes a wireless transceiver and a computer readable storage medium. An MSC module is embedded in the computer readable storage medium. The MSC module includes an AAA module configured to support generation of a set of call detail records at the portable communication apparatus. A BSC module, a home location register (HLR) module, and a visitor location register (VLR) module are also embedded in the computer readable storage medium. The portable communication apparatus is adapted to transmit IP packet data received at the wireless transceiver to a second apparatus via a wireless peer-to-peer IP connection when the portable communication apparatus is in motion.


Referring now to FIG. 1, a non-limiting exemplary embodiment of a distributive and associated telecommunications system is illustrated and is generally designated 100. As depicted in FIG. 1, the system 100 includes four cellular coverage sites 102. Each coverage site 102 includes an antenna 104. In one embodiment, the antenna 104 is connected to a transceiver belonging to a base transceiver station (BTS) and the BTS is a 3-sector BTS. FIG. 1 also indicates that a distributed mobile architecture (DMA) server 106 can be connected to each antenna 104. In one embodiment, each DMA server 106 is physically and directly connected to its respective antenna 104, e.g., by a wire or cable 108.


As illustrated in FIG. 1, each DMA server 106 is interconnected with the other DMA servers 106 via an Internet protocol network 110. As such, there exists a peer-to-peer connection 112 between each DMA server 106 in the system 100. As described in detail below, the DMA servers 106 can handle telephony traffic that is communicated at each antenna 104. For example, the DMA servers 106 can switch and route calls received via each antenna 104. Additionally, the DMA servers 106 can hand-off calls to each other as mobile communication devices move around and between the cellular coverage sites 102. The DMA servers 106 can communicate with each other via the IP network 110 and can further transmit calls to each other via the IP network 110. It should be understood that more than four cellular coverage sites 102 can be included in the system and that the inclusion of only four cellular coverage sites 102 in FIG. 1 is merely for clarity.


Within the distributed and associative telecommunications system 100 the controlling logic can be distributed and de-centralized. Moreover, the wireless coverage provided by the disclosed system 100 is self-healing and redundant. In other words, due to the interconnectivity via the IP network 110, if one or more of the DMA servers 106 loses powers, fails, or is otherwise inoperable, telephony traffic handled by the inoperable DMA server 106 can re-routed to one of the remaining operable DMA servers 106. Additionally, user data stored in a database, e.g., a home location register (HLR) or a visitor location register (VLR), can be distributed equally and fully among all of the DMA servers 106. It can also be appreciated that new cellular coverage sites can be easily added to the system 100 as the demand for users increases. Specifically, a DMA server can be deployed as described below, connected to an antenna, connected to the IP network, and activated to provided cellular coverage in a new area.



FIG. 2 shows an exemplary, non-limiting embodiment of a DMA server, e.g., one of the DMA servers 106 described in conjunction with FIG. 1. The DMA server 106 is essentially a processor, or computer, having housing and a computer readable medium 200 is disposed therein. A power supply 202 can also be disposed within the housing of the DMA server 106 in order to provide power to the DMA server 106. The power supply 202 can be a rechargeable battery disposed within the DMA server 106 or it can be external to the DMA server 106, i.e., a standard power outlet. Moreover, a cooling system 204, e.g., a fan with a thermostat, can be within the DMA server 106 included in order to keep the DMA server 106 from overheating.


As depicted in FIG. 2, the DMA server 106 can include a mobile switching center (MSC) module 206 and a base station controller (BSC) module 208 embedded within the computer readable medium 200. In an exemplary, non-limiting embodiment, the MSC module 206 can include a gatekeeper (GK) 210 that is connected to several gateways. For example, a circuit gateway (CGW) 212 can be connected to the GK 210 and can provide connectivity to an integrated services digital network/public switched telephone network (ISDN/PSTN) interface 214. The CGW 212 can provide a circuit switched to packet data conversion. In an exemplary, non-limiting embodiment, the PSTN portion of the ISDN/PSTN interface 214 can be an inter-office interface that uses the Bellcore industry standard ISDN user part (ISUP) signaling on a signaling system seven (SS7) link set. Moreover, the voice trunks on this interface can be timeslots on a T1 connection. Inbound and outbound voice calls can be supported on the ISDN portion of the ISDN/PSTN interface 214.


As further illustrated in FIG. 2, a packet data server node (PDSN) gateway 216 for CDMA or a Gateway GPRS Support Node (GGSN) for GSM and a Session Initiation Protocol (SIP) gateway 218 can also be connected to the GK 210. The PDSN gateway 216 and the SIP gateway 218 can provide connectivity to an Internet protocol (IP) interface 220. Further, the PDSN gateway 216 or a GGSN can establish a reverse tunnel with the PDSN or GGSN gateway 216 using generic routing encapsulation (GRE). Moreover, the PDSN gateway 216 or GGSN can implement the Pseudo Random Function (PRF)/Foreign Agent (FA) functionality of the DMA server 106 which supports mobile IP functions.



FIG. 2 further shows an SS7 gateway 222 that provides connectivity to an ANSI-41 and GSM MAP interface 224. In a particular embodiment, the ANSI-41 interface can be an SS7 TCAP/SCCP interface on the same SS7 link set used for ISUP signaling. The same SS7 point code can be used to identify the DMA server 106 in the ANSI-41 network. The ANSI-41 interface can be used for roamer registration only. Further, in an exemplary, non-limiting embodiment, the GSM MAP interface can be an SS7 TCAP/SCCP interface on the same SS7 link set used for ISUP signaling. It can be appreciated that there are different protocols of MAP from MAP/B to MAP/I, but in the illustrative embodiment, the different MAP/x protocols are not stacked—they are used independently.


As depicted in FIG. 2, a media gateway 226 can also be connected to the GK 210. In an exemplary, non-limiting embodiment, the media gateway 226 can include cellular transcoders, one or more intranet gateways, conferencing bridges, and group calling functionality. Further, an authentication, authorization, and accounting (AAA) module 228 can be connected to the GK 210. In an exemplary, non-limiting embodiment, there are three levels of authentication management. The highest level is for administration, the mid-level is for operations, and the lowest level is for normal users. The functions of the AAA module 228 can be included in the user level.


In an exemplary, non-limiting embodiment, the GK 210 can act as an AAA server and a feather server, which supports advanced supplementary service, short message service, etc. Moreover, the GK 210 can act as a call manager and can support ISUP and PSTN function calls. Additionally, the GK 210 can act as a signal gateway, e.g., IP to SS7 inter-working, ISUP, GSM MAP or ANSI-41 to PSTN and ANSI-42/GSM. The GK 210 can also function as a data call server.


As illustrated in FIG. 2, the BSC module 208 includes a cellular radio network controller (CRNC) 230 and a cellular selection/distribution unit (CSDU) 232 that are connected to a call protocol controller (CPC) 234. In turn, the CPC 234 can be connected to a plurality of base transceiver stations (BTSs) 236. Specifically, the DMS server 106 includes a BTS interface 238 at the CPC 234 that can be physically and directly connected to the BTSs 236. The CRNC 230 can provide cellular radio resource management and cellular call control. The CSDU 232 can provide Fundamental Channel (FCH) soft handoff section and distribution, Link Access Control (LAC) processing for inband signaling, multiplexer (MUX) functions, and centralized power control. Further, the CPC 234 can convert a T1 or E1 message or ATM interface to a data packet message. In a particular embodiment, each BTS 236 supports all signals and traffic up to the front point of the CPC 234, e.g., up to the BTS interface 238. Further, in a particular embodiment, the CRNC 230, the CPC 234, the CSDU 232 and the OMP 240 can perform one or more of the functions of legacy Base Station Controllers (BSC).


In an exemplary, non-limiting embodiment, the BTS interface 238 can be an IS-95A and IS-2000 interface over E1 or ATM, or the BTS interface 238 can be a GSM BTS interface using MAP or CAMEL. After reading this specification, skilled artisans will appreciate that the CPC 234 can be connected to one or more BTSs 236. FIG. 2 further shows that the BSC module 208 includes an operations, maintenance, and provisioning (OMP) module 240. In an exemplary, non-limiting embodiment, the OMP module 240 can use simple network management protocol (SNMP) for operations interfaces. Further, the OMP module 240 can include a JAVA user interface. The OMP module 240 can also include a software agent that is assigned to each component within the DMA server 106. The agents independently monitor their respective components. Moreover, each agent can provision its respective component.


Referring now to FIG. 3, an exemplary, non-limiting embodiment of a flow chart is provided to illustrate operating logic of a DMA server 106 (FIG. 1). The operating logic commences at block 300 with a function loop wherein during operation, the succeeding steps are performed. At step 302, a call is received, e.g., at an antenna 104 (FIG. 1) in communication with a DMA server 106 (FIG. 1). Next, at decision step 304 it is determined whether the call is local, i.e., it is determined whether the call is between two mobile communication devices within the same cellular coverage site. If the call is local, the logic moves to block 306, and the call is switched at the local DMA server, i.e., the DMA server within the cellular coverage site in which the call is received. Then, at block 308, the call is connected from the first mobile communication device that initiated the call to a second mobile communication device via the local DMA server. Returning to decision step 304, if the call is not local, the logic proceeds to block 310 and the call is switched at the DMA server connected to the antenna 104 at which the call was received. Thereafter, at block 312, the call is connected from the first mobile communication device that initiated the call to a second mobile communication device via a peer-to-peer connection between a first DMA server and a second DMA server.


After the call is connected, either at block 308 or block 312, the logic continues to block 314 where the call is monitored. For example, the location of the first mobile communication device that initiated the call can be monitored, the location of the second mobile communication device that received the call can be monitored, the DMA server that is handling the call can be monitored, other DMA servers through which the call is connected can be monitored, and the connections (such as the peer-to-peer IP network connection) through which the call is transmitted can be monitored. Proceeding to decision step 316, it is determined if the first mobile communication device or the second mobile communication device involved in the call is roaming, i.e., moving between cellular coverage sites provided by individual antennas. If so, the logic moves to block 318 where the call at the roaming mobile communication device is automatically handed off to a new DMA server and associated antenna at a new cellular coverage site. If none of the mobile communication devices involved in the call is roaming, the logic moves to decision step 320.


At decision step 320, it is determined whether any DMA server has failed. If so, the call is re-routed around the failed DMA server by establishing one or more different peer-to-peer connections between one or more different DMA servers that are still operable. Thereafter, the logic moves to decision step 324. Decision step 324 can also be reached if it is determined that no DMA servers have failed at decision step 320. At decision step 324, it is determined whether the call has ended. If not, the logic moves to block 326 and the connection or connections through which the call has been established are maintained Otherwise, if the call has ended, the logic moves to block 328 and the peer-to-peer connection, or connections, through which the call was established are terminated, and the logic ends, at state 330.



FIG. 4 depicts a flow chart to illustrate call hand-off logic that can be performed by a DMA server 106 (FIG. 1) in order to hand off calls, or user service connections, between a first BTS and a second BTS as a mobile communication device moves between cellular coverage zones. The logic commences at block 400 with a loop wherein when a mobile communication device is activated, the following steps are performed. At block 402, the location of a mobile communication device is monitored at a local DMA server. Continuing to decision step 404, it is determined if the mobile communication device is about to move from a first cellular coverage site provided by a first BTS to a second cellular coverage site provided by a second BTS. If not, the logic moves to decision step 406 where it is determined whether the call has terminated. If the call terminates, the logic ends at state 408. On the other hand, if the call does not terminate, the logic returns to block 402 and continues as described above.


Returning to decision step 404, if the user is about to move from a first cellular coverage site provided by a first BTS to a second cellular coverage site by a second BTS, the logic proceeds to decision step 410. At decision step 410, it is determined whether the second BTS is connected locally, i.e., to the same DMS server as the first BTS. If so, the logic moves to block 412 and the DMA server hands off the call, e.g., as a soft hand off, or the user service connection, from a first BTS connected to the DMS server to a second BTS connected to the same DMS server. Conversely, if the second BTS is not local, the logic continues to block 414 where the DMS server hands off the call from a first BTS connected to the DMS server to a second BTS connected to a second DMS server. From block 412 or block 414, the logic proceeds to decision step 406 and continues as described above.



FIG. 5 portrays an exemplary, non-limiting embodiment of a method to illustrate group call logic that can be executed at a DMA 106 (FIG. 1) to provide a group call between several mobile communication devices and PSTN/ISDN users. At block 500, a loop is entered wherein during operation, the following steps are performed. At decision step 502, it is determined whether greater than three (3) callers are participating in a telephone call handled via one or more DMA servers 106 (FIG. 1). If not, the logic continues to block 504 and normal calling, e.g., two-way calling, three-party conference calling, etc., is allowed. The logic then ends at state 506.


At decision step 502, if greater than three (3) callers are participating in a telephone call that is handled via one or more DMA servers 106 (FIG. 1), the logic moves to block 508 and group calling is allowed between all participants with full duplex capability. Next, at decision step 510, it is determined whether one or more participants have disconnected. If so, at decision block 512, the participant or participants are dropped from the group call. At block 514, full duplex calling is maintained between the remaining group call participants. Returning to decision step 510, if no participants have disconnected, the logic proceeds to decision step 516 where it is determined whether a new participant has connected to the group call. Decision step 516 is also reached from block 514, above.


At decision step 516, if a new participant enters the group call, the new participant is allowed to connect to the group call with and may communicate with any one or more of the other participants with full duplex capability. The logic then moves to decision step 520. Decision step 520 is also reached from decision step 516 if no new participants have entered the group call. At decision step 520, it is determined whether all participants have disconnected from the group call. If not, the logic returns to block 508 and continues as described above. On the other hand, if all participants have disconnected from the group call, the logic moves to block 522 where the group call is terminated and then, ends at state 506.


Referring now to FIG. 6, an exemplary, non-limiting embodiment of a telecommunications system is shown and is generally designated 600. As shown, the system includes one or more DMA servers 602 that are connected to a wireless carrier's central MSC 604. The DMA server(s) 602 can be connected to the MSC 604 via an E1 CCS (G.703, G732) connection, or any other applicable connection. The MSC 604, in turn, is connected to a code division multiple access (CDMA) network 606. FIG. 6 further shows that the DMA server(s) 602 can be connected to a switching transfer point (STP) 608 of a stand-alone carrier. As shown, the DMA server 602 can be connected to the STP 608 via an IS-41+IS-880 (DS0) connection, an ISUP ITU N7 connection.


As further depicted in FIG. 6, the STP 608 can be connected to a short messaging service (SMS) server 610 in order to provide text-messaging capabilities for the mobile communication devices using the system 600 shown in FIG. 6. Additionally, the STP 608 can be connected to a home location register (HLR) 612, a pre-paid wireless server 614 and an international roaming network 616 in order to provide pre-paid services and roaming between multiple countries. FIG. 6 shows that the DMA server(s) 602 can be connected to the PTSN 618 via an E1 CCS (G.703, G732) connection, or any other appropriate connection.


Referring to FIG. 7, a wireless local loop (WLL) system is portrayed and is generally designated 700. As illustrated in FIG. 7, the system 700 includes a DMA server 702 that is connected to a BTS 704. The BTS 704, in turn, is connected to an antenna 706. The antenna 706 provides cellular coverage for one or more subscribers 708 within transmission distance of the antenna 706. FIG. 7 indicates that the system 700 can further include a data network connection 710 from the DMA server 702. The data network connection 710 can connect the DMA server 702 to the PSTN via an ISUP/ISDN signaling connection on an SS7 link set or a T1/E1 wireless connection. Further, the data network connection 710 can be an IEEE 802.11 connection between the DMA server 702 depicted in FIG. 7 and other DMA servers not shown. The DMA server 702 can beneficially utilize existing infrastructure used for cellular and SMS data services.



FIG. 8 shows a multi-WLL system, generally designated 800. As shown, the system 800 includes a plurality of WLLs 802. Each WLL 802 can include a DMA server 804 and an antenna 806 connected thereto to provide a cellular coverage site around the antenna 806. As illustrated in FIG. 8, the WLLs 802 can be interconnected via a wireless local area network (WLAN), or a wide area network, such as a microwave connection. Moreover, a DMA server 804 within one of the WLLs 802 can provide a back-haul connection 808 to the PSTN 810. This type of deployment scenario can greatly reduce the costs associated with a wireless system. Since the DMA servers 804 are connected to each other via the WLAN or microwave connections, the relatively expensive inter-site back-haul component is removed. Further, using the hand-off logic, the DMA servers 804 can enable roaming between the WLLs 802 and can further provide roaming to an external wireless or other network.


Referring to FIG. 9, a telecommunications system is depicted and is designated 900. As illustrated in FIG. 9, the system 900 includes a DMA server 902 that can be connected to a plurality of BTSs 904. Each BTS 904 can provide cellular coverage for one or more mobile communication devices 906, e.g., one or more mobile handsets configured to communicate via the DMA server 902. FIG. 9 further shows that the DMA server 902 can be connected to an MSC 908, such as an MSC of an existing cellular system. The DMA server 902 can be connected to the MSC via an IS-41 subset or a MAP subset over a wireless E1/T1 connection. With this implementation, the DMA server 902 can extend an existing cellular network when connected to an existing cellular system MSC 908.



FIG. 10 shows an additional telecommunications system, generally designated 1000. As shown, the system 1000 includes a city area coverage site 1002 and an urban fringe/nearby village coverage site 1004. In an exemplary, non-limiting embodiment, the city area coverage site 1002 includes a first MSC/BSC center 1006 connected to a second MSC/BSC center 1008. Also, a first representative BTS 1010 and a second representative BTS 1012 are connected to the first MSC/BSC center 1006. The particular deployment of equipment is configured to provide adequate cellular coverage for mobile communication devices within the city area coverage site 1002.


As illustrated in FIG. 10, the urban fringe/nearby village coverage site 1004 includes a DMA server 1014 having a plurality of BTSs 1016 connected thereto. The DMA server 1014 can provide hand-off of calls between the BTSs 1016 and can switch calls made between the BTS 1016 locally. However, the DMA server 1014 within the urban fringe/nearby village coverage site 1004 can also connect telephony traffic to the first MSC/BSC center 1006 within the city area coverage site 1002 via a data network connection 1018. In one embodiment, the data network connection can be an E1 connection, a T1 connection, a microwave connection, or an 802.11 connection established via an IS-41 subset or MAP subset. The deployment of a DMA server 1014 in a location such as that described above, i.e., in urban fringe or in a nearby village, and the connection of the DMA server 1014 to an MSC/BSC center 1006 in a city area, can provide potential wireless customers that typically would not receive cellular coverage from the city area cellular coverage site 1002, can have access to wireless communication service and can further communicate with wireless customers within the city area cellular coverage site 1002.


Referring now to FIG. 11, another telecommunications system is depicted and is designated 1100. As illustrated in FIG. 11, the system 1100 includes a DMA server 1102 that can be connected to a plurality of BTSs 1104. Each BTS 1104 can provide cellular coverage for one or more mobile communication devices 1106. FIG. 11 further shows that the DMA server 1102 can include a data network connection 1108 that provides a back-haul connection to the PSTN 1110. In one embodiment, the data network connection can be an E1 connection, a T1 connection, a cable connection, a microwave connection, or a satellite connection. Moreover, the system 1100 depicted in FIG. 11 can be deployed using CDMA IS-95, CDMA 1X, GSM/GPRS, W-CDMA, or other industry standard technologies.


Using a single back-haul connection greatly minimizes costs associated with the wireless communication network. Further, the system 1100 shown in FIG. 11 can be deployed relatively rapidly and can be maintained remotely. Additionally, with the inclusion of the OMP module 232 (FIG. 2) and the AAA module 222 (FIG. 2), subscriber accounts can be managed locally and billing can be performed locally, i.e., within the DMA server 1102. Moreover, as subscribers increase, the size of the system can be increased modularly, e.g., by adding DMA servers, corresponding BTSs, and the appropriate connections.



FIG. 12 illustrates an in-building telecommunications network that is generally designated 1200. FIG. 12 depicts a structure 1202, e.g., an office building, a commercial building, a house, etc. An enterprise local area network (LAN) 1204 is installed within the building 1202. A micro-BTS 1206 is connected to the enterprise LAN 1204. Moreover, a voice mail server 1208 and plural enterprise services servers 1210 are connected to the enterprise LAN 1204. In an exemplary, non-limiting embodiment, the enterprise services servers 1210 can include a dynamic host configuration protocol (DHCP) server, a radius server, a domain name server (DNS), etc. As depicted in FIG. 12, a plurality of phones 1212, e.g., IP desk phones, can be connected to the enterprise LAN 1204.



FIG. 12 further indicates that an office DMA server 1214 can be connected to the enterprise LAN 1204. The office DMA server 1214 can also be connected to the PSTN 1216, which, in turn, can be connected to a cellular voice and data network 1218. The enterprise LAN 1204 can also be connected to the cellular voice and data network 1218 via an Internet protocol (IP) network 1220. A signaling system seven (SS7) network 1222 can be connected to the cellular voice and data network 1218 and the IP network 1220. FIG. 12 also depicts an SS7 gateway 1224 between the SS7 network 1222 and the IP network 1220 and a firewall 1226 between the enterprise LAN 1204 and the IP network 1220. FIG. 12 shows a wireless communication device 1228 in communication with the cellular voice and data network 1218 and the micro-BTS 1206.


Referring now to FIG. 13, a mobile in-field telecommunications system is depicted and is generally designated 1300. As depicted, the system 1300 includes a plurality of mobile cellular coverage sites 1302. Each mobile cellular coverage site 1302 includes a vehicle 1304 in which a field DMA server 1306 is disposed. Moreover, a BTS 1308 is disposed within each vehicle 1304 and is in direct physical connection with the field DMA server 1306, e.g., by a wire or cable connected there between. The field DMA server 1306 and the BTS 1308 can be removably installed within the vehicle 1304 or permanently affixed therein. FIG. 13 further indicates that each BTS 1308 can include an antenna 1310 that is designed to communicate with mobile communication devices. Also, each field DMA server 1306 includes an antenna 1312. In an exemplary, non-limiting embodiment, the field DMA servers 1306 can communicate wirelessly with each other via the antennae 1312, e.g., via 802.11a, 802.11b, microwaves, or other wireless link.


The mobile cellular coverage sites 1302 can be deployed to provide a temporary web of cellular coverage for a plurality of mobile communication devices, e.g., devices carried by solders during a battle. The mobile in-field communications system 1300 can be recalled, moved, and re-deployed as necessary. Further, the system can include a wireless connection, e.g., 802.11a, 802.11b, microwaves, to the PSTN 1314.


Referring to FIG. 14, still another telecommunications system is illustrated and is generally designated 1400. As depicted in FIG. 14, the system 1400 includes a DMA server 1402 that is connected to a BTS 1404. The BTS 1404, in turn, is connected to an antenna 1406. FIG. 14 further illustrates that a first satellite transceiver 1408 is also connected to the DMA server 1402. The first satellite transceiver 1408 communicates with a second satellite transceiver 1410 via a satellite 1412. Additionally, the second satellite transceiver 1410 includes a data network connection 1414, e.g., a T1 connection, or an E1 connection. The satellite transceivers 1408, 1410 and the satellite 1412 can provide a backhaul connection for the DMA server 1402. Or, the satellite transceivers 1408, 1410 and the satellite 1412 can connect the DMA server 1402 to an additional DMA server (not shown).



FIG. 15 shows yet another telecommunications system that is generally designated 1500. As illustrated in FIG. 15, the system includes a DMA 1502 that is connected to a first satellite transceiver 1504. Moreover, the DMA 1502 includes a primary network connection 1506, e.g., a T1 connection, or an E1 connection, and a secondary network connection 1508, e.g., an IP connection. FIG. 15 shows that the first satellite transceiver 1504 communicates with a second satellite transceiver 1510 and a third satellite transceiver 1512 via a satellite 1514. Each of the second and third satellite transceivers 1510, 1512 is connected to an interworking unit (IWU) 1516 via a data network connection 1518, e.g., an IP connection. Each IWU 1516 is connected to a BTS 1520, which in turn, is connected to an antenna 1522. The satellite transceivers 1504, 1510, 1512 provide an IP network extension for the DMA server 1502. Moreover, in the deployment illustrated in FIG. 15, the DMA server 1502 can act as a centralized micro-switch for handling calls received at the antennas 1522 and transmitted via the second and third satellite transceivers 1510, 1512.


Referring now to FIG. 16, another telecommunications system is depicted and is designated 1600. As shown, the system 1600 includes a DMA server 1602 having a primary network connection 1604. Moreover, the DMA server 1602 can be connected to a plurality of IWUs 1606. In an exemplary, non-limiting embodiment, the DMA server 1602 can be connected to each IWU 1606 via a secondary network connection 1608, such as a category five (Cat 5) cable connection, a microwave connection, or a WLAN connection. Further, each IWU 1606 is connected to a BTS 1610 and each BTS 1610, in turn, is connected to an antenna 1612. Each BTS 1610 can be a 3-sector BTS. In the deployment depicted in FIG. 16, the DMA server 1602 can act as a centralized micro-switch that can be used to handle telephony traffic received at the antennae 1612.


With the configuration of structure described above, the present disclosure provides a flexible telecommunications device, i.e., the DMA server 106 (FIG. 1), that is distributive and associative, i.e., it can operate stand-alone or seamlessly within an existing cellular network. Moreover, the DMA server 106 can be integrated with virtually any third party base station. The DMA server 106 can operate with any air interface including CDMA IS-95, CDMA 1X, CDMA EVDO, GSM, GPRS, W-CDMA, 802.11 (Wi-fi), 802.16 (Wi-fi), etc. Further, the DMA server 106 can provide integrated prepaid billing, OAMP, network management, and AAA functionality. The DMA server 106 can include a Java based user interface and feature configuration system. Also, the DMA server 106 can provide real time call metering, call detail record (CDR) generation, and real time call provisioning. The DMA server 106 may be implemented in a relatively small footprint and a relatively low power requirement. Further, the DMA server 106 may be implemented using inexpensive and widely available computer equipment.


With one or more of the deployment configurations described above, the present system provides mobile to landline calls from mobile handsets within a DMA server cellular coverage area. Also, mobile to landline calls can be made from mobile handsets roaming into DMA coverage areas. Mobile to mobile calls can be made from home/roaming handsets to DMA handsets and vice versa. Further, mobile to IP calls and IP to mobile calls can be made from within a DMA server coverage area. IP to IP calls can be made from any DMA handset to any IP phone. Additionally, IP to landline calls and landline to IP calls can be made from a DMA handset to any phone. And, land to mobile calls to DMA handsets can be made.


The systems described above can support call forwarding, call waiting, 3-way calling caller ID, voice mail, and mobile to mobile SMS service, i.e., text messaging. Further, the systems described above can provide broadcast SMS service, mobile to land high-speed IP data (1X or GPRS) service and mobile-to-mobile high speed IP data (1X or GPRS) service. Also, the systems described above can provide IP-PBX capability.


Further, one or more of the illustrated systems can provide IP transport between distributed elements, e.g., DMA servers 106 (FIG. 1). Packet back-haul from BTS to RAN can be provided. Further, the control logic within the DMA servers 106 (FIG. 1) can be distributed and associated. Associated systems can be redundant, self-healing, self-organizing, and scalable. Distributed systems can be “snap-together,” i.e., a DMA server 106 (FIG. 1) can be linked to a previously deployed DMA server 106 (FIG. 1) in order to broaden, or otherwise extend, cellular coverage. Further, distributed systems can be de-centralized to avoid single points of failure.


One or more of the systems described above can also provide soft and softer call handoffs on the same frequency interfaces. Also, soft handoffs can be provided on different systems. Further, a DMA based system can operate stand-alone with a billing system provided by a DMA server and CDR generation. Or, a system can use the SS7 network to pass CDRs to a central switch for integrated billing and operation with an existing network.


The above-disclosed subject matter is to be considered illustrative, and not restrictive, and the appended claims are intended to cover all such modifications, enhancements, and other embodiments, which fall within the true scope of the present invention. Thus, to the maximum extent allowed by law, the scope of the present invention is to be determined by the broadest permissible interpretation of the following claims and their equivalents, and shall not be restricted or limited by the foregoing detailed description.

Claims
  • 1. A method comprising: receiving a call at a distributed mobile architecture (DMA) server, wherein the DMA server includes a mobile switching center (MSC) module, a wireless transceiver, and a base station controller (BSC), wherein the MSC module includes an authentication, authorization, and accounting (AAA) module configured to support generation of call detail records at the DMA server;routing the call from the DMA server to a communication device; andgenerating a call detail record associated with the call at the DMA server.
  • 2. The method of claim 1, further comprising determining whether the communication device is within a coverage area associated with the DMA server.
  • 3. The method of claim 2, wherein the call is routed to the communication device via the DMA server in response to determining that the communication device is within a coverage area associated with the DMA server.
  • 4. The method of claim 2, wherein the DMA server is connected to another DMA server via a peer-to-peer internet protocol (IP) network connection.
  • 5. The method of claim 4, further comprising determining whether the communication device is within another coverage area associated with the other DMA server.
  • 6. The method of claim 5, wherein the call is routed via the peer-to-peer IP network connection to the other DMA server and to the communication device in response to determining that the communication device is within the other coverage area associated with the other DMA server.
  • 7. The method of claim 1, further comprising monitoring the call via the DMA server.
  • 8. The method of claim 7, wherein monitoring the call comprises monitoring a location of a calling communication device, a location of the communication device, a status of the DMA server, a status of another DMA server, a peer-to-peer internet protocol (IP) connection between the DMA server and the other DMA server, or any combination thereof.
  • 9. The method of claim 8, wherein monitoring the call further comprises: determining whether a calling communication device is roaming; anddetermining whether the communication device is roaming,wherein the call record is generated based on information obtained during the monitoring of the call.
  • 10. The method of claim 1, further comprising sending the call detail record to a second location.
  • 11. The method of claim 1, wherein a subscriber is billed based on the call detail record.
  • 12. A non-transitory computer-readable storage medium comprising instructions that, when executed by a processor, cause the processor to: receive a call at a distributed mobile architecture (DMA) server, wherein the DMA server includes a mobile switching center (MSC) module, a wireless transceiver, and a base station controller (BSC), wherein the MSC module includes an authentication, authorization, and accounting (AAA) module configured to support generation of call detail records at the DMA server;route the call from the DMA server to a communication device; andgenerate a call detail record associated with the call at the DMA server.
  • 13. The non-transitory computer-readable storage medium of claim 12, further comprising instructions that, when executed by the processor, cause the processor to monitor the call.
  • 14. The non-transitory computer-readable storage medium of claim 13, wherein monitoring the call comprises monitoring a location of a calling communication device, a location of the communication device, a status of the DMA server, a status of another DMA server, a peer-to-peer interne protocol (IP) connection between the DMA server and the other DMA server, or any combination thereof.
  • 15. The non-transitory computer-readable storage medium of claim 14, further comprising instructions that, when executed by the processor, cause the processor to: determine whether a calling communication device is roaming; anddetermine whether the communication device is roaming.
  • 16. The non-transitory computer-readable storage medium of claim 14, wherein the call record is generated based on information obtained during the monitoring of the call.
  • 17. An apparatus comprising: a distributed mobile architecture (DMA) server comprising: a wireless transceiver;a computer-readable storage medium;a mobile switching center (MSC) module embedded in the computer-readable storage medium, wherein the MSC module includes an authentication, authorization, and accounting (AAA) module, the AAA module configured to support generation of call detail records at the DMA server; anda base station controller (BSC) module embedded in the computer readable storage medium.
  • 18. The apparatus of claim 17, wherein the DMA server is configured to: receive a call from a calling communication device;route the call to a destination communication device; andgenerate a call detail record associated with the call.
  • 19. The apparatus of claim 18, wherein the DMA server is configured to monitor the call.
  • 20. The apparatus of claim 19, wherein the call record associated with the call is generated based on information obtained during the monitoring of the call, wherein the information obtained during the monitoring of the call includes at least one of a location of the calling communication device, a location of the destination communication device, a status of the DMA server, a status of another DMA server, a peer-to-peer internet protocol (IP) connection between the DMA server and the other DMA server, or any combination thereof.
CLAIM OF PRIORITY

The present application claims priority from and is a continuation of U.S. patent application Ser. No. 12/425,147, issued as U.S. Pat. No. 8,089,920, filed on Apr. 16, 2009, and entitled “SYSTEM, METHOD, AND DEVICE FOR PROVIDING COMMUNICATIONS USING A DISTRIBUTED MOBILE ARCHITECTURE,” which claims priority from and is a continuation of U.S. patent application Ser. No. 10/983,516, issued as U.s. Pat. No. 7,539,158, filed on Nov. 8, 2004, and entitled “SYSTEM, METHOD, AND DEVICE FOR PROVIDING COMMUNICATIONS USING A DISTRIBUTED MOBILE ARCHITECTURE.” The contents of each of the above priority documents are expressly incorporated herein by reference in their entirety.

US Referenced Citations (221)
Number Name Date Kind
4284848 Frost Aug 1981 A
5590175 Gallant et al. Dec 1996 A
5623495 Eng et al. Apr 1997 A
5734979 Lu et al. Mar 1998 A
5933784 Gallagher et al. Aug 1999 A
5991639 Rautiola et al. Nov 1999 A
6122499 Magnusson Sep 2000 A
6131038 Sekine Oct 2000 A
6141564 Bruner et al. Oct 2000 A
6160804 Ahmed et al. Dec 2000 A
6411825 Csapo et al. Jun 2002 B1
6418308 Heinonen et al. Jul 2002 B1
6421325 Kikinis Jul 2002 B1
6515985 Shmulevich et al. Feb 2003 B2
6539237 Sayers et al. Mar 2003 B1
6542497 Curry et al. Apr 2003 B1
6549937 Auerbach et al. Apr 2003 B1
6584098 Dutnall Jun 2003 B1
6611533 Liao et al. Aug 2003 B1
6614784 Glitho et al. Sep 2003 B1
6647426 Mohammed Nov 2003 B2
6678155 Bresniker Jan 2004 B1
6694134 Lu et al. Feb 2004 B1
6697355 Lim Feb 2004 B1
6704409 Dilip et al. Mar 2004 B1
6731932 Rune et al. May 2004 B1
6735184 Davidson et al. May 2004 B1
6751207 Lee et al. Jun 2004 B1
6760325 Hameleers et al. Jul 2004 B1
6763226 McZeal, Jr. Jul 2004 B1
6763233 Bharatia Jul 2004 B2
6791988 Hameleers et al. Sep 2004 B1
6795444 Vo et al. Sep 2004 B1
6807431 Sayers et al. Oct 2004 B2
6807432 Hwang Oct 2004 B2
6816706 Hohnstein et al. Nov 2004 B1
6819652 Akhtar et al. Nov 2004 B1
6829473 Raman et al. Dec 2004 B2
6831903 Kang Dec 2004 B2
6839356 Barany et al. Jan 2005 B2
6859652 Karabinis et al. Feb 2005 B2
6871072 Meche Mar 2005 B1
6879582 Dhara et al. Apr 2005 B1
6879677 Trandal Apr 2005 B2
6917813 Elizondo Jul 2005 B2
6937708 Hirose Aug 2005 B2
6958983 Musikka et al. Oct 2005 B2
6985454 Wiedeman et al. Jan 2006 B1
7003286 Brown et al. Feb 2006 B2
7050414 Lin May 2006 B2
7054307 Papadimitriou et al. May 2006 B2
7054322 D'Annunzio et al. May 2006 B2
7072650 Stanforth Jul 2006 B2
7117015 Scheinert et al. Oct 2006 B2
7120435 Usher et al. Oct 2006 B2
7120436 Kim Oct 2006 B2
7133670 Moll et al. Nov 2006 B1
7133923 MeLampy et al. Nov 2006 B2
7136651 Kalavade Nov 2006 B2
7154901 Chava et al. Dec 2006 B2
7158621 Bayne Jan 2007 B2
7171216 Choksi Jan 2007 B1
7299039 Lee et al. Nov 2007 B2
7313399 Rhee et al. Dec 2007 B2
7324478 Park et al. Jan 2008 B2
7328268 Foltak et al. Feb 2008 B1
7346334 Gaeta et al. Mar 2008 B2
7349412 Jones et al. Mar 2008 B1
7359700 Swensen et al. Apr 2008 B2
7383042 Lamb et al. Jun 2008 B2
7385947 Wu et al. Jun 2008 B2
7406069 Yashar et al. Jul 2008 B2
7424313 Ham et al. Sep 2008 B2
7486967 Pan et al. Feb 2009 B2
7490132 Lyle et al. Feb 2009 B1
7522632 La Porta et al. Apr 2009 B2
7536170 Goldman et al. May 2009 B2
7539158 Pan May 2009 B2
7548763 Pan Jun 2009 B2
7552670 Goldman et al. Jun 2009 B2
7606594 Jesse et al. Oct 2009 B2
7653414 Pan Jan 2010 B2
7738488 Marsico et al. Jun 2010 B2
7760695 Gopalakrishnan et al. Jul 2010 B2
7787879 Philips et al. Aug 2010 B1
7840230 Pan Nov 2010 B2
7855988 Pan Dec 2010 B2
7856233 Pan Dec 2010 B2
7979066 Pan Jul 2011 B2
8036158 Pan et al. Oct 2011 B2
8046420 Pan Oct 2011 B2
8089920 Pan Jan 2012 B2
8107409 Pan Jan 2012 B2
8224322 Pan Jul 2012 B2
8310990 Pan Nov 2012 B2
8359029 Pan Jan 2013 B2
20010013050 Shah Aug 2001 A1
20010036173 Shmulevich et al. Nov 2001 A1
20010046859 Kil Nov 2001 A1
20010055298 Baker et al. Dec 2001 A1
20020009060 Gross Jan 2002 A1
20020015392 Musikka et al. Feb 2002 A1
20020016180 Derosier et al. Feb 2002 A1
20020045444 Usher et al. Apr 2002 A1
20020051518 Bondy et al. May 2002 A1
20020058502 Stanforth May 2002 A1
20020061746 Jo et al. May 2002 A1
20020160772 Gailey et al. Oct 2002 A1
20020169887 MeLampy et al. Nov 2002 A1
20030048766 D'Annunzio et al. Mar 2003 A1
20030063721 Hirose Apr 2003 A1
20030088698 Singh et al. May 2003 A1
20030092441 Taha et al. May 2003 A1
20030096628 Bar-On et al. May 2003 A1
20030100302 Armbruster et al. May 2003 A1
20030100342 Ham et al. May 2003 A1
20030112748 Puppa et al. Jun 2003 A1
20030153343 Crockett et al. Aug 2003 A1
20030186694 Sayers et al. Oct 2003 A1
20030198325 Bayne Oct 2003 A1
20040014466 Jesse et al. Jan 2004 A1
20040018829 Raman et al. Jan 2004 A1
20040019539 Raman et al. Jan 2004 A1
20040156495 Chava et al. Aug 2004 A1
20040203621 Brown et al. Oct 2004 A1
20040203677 Brown et al. Oct 2004 A1
20040204097 Scheinert et al. Oct 2004 A1
20040253949 Swensen et al. Dec 2004 A1
20040253984 Csapo et al. Dec 2004 A1
20040259556 Czys Dec 2004 A1
20050044152 Hardy et al. Feb 2005 A1
20050064922 Owens et al. Mar 2005 A1
20050070278 Jiang Mar 2005 A1
20050075106 Jiang Apr 2005 A1
20050091392 Gesswein et al. Apr 2005 A1
20050176413 Lee et al. Aug 2005 A1
20050250491 Roy Nov 2005 A1
20060026252 Caspi et al. Feb 2006 A1
20060046714 Kalavade Mar 2006 A1
20060046760 Bertino et al. Mar 2006 A1
20060047836 Rao et al. Mar 2006 A1
20060052113 Ophir et al. Mar 2006 A1
20060063544 Zhao et al. Mar 2006 A1
20060098661 Pan May 2006 A1
20060114934 Shin et al. Jun 2006 A1
20060141984 Taglienti et al. Jun 2006 A1
20060142011 Kallio Jun 2006 A1
20060148465 Perdomo et al. Jul 2006 A1
20060159039 Jung et al. Jul 2006 A1
20060203746 Maggenti et al. Sep 2006 A1
20060217121 Soliman et al. Sep 2006 A1
20060221912 Olivier et al. Oct 2006 A1
20060234747 Pan Oct 2006 A1
20060234774 Pan et al. Oct 2006 A1
20060258358 Kallio Nov 2006 A1
20070008968 Baker et al. Jan 2007 A1
20070010245 Levitan Jan 2007 A1
20070021097 Gaeta et al. Jan 2007 A1
20070021118 Ophir Jan 2007 A1
20070060124 Kalavade Mar 2007 A1
20070076697 Huotari et al. Apr 2007 A1
20070087738 Melkesetian Apr 2007 A1
20070147598 Somes et al. Jun 2007 A1
20070202847 Pan Aug 2007 A1
20070213075 Jiang Sep 2007 A1
20070230352 Kokku et al. Oct 2007 A1
20070232267 Pan Oct 2007 A1
20070232304 Goldman et al. Oct 2007 A1
20070234892 Goldman et al. Oct 2007 A1
20070243891 Civanlar et al. Oct 2007 A1
20070271606 Amann et al. Nov 2007 A1
20070287452 Pan Dec 2007 A1
20070291910 Bucchieri et al. Dec 2007 A1
20070293216 Jiang Dec 2007 A1
20080039144 Pan et al. Feb 2008 A1
20080080438 Gopalakrishnan et al. Apr 2008 A1
20080101314 Bachmutsky May 2008 A1
20080101410 Barkley et al. May 2008 A1
20080134295 Bailey et al. Jun 2008 A1
20080146158 Pan et al. Jun 2008 A1
20080168523 Ansari et al. Jul 2008 A1
20080244014 Britton et al. Oct 2008 A1
20090003269 Kumazawa et al. Jan 2009 A1
20090022155 Rosenberg et al. Jan 2009 A1
20090031244 Brezina et al. Jan 2009 A1
20090067441 Ansari et al. Mar 2009 A1
20090156213 Spinelli et al. Jun 2009 A1
20090186626 Raghothaman Jul 2009 A1
20090215449 Avner Aug 2009 A1
20090227230 Camilleri et al. Sep 2009 A1
20090227235 Pan Sep 2009 A1
20090228555 Joviak et al. Sep 2009 A1
20090270097 Gallagher et al. Oct 2009 A1
20090271491 Pan Oct 2009 A1
20090292785 Leedberg et al. Nov 2009 A1
20090325584 Pan Dec 2009 A1
20090327819 Pan Dec 2009 A1
20100008306 Pan Jan 2010 A1
20100008369 Pan Jan 2010 A1
20100048197 Jiang Feb 2010 A1
20100048208 Gunaratnam et al. Feb 2010 A9
20100057485 Luft Mar 2010 A1
20100057732 O'Sullivan et al. Mar 2010 A1
20100075668 Pan Mar 2010 A1
20100080214 Li et al. Apr 2010 A1
20100094878 Soroca et al. Apr 2010 A1
20100199340 Jonas et al. Aug 2010 A1
20100217809 Vymenets et al. Aug 2010 A1
20100217837 Ansari et al. Aug 2010 A1
20110059740 Pan Mar 2011 A1
20110060853 Pan Mar 2011 A1
20110223921 Pan Sep 2011 A1
20120002607 Pan Jan 2012 A1
20120020293 Nix, Jr. et al. Jan 2012 A1
20120044908 Spinelli et al. Feb 2012 A1
20120094659 Pan Apr 2012 A1
20120252444 Pan Oct 2012 A1
20130039279 Pan Feb 2013 A1
20130065583 Pan Mar 2013 A1
20130130677 Pan May 2013 A1
20130148578 Pan Jun 2013 A1
Foreign Referenced Citations (12)
Number Date Country
1538781 Oct 2004 CN
101044769 Sep 2007 CN
0365885 May 1990 EP
2435751 Feb 2009 GB
2006052342 May 2006 WO
2007102003 Sep 2007 WO
2008150281 Dec 2008 WO
2009158154 Dec 2009 WO
2009158155 Dec 2009 WO
2010005648 Jan 2010 WO
2010008695 Jan 2010 WO
2010036439 Apr 2010 WO
Non-Patent Literature Citations (33)
Entry
Hoffpauir, US Registration H1,918, entitled “Integrated Authentication Center and Method for Authentication in a Wireless Telecommunications Network”, filed Feb. 19, 1998, 19 pages.
International Preliminary Report on Patentability and Written Opinion received from the International Bureau of WIPO for International Application No. PCT/US2005/035648, dated Nov. 8, 2004, 9 pages.
Notification of the Second Office Action received from the State Intellectual Property Office of the People's Republic of China (SIPO) for Chinese Application No. 200580033404.X, Notification dated Oct. 26, 2010, 12 pages.
The Extended European Search Report (the Supplementary European Search Report and the European Search Opinion) received from the European Patent Office (EPO) for European Application No. 05801092.7-1525/1810465, PCT/US2005035648, dated Jan. 31, 2011, 6 pages.
B.G. Evans and K. Baughan; “Visions of 4G”; Electronics & Communication Engineering Journal; Dec. 2000; pp. 293-303.
Shirshanka Das, Alok Nandan & Giovanni Pau (University of CA, Los Angeles, CA, USA); “SPAWN: A Swarming Protocol for Vehicular Ad-Hoc Wireless Networks”; VANET'04, Oct. 1, 2004, Philadelphia, PA, USA; ACM 1-58113-922-5/04/0010; 2 pgs.
Yu-Chee Tseng, Chia-Ching Shen (National Chiao Tung University) & Wen-Tsuen Chen (National Tsing Hua University); “Integrating Mobile IP with AD Hoc Networks”; IEEE Computer Society; 0018-9162/03; 2003 IEEE; May 2003; pp. 48-55.
Halim Yanikomeroglu, David D. Falconer & Van M. Sreng; “Coverage Enhancement Through Two-Hop Peer-to-Peer Relaying in Cellular Radio Networks”; Broadband Communications and Wireless Systems (BCWS) Centre Department of Systems & Computer Engineering, Carleton University, Ottawa, Canada; WWRF Meeting #7, Eindhoven, the Netherlands, Dec. 3-4, 2002, WG4: Spectrum, New Air Interfaces and Ad-Hoc Networking Multi-Hop Wireless Systems; 10 pages.
Bur Goode; “Voice Over Internet Protocol (VoIP)”; 0018-9219/02 2002 IEEE; Proceedings of the IEEE; vol. 90, No. 9, Sep. 2002; pp. 1495-1517.
Kyung-Hyu Lee, Kyu-Ok Lee & Kwon-Chu Park (Network Research Laboratory ETRI Korea) Jong-Ok Lee and Yoon-Hak Bang (Network Planning Team KT Korea); “Architecture to be Deployed on Strategies of Next-Generation Networks”; 0/7803-7802-4/03 2003 IEEE; pp. 819-822.
Wolfgang Kellerer, Christian Bettstetter, Christian Schwingenschlögl & Peter Sties (Technische Universität München) Karl-Ernst Steinberg (BMW) & Hans-Jörg Vogel (the Fantastic Corp); “(Auto) Mobile Communication in a Heterogeneous and Converged World”; IEEE Personal Communications; Dec. 2001; 1070-9916/01; 2001 IEEE pp. 41-47.
Nilanjan Banerjee & Sajal K. Das (University of Texas, Arlington) & Arup Acharya (IBM T.J. Watson Research Center)' “Peer-to-peer SIP-based Services over Wireless Ad Hoc Networks”; BROADWIM: Broadband Wireless Multimedia Workshop; Oct. 29, 2004—broadnets.org; *This work was supported by NSF under the ORBIT testbed project, grant # NSF NRT Project #ANI-0335244 and by NSF ITR grant IIS-0326505; 8 pages.
Hung-Yu Wei (Columbia University) & Richard D. Gitlin (NEC Laboratories America); “Two-Hop-Relay Architecture for Next-Generation WWAN/WLAN Integration”; 4G Mobile Communications: Toward Open Wireless Architecture; 1536-1284/04 2004 IEEE; IEEE Wireless Communications; Apr. 2004; pp. 2-9.
Wolfgang Kellerer (LKN, Munich University of Technology), Hans-Jörg Vögel (the Fantastic Corp.) & Karl-Ernst Steinberg (BMW); “A Communication Gateway for Infrastructure Independent Wireless Access”; IEEE Communications Magazine; Mar. 2002; vol. 9; No. 3; 6 pages.
Willie W. Lu & Jenny Hu (U.S. Center for Wireless Communications, Stanford University, CA); “Open Wireless Architecture—The Core to 4G Mobile Communications”; China Communications; Apr. 2006; pp. 32-39.
Ralf Pabst, Bernard H. Walke & Daniel C. Schultz (RWTH Aachen University) Patrick Herhold & Gerhard P. Fettweis (Technical University of Dresden) Halim Yanikomeroglu & David D. Falconer (Carleton University) Sayandev Mukherjee & Harish Viswanathan (Lucent Technologies) Matthias Lott & Wolfgang Zirwas (Siemens ICM) Mischa Dohler & Hamid Aghvami (Kings College); “Relay-Based Deployment Concepts for Wireless and Mobile Broadband Radio”; 0163-6804/04; 2004 IEEE; IEEE Communications Magazine; Sep. 2004; pp. 80-89.
Simone Frattasi, Hanane Fathi, Frank H.P. Fitzek & Ramjee Prasad (Aalborg University) Marcos D. Katz (Samsung Electronics); “Defining 4G Technology from the User's Perspective”; IEEE Network; Jan./Feb. 2006; 0890-8044/06; 2006 IEEE; pp. 35-41.
Ian F. Akyildiz (Broadband and Wireless Networking BWN Lab, Georgia Institute of Technology) Xudong Wang & Weilin Wang (Kiyon, Inc. La Jolla, CA); “Wireless Mesh Networks: A Survey”; Computer Networks 47; Jan. 1, 2005; pp. 445-487; 1389-1286 2004 Elsevier B.V.
Brian Woerner (Virginia Tech, Blacksburg, VA) & Mostofa Howlader (University of Tennessee, Knoxville, TN); “Research Directions for Fourth Generation Wireless”; Proceedings of the 10th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2001); Jun. 20-22, 2001; Cambridge, MA, USA; IEEE Computer Society 2001; ISBN 0/7695-1269-0; 2 pages.
“Framework and Overall Objectives of the Future Development of IMT-2000 and Systems Beyond IMT-2000”; International Telecommunication Union; ITU-R Radiocommunication Sector of ITU; Recommendation ITU-R M.1645 (Jun. 2003); M Series; Mobile, Radiodetermination, Amateur and Related Satellite Services; 26 pages.
Notification of First Office Action for Chinese Application No. 200580033404.X, mailed Sep. 16, 2009, 19 pages.
Notification of Third Office Action for Chinese Application No. 200580033404.X, mailed Jan. 6, 2012, 16 pages.
Notification of Fourth Office Action for Chinese Application No. 200580033404.X, mailed Aug. 24, 2012, 16 pages.
Notification of the First Office Action for United Kingdom Application No. GB0706179.9 mailed Sep. 22, 2008, 5 pages.
Notification of First Office Action for Chinese Application No. 200980121864.6, mailed Mar. 27, 2013, 9 pages.
International Search Report and Written Opinion of the International Search Authority for International Application No. PCT/US09/045951 from the International Searching Authority, mailed Dec. 30, 2009, 8 pages.
International Sesarch Report and Written Opinion of the International Search Authority for International Application No. PCT/US09/045957 from the International Searching Authority, mailed Jan. 14, 2010, 8 pages.
International Search Report and Written Opinion of the International Search Authority for International Application No. PCT/US09/045968 from the International Searching Authority, mailed on Jan. 21, 2010, 9 pages.
Notification of First Office Action for Chinese Application No. 200980126758.7, mailed Apr. 28, 2013, 10 pages.
International Search Report and Written Opinion of the International Search Authority for International Application No. PCT/US09/045973 from the International Searching Authority, mailed on Jan. 18, 2010, 10 pages.
Written Opinion of the International Search Authority for International Application No. PCT/US07/25538 from the International Searching Authority, mailed on Sep. 22, 2008, 5 pages.
International Search Report and Written Opinion of the International Search Authority for International Application No. PCT/US09/050522 from the International Searching Authority, mailed on Feb. 1, 2011, 7 pages.
Yu, W. et al., “Reverse Link Capacity Analysis on Distributed Wireless Communication System”, Journal of Beijing University of Posts and Telecommunications, Jun. 30, 2004, 4 pages.
Related Publications (1)
Number Date Country
20120106454 A1 May 2012 US
Continuations (2)
Number Date Country
Parent 12425147 Apr 2009 US
Child 13309003 US
Parent 10983516 Nov 2004 US
Child 12425147 US