Aspects of the disclosure generally relate to the field of distributed storage systems (hereinafter “storage systems”) and, more particularly, to tools for management of a storage system.
Computer users, especially in the businesses world, produce an ever-increasing amount of digital data. Consequently, there is an ever-increasing need to store and access that digital data (“data demand and use”) in a way that is efficient and cost effective. Techniques and mechanisms that facilitate efficient and cost effective storage of vast amounts of digital data are, therefore, critical to the success of business entities and consumers.
Some companies, such as NetApp Inc., provide data storage solutions. NetApp Inc. provides storage systems with exceptionally high reliability, availability, and performance. For instance, NetApp Inc. has some solutions that leverage data virtualization and computer clustering to provide unified, flexible, and scalable storage solutions. For example, the NetApp® Data ONTAP® operating system (Data ONTAP) can control a group of data storage devices in a cluster network environment, also referred to as a clustered storage environment or a cluster of storage appliances. A cluster network environment comprises a plurality of nodes (e.g., storage servers, computing devices, etc.) that are connected together in a secure, private network (cluster network). The cluster network permits the networked nodes to communicate information to each other securely and rapidly. The nodes may cooperate together as a single coherent storage system.
However, as reliable as some storage systems can be, sometimes they experience problems and failures. Because of the importance of having an available distributed storage system, the ability to track, and recover from, the problems and failures is relevant to the value of the storage system.
A system management tool can present a summary, yet comprehensive, view of current operational information for a storage system regardless of scale and complexity of the storage system. A system management tool can continuously determine and present operational information about the storage system. The system management tool can use a digital dashboard that provides timely, relevant, and well organized operational information. The digital dashboard provides an operator (e.g., a system administrator) with information sufficient to effectively manage a storage system. The digital dashboard (hereinafter “dashboard”) provides views with different levels of detail for selected/configured categories of operational information for a storage system. With the different levels of views for the categories, the dashboard presents at least some level of operational information across all of the categories in a visible area (e.g., a single web page or defined desktop area). With the system management tool continuously collecting operational information across the categories of operational information, the dashboard continuously provides a comprehensive summary of operational status of the storage system. With a single web page, for example, an operator can determine whether a storage system is functioning within, and/or beyond, its specific operational parameters.
This summary is a brief summary for the disclosure, and not a comprehensive summary. The purpose of this brief summary is to provide a compact explanation as a preview to the disclosure. This brief summary does not capture the entire disclosure, and should not be used to limit claim scope.
Aspects of the disclosure may be better understood by referencing the accompanying drawings.
The description that follows includes example systems, methods, techniques, and program code/instructions that embody techniques of the aspects of the disclosure. However, it is understood that aspects of the disclosure may be practiced without these specific details. For instance, although examples refer to dashboards, some aspects of the disclosure may relate to other forms of system management tools that present indicators of operational information, such as widgets and panels. In other instances, well-known instruction instances, protocols, structures and techniques have not been shown in detail in order not to obfuscate the description.
Terminology
This disclosure refers to “elements” of a storage system. This disclosure refers to elements because of the variety of and complexity of a storage system. The variety and complexity encompasses both hardware elements and software elements. Examples of hardware elements include, but are not limited to, storage controllers, storage controller enclosures, storage drives, storage arrays, storage equipment sensors, storage subsystem devices, network switches, network servers, electrical probes, power supplies, cables, fans, ports, boards, and so forth. Examples of software elements include, but are not limited to, drivers, applications, operating systems, and so forth. The term “element” is also used to refer to an aspect of a hardware element or software element. For instance, a storage system element may be a feature or function of a software element (e.g., deduplication by a storage operating system).
This disclosure also refers to “operational information” for a storage system. Operational information includes measurements, analytics, or any other information that corresponds to a past, current, and/or potential future operational status of any element of a storage system. Operational information can be collected data or can be derived or calculated from collected data. In addition, operational information can correspond to operational parameters or limits of a storage system.
Introduction
Storage systems are designed to provide high reliability, availability, and performance. To meet increasing data demand and use, storage systems have increased in both scale and complexity. A storage system can be comprised of any number of clusters, each of which can include storage arrays, network elements, managing nodes, etc. A problem or failure in any given part of the storage system can negatively affect operation of the storage system. In some instances, the problem or failure can cause a complete shutdown of the storage system. Just as the scale and complexity of storage systems has increased with data demand and use (hereinafter truncated to “data demand”), the operational information for monitoring/managing storage systems has increased. While a system management tool can present operational information, the utility of the presented information is dependent upon what information is collected, how it is collected, and how it is presented. A system management tool can easily overwhelm a user with operational information that does not facilitate monitoring and management of a storage system. Further, a system management tool may not collect operational information in a manner that allows for effective presentation of the operational information.
Overview
A system management tool can present a summary, yet comprehensive, view of current operational information for a storage system regardless of scale and complexity of the storage system. A system management tool can continuously determine and present operational information about the storage system. The system management tool can use a digital dashboard that provides timely, relevant, and well organized operational information. The digital dashboard provides an operator (e.g., a system administrator) with information sufficient to effectively manage a storage system. The digital dashboard (hereinafter “dashboard”) provides views with different levels of detail for selected/configured categories of operational information for a storage system. With the different levels of views for the categories, the dashboard presents at least some level of operational information across all of the categories in a visible area (e.g., a single web page or defined desktop area). With the system management tool continuously collecting operational information across the categories, the dashboard continuously provides a comprehensive summary of operational status of the storage system. With a single web page, for example, an operator can determine whether a storage system is functioning within, and/or beyond, its specific operational parameters.
In
The operational information is presented via the dashboard 104 corresponding to different dimensions of a storage system or different categories, such as performance, storage capacity (“capacity”), and system health (“health”). The performance category corresponds to a speed at which data is stored on, or accessed from, the elements 180. The capacity category corresponds to an amount of storage available and used. The health category corresponds to operational integrity of elements of the storage system 100.
The dashboard 104 is configured with a layout having sections 130, 140 and 150 assigned to each of the categories. For instance, the operational information for the performance category is specified in a section 130 labeled as “Performance.” The operational information for the capacity category is specified in a section 150 labeled as “Capacity.” The operational information for the health category is specified in a section 140 labeled as “Health.” The layout of the dashboard 104 maintains a presentation of the sections 130, 140 and 150 relative to each other. For instance, the section 130 is vertically above section 150, which is vertically above section 140.
Each of the sections 130, 140, and 150 can present different levels of views (i.e., view of different levels of detail). For example, at any given moment, each of the sections 130, 140, and 150 can present either an expanded view or a non-expanded view.
A non-expanded view (also referred to herein as a minimized view) is a view that presents operational information in a succinct visual form (i.e., less detail). Various techniques can be employed to define a compact area sufficient to present informative operational information without impeding the comprehensive summary offered by the entire dashboard. For instance, a non-expanded view can have a height limited to a size of a default font. In some instances, a non-expanded view can be a single-bar, graphical control element (e.g., a status bar, a toolbar, etc.). In some instances, the non-expanded view can also have limited length. For instance, the non-expanded view may be only a length of only a few text characters. In some instances the text can scroll, as in a ticker, within the limited length. In some instances, a non-expanded view can dynamically adjust in length to approximately equal a length of data presented thereon. In other instances, the length of the non-expanded view may be fixed, such as the length of an entire dimension of the single page of the dashboard 104 (e.g., from a left-hand side edge to a right-hand side edge of the single page or from a bottom edge to a top edge of the single page). Further, the non-expanded view can have an expansion control that will expand the non-expanded view into an expanded view (also referred to herein as a maximized view).
The dashboard 104 is configured to permit presentation of one expanded view at a given time. In
The different levels of detail can vary based on a time dimension for the operational information. For instance, a non-expanded view may present the values of the operational information in a window of time defined as “current” (e.g., last 5 seconds). This minimizes the amount of operational information to be shown in the limited space of a non-expanded view. However, an expanded view is larger, and therefore can present operational information over a time range in graphs, charts, reports, etc.
The dashboard 104 presents the operational information in the views using indicators. Indicators are visible representations of the operational information. An indicator includes a visible form or structure with a value(s) (e.g., a graph of values, a meter, a gauge, a text box, etc.). The value is based on the operational information. Each indicator relates to a specific metric or type of measurement (e.g., “latency,” “bandwidth,” etc.). As shown in
The non-expanded view 112 includes graphical indicators that specify operational status of different types of hardware elements of the storage system 100 (e.g., controllers, enclosures, solid-state drives (SSDs), and connections). The graphical indicators on the non-expanded view 112 specify whether a particular hardware type is functional, is experiencing a problem, or is potentially going to experience a problem. For example, the non-expanded view 112 for the health category can show graphical indicators with different colors, symbols, shading, etc., that indicate operational integrity of hardware. For instance, graphical indicator 141 may be a green color, which indicates that all of the controllers for the storage system 100 are functioning properly. Graphical indicator 142 may be a yellow color, which indicates that at least one enclosure in the storage system 100 has a potential to malfunction. Graphical indicator 143 may be a red color, which indicates that at least one SSD has malfunctioned. The non-expanded view 112 can show a degree or history of a warning to indicate a possible severity of the warning (e.g., a glowing graphic that increases in size and intensity the longer the warning exists, a numerical indicator that indicates a severity level, etc.). In some examples, the system management tool 102 can indicate a possible failure of a hardware component based on a history of operational information for the hardware component. For example, the system management tool can analyze (or access analytics for) a number of previous errors for a hardware component, a degree of performance degredation for a hardware component, and a rising temperature trend of a hardware component. The system management tool 102 can predict the possible failure based on the analysis. The system management tool 102 can also predict a hardware failure based on a chain reaction in the system. For example, the system management tool 102 can determine that a failure of a housing component may lead to a failure of a component housed within the housing component, and so forth. The system management tool 102 can then present indicators of the possible failures and/or predictions on the dashboard 104, such as on the non-expanded view 112.
The dashboard 104 is further configured to receive user input to “drill down” into any view for more detail about the operational information. The phrase “drill down” is used to describe an action that moves from a less detailed view to a more detailed view. For example, a user may drill down from a non-expanded view (e.g., a status bar view, a miniaturized summary view, etc.) to an expanded view. Drill down operations can also occur in expanded views. For instance, after being expanded from a non-expanded view, an expanded view may present a mid-level of detail. The user may drill down further into the expanded view by interacting with an object on the expanded view. For instance, the user may click on a graph or control element in the expanded view. When the user clicks on the graph or control element, the dashboard initiates another drill down operation to present more detail in the expanded view than was previously presented.
The dashboard 104 presents operational information for all categories, at all given times. The dashboard 104 continuously determines updates to the operational information according to refresh rates that correspond to the categories. The dashboard 104 then refreshes the values on the indicators based on refreshed operational information. By continuously presenting and updating operational information and indicator values, the digital dashboard 104 provides the information that an operator of the storage system 100 would need to diagnose potential problems early and remedy the potential problems before they become actual problems. Because the operational information can be used to identify optimal functionality and problems within the system, the dashboard 104 ensures that all of the most critical operational information, from each category, is continuously kept in view, including when a drill-down operation occurs that changes the appearance of the dashboard 104.
More specifically, in
The non-expanded views 111, 112, and 213 shown in
In
In other examples, the system management tool 102 can present operational information for all categories even when the dashboard 104 is no longer presented. In
In another example, as illustrated in
The system management tool 102 can also remember the last screen viewed in the manager mode 504. Thus, if a user has to navigate away from the manager mode 504, then upon returning to the manager mode 504, the system management tool 102 returns to that last screen. In another example, the system management tool 102 can remember the last screen viewed in the dashboard 104 if a user has to navigate away from the dashboard 104, then upon returning to the dashboard 104, the system management tool 102 returns to that last screen viewed from the dashboard 104. For example, the non-expanded view 111 may be expanded to show expanded view 211. The expanded view 211 may present summary and detail graphs for latency and IOPS, with certain settings and links configured for those graphs. If the expanded view 211 were to be collapsed back to the non-expanded view 111, the configurations and customizations for the latency and IOPS graphs would disappear from view. However, the system management tool 102 can remember the configurations and customizations of the latency and IOPS graphs. Thus, if the non-expanded view 111 were to be subsequently expanded, the same configurations and customizations would appear. In another example, the dashboard 104 can provide an option to either go back to the customizations or instead go back to a default setting.
In some examples, the system management tool 102 can link together two or more charts or graphs for different indicators of the same category of operational information (e.g. link latency indicators and IOPS indicators). For example, based on a request from an administrative user, the system management tool 102 can link indicator values for a given point in time, on the same graph, for both the latency and IOPS. The timing for the graphs can be synchronized (i.e., the X-axis are the same).
In some examples, the system management tool 102 color coordinates titles of summary graphs to match those of detail graphs. For example, as shown in
At block 702, a system management tool presents at least one expanded view for one of a plurality of categories of operational information associated with a storage system and presents non-expanded views for all others of the plurality of categories on a single page of a graphical user interface. For example, the system management tool may be a web based application. In response to user input from a system management device connected to the storage system, the system management device opens the system management tool in a web browser. The system management tool includes a dashboard with a plurality of sections that correspond to the plurality of categories of operational information as described previously. At least one of the plurality of sections presents a view for the corresponding one of the categories with a different level of detail than the others. One of the levels of views is a non-expanded view that is miniaturized, which takes up a defined minimal space on the dashboard. A non-expanded view can change, or expand, from a minimal size to a larger size. One example of a non-expanded view is a status bar (also referred to herein as a “mini-bar”) that has an expansion control, which when selected changes the size of the status bar from a minimal size to a larger size. However, an expansion control is not necessary. In other examples, a non-expanded view may be incorporated into one or more of a small window that attaches to a border of the dashboard, a toolbar of the dashboard, a pop-up of the dashboard, a text box of the dashboard, or other types of user interface components.
The system management tool can manage the expansion of the non-expanded tool in other ways that do not require a direct interaction with an expansion control. For instance, the system management tool can detect when an event originates from outside the non-expanded view. The event may originate from user input outside of the non-expanded view, such as when a dropdown menu item is selected, when a keyboard key combination is entered, when a button in another section is selected, etc. The event may further occur without direct user input, such as by an automated operation of the system management tool. For instance, the system management tool may detect that a major threshold is exceeded, or that a major failure occurs, for some element of the storage system that requires immediate attention. The system management tool can evaluate the event against an expansion rule set to determine whether the non-expanded view should be changed in size in response to the event. If the system management tool indicates that the non-expanded view should be expanded, the system management tool can automatically expand the view. For instance, the system management tool can cause a small window to increase in size, can replace a toolbar with an expanded view, can remove a popup and replace it with an expanded view, etc.
In some examples, each of the views is positioned in a separate section in accordance with a defined layout of a digital dashboard. The sections maintain a relative position to each other. A “Performance” section can be on the top of the single page of the dashboard; a “Capacity” section can be in the middle part of the dashboard; and a “Health” section can be on the bottom part of the dashboard. When the views expand and collapse, they maintain their relative positions according to the positions of the sections of the dashboard layout.
The non-expanded views take up as little space on the single page as possible, yet are large enough to show at least one value from the operational information in at least one indicator. The non-expanded view can present in the at least one indicator only the most current measurement of the at least one value from the operational information.
In some instances, the system management tool is configured to expand the non-expanded view to take up as much space on the dashboard as possible, while still presenting, at all times, non-expanded views for the other categories of operational information. For instance, when any one of the non-expanded views is expanded, the system management tool collapses all other views that are expanded into non-expanded views.
In
In
The system management tool can query an operating system for operational information. For example, the system management tool opens a communication link with an operating system of the storage system, and makes application program interface (API) calls to obtain, from the operating system, the operational information. The operating system provides the operational information according to the instructions associated with the API calls.
The system management tool can also determine operational information by determining operational analytics. For example, the system management tool can determine measurements that show an amount of storage on the system that occurs over a time period. The system management tool can perform analytics on those measurements by analyzing the amount of storage over a certain portion of the time period using storage efficiency models and algorithms. Based on the analyzing, the system management tool can determine a storage efficiency trend. In another example, the system management tool determines measurements for a change in a hardware device's condition, such as a change to the hardware device's temperature. The system management tool can perform analytics on those measurements by evaluating the change in the hardware device's condition to other instances of similar hardware devices that failed under similar conditions. Based on the analysis, the system management tool can predict when or how the hardware may fail. In another example, the system management tool can determine measurements of which hardware is consuming the most resources (e.g., using the most bandwidth, storing the most data, etc.). The system management tool can perform analytics on those measurements by applying optimization algorithms using the devices and resources as variables in the optimization problem. Based on the analysis, the system management tool can determine an optimal allocation of the resources and/or an optimal usage pattern.
In some instances, the system management tool performs a filtering to some of the operational information based on a user role. For instance, an administrative user may have a user role that is related to only a portion of the storage system, or to a particular use of the storage system. For instance, the user role may include responsibility for a given workload task to which only a certain portion of the storage elements of the storage system have been allocated. In another example, the user role may include responsibility over a certain department of the organization that only uses portions of the total storage system. For instance, the department may be allocated only 15% of the total data storage capacity. When the administrative user logs in to the system management tool, the system management tool can determine the user role based on the user credentials entered into a login screen of the system management tool. Based on the user role, the system management tool determines that only a certain percentage of storage capacity is allocated to the user role, not all of the capacity of the storage system. Furthermore, the system management tool determines that only certain portions of the total system hardware may be related to the user role, not all of the hardware of the storage system. Furthermore, the system management tool determines that only certain operational information related to the specific data usage associated with the user role is relevant to the user, not all of the data usage of all of the storage system. As a result, the system management tool can filter the operational information accordingly, only determining the specific operational information related to the user role.
In
The system management tool presents non-expanded views and expanded views on a single page of a digital dashboard. For instance, as described in
In some cases, the system management tool 102 can configure the dashboard based on settings or characteristics of a display device. For example, the system management tool 102 detects a current screen size for a display device of the system management device 181. The system management tool 102 sets size dimensions for the window 119 on which the system management tool 102 is presented to fit within the size dimensions for the screen size of the display. In other examples, the system management tool 102 detects a default window size, which may be smaller than the screen size for the display device, and sets the size dimensions for the window 119 to the default window size. When launched, as a default, the system management tool 102 may present all of the non-expanded views 111, 112, and 213 to ensure that context is provided for all of the most current operational information for the storage system 100. A user may then expand one of them, such as the non-expanded view 213, which then causes the system management tool 102 to appear as it does in
In yet other examples, the system management tool 102 can resize and/or reorient of any of the non-expanded views 111, 112, or 213 if a portion of the non-expanded views 111, 112, or 213 become non-visible. For example, the window 119 may inadvertently be horizontally resized or moved by a user such that a portion of the window 119 moves off the visible screen area (e.g., the left hand side becomes non-visible or the right-hand side becomes non-visible). In other examples, other windows may open or be moved on a desktop, which can obscure a view of some, or all, of the window 119. In such scenarios, the system management tool 102 can resize and/or reorient any of the non-expanded views 111, 112, or 213. For instance, the system management tool 102 can cause any of the non-expanded views 111, 112, or 213 to rotate horizontally and snap to a side of the window 119 that is visible. In other examples, the system management tool 102 can resize the content on any of the non-expanded views 111, 112, or 213. For example, if a portion of the non-expanded view 213 was obscured, the system management tool 102 may remove, abbreviate, shrink or otherwise modify text (e.g., replace the word “Capacity” with a “C,” remove the words “stored” and “total,” etc.). In another instance, the system management tool 102 may resize the bar graphic 214 on the non-expanded view 213 or remove it.
In some aspects, the system management tool 102 presents a textual representation of operational information. For instance, in
An expanded view can present the most important operational information as well as less important operational information. For example, in
In addition to information about storage savings, the expanded view 113 may present information about efficiency, such as an estimated writable space to a purchased space ratio (e.g., maximum storable space multiplied by space savings divided by purchased space). Further, expanded view 113 may present information about a ratio of provisioned space to estimated writable space. All of this additional information is value for presentation on the expanded view 113, however only the storage ratio has been configured to be included on the non-expanded view 213. The system management tool 102 provides options to configure, or select, which of the operational information is to be included on the non-expanded views.
Returning to the description of
At block 710, the system management tool determines whether there is an additional view to process or whether a refresh has expired or been reached. If there is an additional view to process or the refresh period has been reached, then control returns to processing block 704. Although depicted as a sequence of operations, the loop can be terminated early or be interrupted. If, during the looping operations, the view changes, then at processing block 706, different operational information (or different levels of operational information) will be determined and, at processing block 708, that operational information will be presented according to different display criteria that corresponds to the new view. For example, during a first loop, a non-expanded view is presented for the performance category, as shown in
At block 803, the operating system periodically accesses data from elements of the storage system. For instance, as shown in
Returning to the flows of
At block 805, the operating system determines operational information based on the data accessed from the system elements and stores the operational information in an operating system database. For instance, in
In
In another example, as shown in
The store 904 includes separate groups of API call sets 940, 950, and 960 for different categories of operational information 906, 908, and 910 (e.g., for performance, capacity, and/or health). Each of the separate groups of call sets 940, 950, 960 includes separate call sets for different levels of detail associated with the views. For example, non-expanded views correspond to a first level of API call sets (e.g., the “Level 1 View API Call Sets”). The first level of API call sets includes call sets for only the most important operational information. For instance, the first level of API call sets in the store 904 call for most recent, time-based values of the operational information to indicate in time-based textual meters. For instance, API call set 941 calls for only the most recent performance operational information to be presented in text indicators and does not call for a wide time-range of performance operational information. API call set 951 calls for the amount of actual storage usage to present on a compact bar graph indicator. API call set 961 calls for only the functional status of certain hardware devices to present as color-coded icon indicators. Expanded views include more extensive sets of API calls that call for more detail than that of non-expanded views. For example, the API call set 942 calls for a sufficient amount of data to draw time-range graphs with a history of performance data. In another example, API call set 952 calls for sufficient data to draw a capacity usage graph, a space savings graph showing a history of capacity savings, and so forth. API call set 962 calls for sufficient data to draw a hardware component graphic showing status, characteristics, properties, etc. for all of the elements of a specific hardware device or type.
At block 804, the system management tool executes the specific API call set to request operational information associated with the view. For instance, in
Referring momentarily back to
In some instances, the control module 918 automatically adjusts the frequency of the tracking per category of operational information based on the conditions of the storage system at any given time. For instance, the control module 918 detects that a value from capacity operational information reaches, or is close to reaching, a critical level or threshold for a particular workload of the storage system (e.g., the total capacity storage is within a few percentage points of being filled up). Consequently, control module 918 increases the refresh rate for collecting capacity operational information to every 5-6 seconds instead of a default amount of 8-10 seconds. The control module 918 may further detect that the storage system is performing a high amount of data writes to data storage drives at the time, which would cause the capacity to fill up even faster. Consequently, the control module 918 may further increase the refresh rate for capacity operational information to every 2-3 seconds. In some instances, the control module 918 increases the refresh rate proportional to a degree to which a value of the operational information approaches a threshold value. For example, for every percentage point increase of capacity storage past a 90% capacity usage level, the system may increase the refresh rate by an additional 0.5 seconds until reaching a highest indicated refresh rate.
At block 807, the operating system detects execution of the API call set. For example, in
At block 809, the operating system accesses the operational information from the database. For instance, in
At block 811, the operating system provides the operational information to the system management tool. For instance, in
At block 808, the system management tool receives the operational information. For instance, in
In some instances, the system management tool detects operational information for two different categories and incorporates the operational information for the two different categories into a single view. Thus, the determining of the operational information includes some overlap of API calls for the two different categories. For instance, a view of a first category (e.g. “Performance”) may be configured to display an event overlay from a second category (e.g., “Health”). As shown in
In
The protocol layer 1020 is configured to communicate with a client that requests data storage services from the OS 1003. The client may issue packets that include: (i) file-based access protocols, such as the Network File System (NFS) protocol over the Transmission Control Protocol/Internet Protocol (TCP/IP), when accessing information on a storage system; and (ii) block-based access protocols, such as the Small Computer Systems Interface (SCSI) protocol encapsulated over TCP (iSCSI) and SCSI encapsulated over FC (FCP). The client and protocol layer 1020 exchange discrete frames or packets configured as I/O requests (e.g., a read or write request). The protocol layer 1020 receives the I/O requests and forwards them to the persistence layer 1030.
The persistence layer 1030 records the requests into a persistent write-back cache. The persistence layer 1030 may forward an I/O request to the volume layer 1040 to execute on a node of a cluster in the storage system.
The volume layer 1040 also maintains states of storage components, performs data management functions (e.g., creation of snapshots and clones), and manages other storage volume metadata (e.g., metadata embodied as mappings from logical block addresses (LBAs) of a logical unit (LUN) of the storage system). The volume layer 1040 also records forwarded requests (e.g., information or parameters characterizing the request), as well as changes to volume metadata, in dedicated logs.
The extent store layer 1050 is responsible for storing extents prior to storage on storage components (e.g., on solid state drives on a storage array). An extent is a variable length block of data that may be aggregated from one or more write requests directed to LBAs. The extent store layer 1050 also provides extent keys to the volume layer 1040 (in response to a forwarded write request). An extent key is a unique identifier associated with a storage location for an extent. The extent store layer 1050 is also responsible for retrieving data (e.g., an existing extent) using an extent key (e.g., in response to a forwarded read request). The extent store layer 1050 may also be responsible for performing de-duplication and compression on the extents prior to storage. The extent store layer 1050 may also maintain in-core mappings (e.g., embodied as hash tables) of extent keys to storage locations on the storage components of the storage system. The extent store layer 1050 may also maintain a dedicated log of entries that accumulate requested “put” and “delete” operations (e.g., write requests and delete requests for extents issued from other layers to the extent store layer 1050).
The RAID layer 1060 organizes data storage components (e.g., SSDs within a storage array) as one or more RAID groups (e.g., sets of SSDs). The RAID layer 1060 writes data “stripes” having redundant information (e.g., appropriate parity information with respect to the striped data) across a given number of SSDs of each RAID group. The RAID layer 1060 may also store a number of stripes at once (e.g., in accordance with a plurality of contiguous write operations) to reduce data relocation that may occur within SSDs.
The storage layer 1065 implements storage I/O drivers (e.g., the Linux virtual function I/O (VFIO) driver) that communicate directly with hardware (e.g., with storage controllers and with a cluster interface) cooperating with the operating system kernel 1024.
As illustrated in
At block 1104, the system management tool compares the operational information to threshold values associated with the view. In some examples, the threshold values are stored in configuration settings which have been set by an administrative account and/or which have been provided with the system management tool for a particular use, workload, purpose, etc. For example, in
At block 1106, the system management tool determines that at least one value from the operational information exceeds at least one of the threshold values. For instance, in
At block 1108, the system management tool presents, via the view, a graphical indicator that the threshold is exceeded without expanding the size of the view. For example, the system management tool can present, in a non-expanded view, a color indicator around a textual presentation of the metric. For instance, in
In some examples, a visual characteristic of the indicator graphic 135 is time based. For instance, the indicator graphic 135 may include a red glow that can dissipate in size and/or intensity over time after the critical value was detected. If the threshold value is exceeded again, the red glow would return to the brightest and largest size. In some examples, if the threshold value is exceeded for a given period of time, then a warning graphic appears (e.g., a red flag, a clock showing the amount of time that the threshold is exceeded, a miniature graph showing the latency statistic, a pop-up showing a latency graph, etc.). The non-expanded view 111 can also show a ranges of values, small graphs of information (e.g. a spark line graph to give an idea of the trend and variation over time), a hover chart (showing a summary chart, which can lock in place with a key-stroke combination to permit further drill down), etc.
In some examples, the system management tool 102 may force windows to move, expand, or minimize based on whether thresholds are exceeded. For instance, if the dashboard 104 were obscured by another window from a separate application, or if the dashboard 104 were minimized, then some of the operational information may be momentarily not visible on the display of the system management device 181. If, however, one or more values of the operational information were to exceed thresholds, then the system management tool 102 can force the dashboard 104 to be visible again on the display, such as by causing the dashboard 104 to expand (if minimized) or come to a top of a window layer stack (if obscured by other windows).
The system management tool 102 can also show exceeded thresholds via indicators of an expanded view. For instance, the system management tool 102 can present in an expanded view, a graphical indicator. For example, in
At block 1110, the system management tool detects a user interaction with the graphical indicator. For example, in
At block 1112, the system management tool presents, in response to the user input, additional operational information on the single page without expanding the size of the view. For example, in
In another example, in
At block 1204, the system management tool determines whether the user input was to an expansion control for a non-expanded view. If the user input was to an expansion control for a non-expanded view, at block 1206, the system management tool expands the view and causes all other views to collapse into non-expanded views while maintaining a relative position of the views to each other. For example, as shown in
Furthermore, when the drill-down operation occurs to the non-expanded view 111 the system management tool 102 causes the dashboard 104 to maintain a relative layout position of the different views for the different categories of operational information. For instance, in
In some examples, only one expanded view may be presented at any given time, thus causing any other views for other categories to be presented as a non-expanded view. In other examples, however, more than one expanded view may be presented. In such examples, the system management tool still maintains a relative position of the sections for the categories of operational information. For instance, if the section 130 and the section 140 were both expanded, the non-expanded view 213 for the section 150 would remain in the middle position between the section 130 and the section 140.
In some examples, the system management tool 102 rearranges the relative positions of the sections 130, 140 and 150 based on display criteria. For instance, some indicators of operational information may be dragged and dropped onto each other. A graphical element from the section 140, such as graphical indicator 143, may be dragged and dropped onto the timeline graph 210 in the section 130. As a result, system management tool 102 presents an overlay item 402 as shown in
At block 1208, the system management tool determines whether the input is a drill down operation to an expanded view. If the user input is a drill down to an expanded view, then at block 1210, the system management tool determines whether there is sufficient screen space on the single page to present the drilled down version of the expanded view as well as present the non-expanded views for all other categories. For example, as shown in
If there is not sufficient screen space, then at block 1212, the system management tool updates the view features to present the drilled down detail and ensure that all non-expanded views remain visible. For example, referring to
At block 1214, the system management tool presents the operational information in the view in accordance with display criteria. In some examples, the system management tool presents the operational information as similarly described at block 708 of
In some examples, the system management tool 102 detects that window 119 is minimized or obscured. For instance, in
In some examples, the system management tool 102 determines whether a request is made to specify one or more critical events in an expanded view. For instance, as illustrated in
Although some of the examples refer to looping through views as depicted in
The flowcharts are provided to aid in understanding the illustrations and are not to be used to limit scope of the claims. The flowcharts depict example operations that can vary within the scope of the claims. Additional operations may be performed; fewer operations may be performed; the operations may be performed in parallel; and the operations may be performed in a different order.
As will be appreciated, aspects of the disclosure may be embodied as a system, method or program code/instructions stored in one or more machine-readable media. Accordingly, aspects may take the form of hardware, software (including firmware, resident software, micro-code, etc.), or a combination of software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system.” The functionality presented as individual modules/units in the example illustrations can be organized differently in accordance with any one of platform (operating system and/or hardware), application ecosystem, interfaces, programmer preferences, programming language, administrator preferences, etc.
Any combination of one or more machine readable medium(s) may be utilized. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable storage medium may be, for example, but not limited to, a system, apparatus, or device, that employs any one of or combination of electronic, magnetic, optical, electromagnetic, infrared, or semiconductor technology to store program code. More specific examples (a non-exhaustive list) of the machine readable storage medium would include the following: a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a machine readable storage medium may be any tangible medium that can contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. A machine readable storage medium is not a machine readable signal medium.
A machine readable signal medium may include a propagated data signal with machine readable program code embodied therein, for example, in baseband or as part of a carrier wave. Such a propagated signal may take any of a variety of forms, including, but not limited to, electro-magnetic, optical, or any suitable combination thereof. A machine readable signal medium may be any machine readable medium that is not a machine readable storage medium and that can communicate, propagate, or transport a program for use by or in connection with an instruction execution system, apparatus, or device.
Program code embodied on a machine readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for aspects of the disclosure may be written in any combination of one or more programming languages, including an object oriented programming language such as the Java® programming language, C++ or the like; a dynamic programming language such as Python; a scripting language such as Perl programming language or PowerShell script language; and conventional procedural programming languages, such as the “C” programming language or similar programming languages. The program code may execute entirely on a stand-alone machine, may execute in a distributed manner across multiple machines, and may execute on one machine while providing results and or accepting input on another machine.
Aspects of this disclosure are described with reference to flowchart illustrations and/or block diagrams. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by program code. The program code may be provided to a processor of a general purpose computer, special purpose computer, or other programmable machine or apparatus.
The program code/instructions may also be stored in a machine readable medium that can direct a machine to function in a particular manner, such that the instructions stored in the machine readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
While specific aspects of the disclosure are described with reference to various implementations and exploitations, it will be understood that these specific aspects are illustrative and are not to limit the scope of all aspects. In general, techniques for providing a timely, compact, and comprehensive summary of operational information of a storage system as described herein may be implemented with facilities consistent with any hardware system or hardware systems. Many variations, modifications, additions, and improvements are possible.
Plural instances may be provided for components, operations or structures described herein as a single instance. Finally, boundaries between various components, operations and data stores are somewhat arbitrary, and particular operations are illustrated in the context of specific illustrative configurations. Other allocations of functionality are envisioned and may fall within the scope of the aspects of the disclosure. In general, structures and functionality presented as separate components in the example configurations may be implemented as a combined structure or component. Similarly, structures and functionality presented as a single component may be implemented as separate components. These and other variations, modifications, additions, and improvements may fall within the scope of the aspects of the disclosure.
Number | Name | Date | Kind |
---|---|---|---|
5459857 | Ludlam et al. | Oct 1995 | A |
5511190 | Sharma et al. | Apr 1996 | A |
5937425 | Ban | Aug 1999 | A |
5991862 | Ruane | Nov 1999 | A |
6219800 | Johnson et al. | Apr 2001 | B1 |
6257756 | Zarubinsky et al. | Jul 2001 | B1 |
6275898 | DeKoning | Aug 2001 | B1 |
6347337 | Shah et al. | Feb 2002 | B1 |
6434662 | Greene et al. | Aug 2002 | B1 |
6526478 | Kirby | Feb 2003 | B1 |
6560196 | Wei | May 2003 | B1 |
6578158 | Deitz et al. | Jun 2003 | B1 |
6604155 | Chong, Jr. | Aug 2003 | B1 |
6609176 | Mizuno | Aug 2003 | B1 |
6704839 | Butterworth et al. | Mar 2004 | B2 |
6741698 | Jensen | May 2004 | B1 |
6779003 | Midgley et al. | Aug 2004 | B1 |
6895500 | Rothberg | May 2005 | B1 |
6904470 | Ofer et al. | Jun 2005 | B1 |
6912645 | Dorward et al. | Jun 2005 | B2 |
6928526 | Zhu et al. | Aug 2005 | B1 |
7047358 | Lee et al. | May 2006 | B2 |
7055058 | Lee et al. | May 2006 | B2 |
7065619 | Zhu et al. | Jun 2006 | B1 |
7093086 | Van Rietschote | Aug 2006 | B1 |
7110913 | Monroe et al. | Sep 2006 | B2 |
7174379 | Agarwal et al. | Feb 2007 | B2 |
7188149 | Kishimoto et al. | Mar 2007 | B2 |
7191357 | Holland et al. | Mar 2007 | B2 |
7249150 | Watanabe et al. | Jul 2007 | B1 |
7251663 | Smith | Jul 2007 | B1 |
7257690 | Baird | Aug 2007 | B1 |
7325059 | Barach et al. | Jan 2008 | B2 |
7334094 | Fair | Feb 2008 | B2 |
7334095 | Fair et al. | Feb 2008 | B1 |
7366865 | Lakshmanamurthy et al. | Apr 2008 | B2 |
7370048 | Loeb | May 2008 | B2 |
7373345 | Carpentier et al. | May 2008 | B2 |
7394944 | Boskovic et al. | Jul 2008 | B2 |
7395352 | Lam et al. | Jul 2008 | B1 |
7415653 | Bonwick et al. | Aug 2008 | B1 |
7451167 | Bali et al. | Nov 2008 | B2 |
7457864 | Chambliss et al. | Nov 2008 | B2 |
7464125 | Orszag et al. | Dec 2008 | B1 |
7526685 | Noy | Apr 2009 | B2 |
7529780 | Braginsky et al. | May 2009 | B1 |
7529830 | Fujii | May 2009 | B2 |
7543100 | Singhal et al. | Jun 2009 | B2 |
7543178 | McNeill et al. | Jun 2009 | B2 |
7562101 | Jernigan, IV et al. | Jul 2009 | B1 |
7562203 | Scott et al. | Jul 2009 | B2 |
7603391 | Federwisch et al. | Oct 2009 | B1 |
7603529 | MacHardy et al. | Oct 2009 | B1 |
7644087 | Barkai et al. | Jan 2010 | B2 |
7668885 | Wittke et al. | Feb 2010 | B2 |
7680837 | Yamato | Mar 2010 | B2 |
7681076 | Sarma | Mar 2010 | B1 |
7701948 | Rabie et al. | Apr 2010 | B2 |
7739614 | Hackworth | Jun 2010 | B1 |
7743035 | Chen et al. | Jun 2010 | B2 |
7757056 | Fair | Jul 2010 | B1 |
7797279 | Starling et al. | Sep 2010 | B1 |
7814064 | Vingralek | Oct 2010 | B2 |
7818525 | Frost et al. | Oct 2010 | B1 |
7831769 | Wen et al. | Nov 2010 | B1 |
7849098 | Scales et al. | Dec 2010 | B1 |
7873619 | Faibish et al. | Jan 2011 | B1 |
7899791 | Gole | Mar 2011 | B1 |
7917726 | Hummel et al. | Mar 2011 | B2 |
7921169 | Jacobs et al. | Apr 2011 | B2 |
7921325 | Kondo et al. | Apr 2011 | B2 |
7949693 | Mason et al. | May 2011 | B1 |
7987167 | Kazar et al. | Jul 2011 | B1 |
7996636 | Prakash et al. | Aug 2011 | B1 |
8060797 | Hida et al. | Nov 2011 | B2 |
8074019 | Gupta et al. | Dec 2011 | B2 |
8078918 | Diggs et al. | Dec 2011 | B2 |
8082390 | Fan et al. | Dec 2011 | B1 |
8086585 | Brashers et al. | Dec 2011 | B1 |
8089969 | Rabie et al. | Jan 2012 | B2 |
8099396 | Novick et al. | Jan 2012 | B1 |
8099554 | Solomon et al. | Jan 2012 | B1 |
8127182 | Sivaperuman et al. | Feb 2012 | B2 |
8131926 | Lubbers et al. | Mar 2012 | B2 |
8140821 | Raizen et al. | Mar 2012 | B1 |
8140860 | Haswell | Mar 2012 | B2 |
8145838 | Miller et al. | Mar 2012 | B1 |
8156016 | Zhang | Apr 2012 | B2 |
8156290 | Vanninen et al. | Apr 2012 | B1 |
8156306 | Raizen et al. | Apr 2012 | B1 |
8184807 | Kato et al. | May 2012 | B2 |
8205065 | Matze | Jun 2012 | B2 |
8209587 | Taylor et al. | Jun 2012 | B1 |
8214868 | Hamilton et al. | Jul 2012 | B2 |
8224935 | Bandopadhyay et al. | Jul 2012 | B1 |
8225135 | Barrall | Jul 2012 | B2 |
8244978 | Kegel et al. | Aug 2012 | B2 |
8250116 | Mazzagatti et al. | Aug 2012 | B2 |
8261085 | Fernandez | Sep 2012 | B1 |
8327103 | Can et al. | Dec 2012 | B1 |
8341457 | Spry et al. | Dec 2012 | B2 |
8369217 | Bostica et al. | Feb 2013 | B2 |
8417987 | Goel et al. | Apr 2013 | B1 |
8452929 | Bennett | May 2013 | B2 |
8463825 | Harty et al. | Jun 2013 | B1 |
8468368 | Gladwin et al. | Jun 2013 | B2 |
8489811 | Corbett et al. | Jul 2013 | B1 |
8495417 | Jernigan, IV et al. | Jul 2013 | B2 |
8520855 | Kohno et al. | Aug 2013 | B1 |
8539008 | Faith et al. | Sep 2013 | B2 |
8560879 | Goel | Oct 2013 | B1 |
8566617 | Clifford | Oct 2013 | B1 |
8583865 | Sade et al. | Nov 2013 | B1 |
8589625 | Colgrove et al. | Nov 2013 | B2 |
8595434 | Northcutt et al. | Nov 2013 | B2 |
8595595 | Grcanac et al. | Nov 2013 | B1 |
8600949 | Periyagaram et al. | Dec 2013 | B2 |
8645664 | Colgrove et al. | Feb 2014 | B1 |
8645698 | Yi et al. | Feb 2014 | B2 |
8671265 | Wright | Mar 2014 | B2 |
8706701 | Stefanov et al. | Apr 2014 | B1 |
8732426 | Colgrove et al. | May 2014 | B2 |
8751763 | Ramarao | Jun 2014 | B1 |
8762654 | Yang et al. | Jun 2014 | B1 |
8775868 | Colgrove et al. | Jul 2014 | B2 |
8782439 | Resch | Jul 2014 | B2 |
8787580 | Hodges et al. | Jul 2014 | B2 |
8799571 | Desroches et al. | Aug 2014 | B1 |
8799705 | Hallak et al. | Aug 2014 | B2 |
8806115 | Patel et al. | Aug 2014 | B1 |
8806160 | Colgrove et al. | Aug 2014 | B2 |
8824686 | Ishii et al. | Sep 2014 | B1 |
8832363 | Sundaram et al. | Sep 2014 | B1 |
8832373 | Colgrove et al. | Sep 2014 | B2 |
8839008 | Maniktala | Sep 2014 | B2 |
8850108 | Hayes et al. | Sep 2014 | B1 |
8855318 | Patnala et al. | Oct 2014 | B1 |
8856593 | Eckhardt et al. | Oct 2014 | B2 |
8874842 | Kimmel et al. | Oct 2014 | B1 |
8880787 | Kimmel et al. | Nov 2014 | B1 |
8892818 | Zheng et al. | Nov 2014 | B1 |
8904231 | Coatney et al. | Dec 2014 | B2 |
8922928 | Powell | Dec 2014 | B2 |
8930778 | Cohen | Jan 2015 | B2 |
8943032 | Xu et al. | Jan 2015 | B1 |
8943282 | Armangau et al. | Jan 2015 | B1 |
8949568 | Wei et al. | Feb 2015 | B2 |
8977781 | Yokoi et al. | Mar 2015 | B1 |
8996468 | Mattox | Mar 2015 | B1 |
8996535 | Kimmel et al. | Mar 2015 | B1 |
8996790 | Segal et al. | Mar 2015 | B1 |
8996797 | Zheng et al. | Mar 2015 | B1 |
9003162 | Lomet et al. | Apr 2015 | B2 |
9009449 | Chou et al. | Apr 2015 | B2 |
9037544 | Zheng et al. | May 2015 | B1 |
9058119 | Ray, III et al. | Jun 2015 | B1 |
9092142 | Nashimoto et al. | Jul 2015 | B2 |
9152684 | Zheng et al. | Oct 2015 | B2 |
9195939 | Goyal et al. | Nov 2015 | B1 |
9229642 | Shu et al. | Jan 2016 | B2 |
9256549 | Kimmel et al. | Feb 2016 | B2 |
9268502 | Zheng et al. | Feb 2016 | B2 |
9274901 | Veerla et al. | Mar 2016 | B2 |
9286413 | Coates | Mar 2016 | B1 |
9298417 | Muddu et al. | Mar 2016 | B1 |
9367241 | Sundaram et al. | Jun 2016 | B2 |
9389958 | Sundaram et al. | Jul 2016 | B2 |
9405783 | Kimmel et al. | Aug 2016 | B2 |
9459856 | Curzi et al. | Oct 2016 | B2 |
9471680 | Elsner et al. | Oct 2016 | B2 |
20020073068 | Guha | Jun 2002 | A1 |
20020073354 | Schroiff et al. | Jun 2002 | A1 |
20020091897 | Chiu et al. | Jul 2002 | A1 |
20020156891 | Ulrich et al. | Oct 2002 | A1 |
20020174419 | Alvarez et al. | Nov 2002 | A1 |
20020175938 | Hackworth | Nov 2002 | A1 |
20020188711 | Meyer et al. | Dec 2002 | A1 |
20030005147 | Enns et al. | Jan 2003 | A1 |
20030105928 | Ash et al. | Jun 2003 | A1 |
20030115204 | Greenblatt et al. | Jun 2003 | A1 |
20030115282 | Rose | Jun 2003 | A1 |
20030120869 | Lee et al. | Jun 2003 | A1 |
20030126118 | Burton et al. | Jul 2003 | A1 |
20030126143 | Roussopoulos et al. | Jul 2003 | A1 |
20030135729 | Mason et al. | Jul 2003 | A1 |
20030145041 | Dunham | Jul 2003 | A1 |
20030159007 | Sawdon et al. | Aug 2003 | A1 |
20030163628 | Lin et al. | Aug 2003 | A1 |
20030172059 | Andrei | Sep 2003 | A1 |
20030191916 | McBrearty et al. | Oct 2003 | A1 |
20030195895 | Nowicki et al. | Oct 2003 | A1 |
20030200388 | Hetrick | Oct 2003 | A1 |
20030212872 | Patterson et al. | Nov 2003 | A1 |
20030223445 | Lodha | Dec 2003 | A1 |
20040003173 | Yao et al. | Jan 2004 | A1 |
20040052254 | Hooper | Mar 2004 | A1 |
20040054656 | Leung et al. | Mar 2004 | A1 |
20040107281 | Bose et al. | Jun 2004 | A1 |
20040133590 | Henderson et al. | Jul 2004 | A1 |
20040133622 | Clubb et al. | Jul 2004 | A1 |
20040133742 | Vasudevan et al. | Jul 2004 | A1 |
20040153544 | Kelliher et al. | Aug 2004 | A1 |
20040153863 | Klotz et al. | Aug 2004 | A1 |
20040215792 | Koning et al. | Oct 2004 | A1 |
20040236846 | Alvarez et al. | Nov 2004 | A1 |
20050027817 | Novik et al. | Feb 2005 | A1 |
20050043834 | Rotariu et al. | Feb 2005 | A1 |
20050076113 | Klotz et al. | Apr 2005 | A1 |
20050076115 | Andrews et al. | Apr 2005 | A1 |
20050091261 | Wu et al. | Apr 2005 | A1 |
20050128951 | Chawla et al. | Jun 2005 | A1 |
20050144514 | Ulrich et al. | Jun 2005 | A1 |
20050177770 | Coatney et al. | Aug 2005 | A1 |
20050203930 | Bukowski et al. | Sep 2005 | A1 |
20050246362 | Borland | Nov 2005 | A1 |
20050246398 | Barzilai et al. | Nov 2005 | A1 |
20060004957 | Hand, III | Jan 2006 | A1 |
20060071845 | Stroili et al. | Apr 2006 | A1 |
20060072555 | St. Hilaire et al. | Apr 2006 | A1 |
20060072593 | Grippo et al. | Apr 2006 | A1 |
20060074977 | Kothuri et al. | Apr 2006 | A1 |
20060129676 | Modi et al. | Jun 2006 | A1 |
20060136718 | Moreillon | Jun 2006 | A1 |
20060156059 | Kitamura | Jul 2006 | A1 |
20060165074 | Modi et al. | Jul 2006 | A1 |
20060206671 | Aiello et al. | Sep 2006 | A1 |
20060232826 | Bar-El | Oct 2006 | A1 |
20060282662 | Whitcomb | Dec 2006 | A1 |
20060288151 | McKenney | Dec 2006 | A1 |
20070033433 | Pecone et al. | Feb 2007 | A1 |
20070061572 | Imai et al. | Mar 2007 | A1 |
20070064604 | Chen et al. | Mar 2007 | A1 |
20070083482 | Rathi et al. | Apr 2007 | A1 |
20070083722 | Per et al. | Apr 2007 | A1 |
20070094452 | Fachan | Apr 2007 | A1 |
20070112723 | Alvarez et al. | May 2007 | A1 |
20070136269 | Yamakabe et al. | Jun 2007 | A1 |
20070143359 | Uppala et al. | Jun 2007 | A1 |
20070186066 | Desai et al. | Aug 2007 | A1 |
20070186127 | Desai et al. | Aug 2007 | A1 |
20070208918 | Harbin et al. | Sep 2007 | A1 |
20070234106 | Lecrone et al. | Oct 2007 | A1 |
20070245041 | Hua et al. | Oct 2007 | A1 |
20070266037 | Terry et al. | Nov 2007 | A1 |
20080065639 | Choudhary et al. | Mar 2008 | A1 |
20080071939 | Tanaka et al. | Mar 2008 | A1 |
20080104264 | Duerk et al. | May 2008 | A1 |
20080126695 | Berg | May 2008 | A1 |
20080127211 | Belsey et al. | May 2008 | A1 |
20080155190 | Ash et al. | Jun 2008 | A1 |
20080165899 | Rahman et al. | Jul 2008 | A1 |
20080201535 | Hara | Aug 2008 | A1 |
20080244158 | Funatsu et al. | Oct 2008 | A1 |
20080250270 | Bennett | Oct 2008 | A1 |
20080270820 | Kondo et al. | Oct 2008 | A1 |
20090031083 | Willis et al. | Jan 2009 | A1 |
20090037500 | Kirshenbaum | Feb 2009 | A1 |
20090037654 | Allison et al. | Feb 2009 | A1 |
20090083478 | Kunimatsu et al. | Mar 2009 | A1 |
20090097654 | Blake | Apr 2009 | A1 |
20090132770 | Lin | May 2009 | A1 |
20090144497 | Withers | Jun 2009 | A1 |
20090150537 | Fanson | Jun 2009 | A1 |
20090157870 | Nakadai | Jun 2009 | A1 |
20090210611 | Mizushima | Aug 2009 | A1 |
20090225657 | Haggar et al. | Sep 2009 | A1 |
20090271412 | Lacapra et al. | Oct 2009 | A1 |
20090276567 | Burkey | Nov 2009 | A1 |
20090276771 | Nickolov | Nov 2009 | A1 |
20090285476 | Choe et al. | Nov 2009 | A1 |
20090313503 | Atluri et al. | Dec 2009 | A1 |
20100011037 | Kazar | Jan 2010 | A1 |
20100023726 | Aviles | Jan 2010 | A1 |
20100030981 | Cook | Feb 2010 | A1 |
20100031315 | Feng et al. | Feb 2010 | A1 |
20100042790 | Mondal et al. | Feb 2010 | A1 |
20100057792 | Ylonen | Mar 2010 | A1 |
20100077380 | Baker et al. | Mar 2010 | A1 |
20100082648 | Potapov et al. | Apr 2010 | A1 |
20100082790 | Hussaini | Apr 2010 | A1 |
20100088296 | Periyagaram et al. | Apr 2010 | A1 |
20100122148 | Flynn et al. | May 2010 | A1 |
20100161850 | Otsuka | Jun 2010 | A1 |
20100169415 | Leggette et al. | Jul 2010 | A1 |
20100174714 | Asmundsson et al. | Jul 2010 | A1 |
20100199009 | Koide | Aug 2010 | A1 |
20100199040 | Schnapp et al. | Aug 2010 | A1 |
20100205353 | Miyamoto et al. | Aug 2010 | A1 |
20100205390 | Arakawa | Aug 2010 | A1 |
20100223385 | Gulley et al. | Sep 2010 | A1 |
20100228795 | Hahn et al. | Sep 2010 | A1 |
20100228999 | Maheshwari et al. | Sep 2010 | A1 |
20100250497 | Redlich et al. | Sep 2010 | A1 |
20100250712 | Ellison et al. | Sep 2010 | A1 |
20100262812 | Lopez et al. | Oct 2010 | A1 |
20100268983 | Raghunandan | Oct 2010 | A1 |
20100281080 | Rajaram et al. | Nov 2010 | A1 |
20100293147 | Snow et al. | Nov 2010 | A1 |
20100306468 | Shionoya | Dec 2010 | A1 |
20110022778 | Schibilla et al. | Jan 2011 | A1 |
20110035548 | Kimmel et al. | Feb 2011 | A1 |
20110060876 | Liu | Mar 2011 | A1 |
20110066808 | Flynn et al. | Mar 2011 | A1 |
20110072008 | Mandal et al. | Mar 2011 | A1 |
20110078496 | Jeddeloh | Mar 2011 | A1 |
20110087929 | Koshiyama | Apr 2011 | A1 |
20110093674 | Frame et al. | Apr 2011 | A1 |
20110099342 | Ozdemir | Apr 2011 | A1 |
20110099419 | Lucas et al. | Apr 2011 | A1 |
20110126045 | Bennett | May 2011 | A1 |
20110153719 | Santoro et al. | Jun 2011 | A1 |
20110154103 | Bulusu et al. | Jun 2011 | A1 |
20110161293 | Vermeulen et al. | Jun 2011 | A1 |
20110161725 | Allen et al. | Jun 2011 | A1 |
20110191389 | Okamoto | Aug 2011 | A1 |
20110191522 | Condict et al. | Aug 2011 | A1 |
20110213928 | Grube et al. | Sep 2011 | A1 |
20110219106 | Wright | Sep 2011 | A1 |
20110238857 | Certain et al. | Sep 2011 | A1 |
20110246821 | Eleftheriou et al. | Oct 2011 | A1 |
20110283048 | Feldman et al. | Nov 2011 | A1 |
20110289565 | Resch et al. | Nov 2011 | A1 |
20110296133 | Flynn et al. | Dec 2011 | A1 |
20110307530 | Patterson | Dec 2011 | A1 |
20110314346 | Vas et al. | Dec 2011 | A1 |
20120003940 | Hirano et al. | Jan 2012 | A1 |
20120011176 | Aizman | Jan 2012 | A1 |
20120011340 | Flynn et al. | Jan 2012 | A1 |
20120016840 | Lin et al. | Jan 2012 | A1 |
20120063306 | Sultan et al. | Mar 2012 | A1 |
20120072656 | Archak et al. | Mar 2012 | A1 |
20120072680 | Kimura et al. | Mar 2012 | A1 |
20120078856 | Linde | Mar 2012 | A1 |
20120084506 | Colgrove et al. | Apr 2012 | A1 |
20120124282 | Frank et al. | May 2012 | A1 |
20120136834 | Zhao | May 2012 | A1 |
20120143877 | Kumar et al. | Jun 2012 | A1 |
20120150869 | Wang et al. | Jun 2012 | A1 |
20120150930 | Jin et al. | Jun 2012 | A1 |
20120151118 | Flynn et al. | Jun 2012 | A1 |
20120166715 | Frost et al. | Jun 2012 | A1 |
20120166749 | Eleftheriou et al. | Jun 2012 | A1 |
20120185437 | Pavlov et al. | Jul 2012 | A1 |
20120197844 | Wang et al. | Aug 2012 | A1 |
20120221828 | Fang et al. | Aug 2012 | A1 |
20120239869 | Chiueh et al. | Sep 2012 | A1 |
20120243687 | Li et al. | Sep 2012 | A1 |
20120246129 | Rothschild et al. | Sep 2012 | A1 |
20120246392 | Cheon | Sep 2012 | A1 |
20120290788 | Klemm et al. | Nov 2012 | A1 |
20120303876 | Benhase et al. | Nov 2012 | A1 |
20120310890 | Dodd et al. | Dec 2012 | A1 |
20120311246 | McWilliams et al. | Dec 2012 | A1 |
20120311290 | White | Dec 2012 | A1 |
20120317084 | Liu | Dec 2012 | A1 |
20120317338 | Yi et al. | Dec 2012 | A1 |
20120317353 | Webman et al. | Dec 2012 | A1 |
20120317395 | Segev et al. | Dec 2012 | A1 |
20120323860 | Yasa et al. | Dec 2012 | A1 |
20120324150 | Moshayedi et al. | Dec 2012 | A1 |
20130007097 | Sambe et al. | Jan 2013 | A1 |
20130010966 | Li et al. | Jan 2013 | A1 |
20130013654 | Lacapra et al. | Jan 2013 | A1 |
20130018854 | Condict | Jan 2013 | A1 |
20130019057 | Stephens | Jan 2013 | A1 |
20130042065 | Kasten et al. | Feb 2013 | A1 |
20130060992 | Cho et al. | Mar 2013 | A1 |
20130061169 | Pearcy | Mar 2013 | A1 |
20130073519 | Lewis et al. | Mar 2013 | A1 |
20130073821 | Flynn et al. | Mar 2013 | A1 |
20130080679 | Bert | Mar 2013 | A1 |
20130083639 | Wharton | Apr 2013 | A1 |
20130086006 | Colgrove et al. | Apr 2013 | A1 |
20130086270 | Nishikawa et al. | Apr 2013 | A1 |
20130110783 | Wertheimer et al. | May 2013 | A1 |
20130110845 | Dua | May 2013 | A1 |
20130111374 | Hamilton | May 2013 | A1 |
20130124776 | Hallak et al. | May 2013 | A1 |
20130138616 | Gupta et al. | May 2013 | A1 |
20130138862 | Motwani et al. | May 2013 | A1 |
20130159512 | Groves | Jun 2013 | A1 |
20130166724 | Bairavasundaram et al. | Jun 2013 | A1 |
20130166727 | Wright et al. | Jun 2013 | A1 |
20130166861 | Takano et al. | Jun 2013 | A1 |
20130185719 | Kar et al. | Jul 2013 | A1 |
20130219048 | Arvidsson et al. | Aug 2013 | A1 |
20130226877 | Nagai et al. | Aug 2013 | A1 |
20130227111 | Wright et al. | Aug 2013 | A1 |
20130227195 | Beaverson et al. | Aug 2013 | A1 |
20130227201 | Talagala et al. | Aug 2013 | A1 |
20130227236 | Flynn et al. | Aug 2013 | A1 |
20130232240 | Purusothaman | Sep 2013 | A1 |
20130232261 | Wright et al. | Sep 2013 | A1 |
20130238832 | Dronamraju et al. | Sep 2013 | A1 |
20130238876 | Fiske et al. | Sep 2013 | A1 |
20130238932 | Resch | Sep 2013 | A1 |
20130262805 | Zheng et al. | Oct 2013 | A1 |
20130268497 | Baldwin et al. | Oct 2013 | A1 |
20130275656 | Talagala et al. | Oct 2013 | A1 |
20130290263 | Beaverson et al. | Oct 2013 | A1 |
20130305002 | Hallak et al. | Nov 2013 | A1 |
20130311740 | Watanabe et al. | Nov 2013 | A1 |
20130332688 | Corbett et al. | Dec 2013 | A1 |
20130346700 | Tomlinson et al. | Dec 2013 | A1 |
20130346720 | Colgrove et al. | Dec 2013 | A1 |
20130346810 | Kimmel et al. | Dec 2013 | A1 |
20140006353 | Chen et al. | Jan 2014 | A1 |
20140013068 | Yamato et al. | Jan 2014 | A1 |
20140052764 | Michael et al. | Feb 2014 | A1 |
20140068184 | Edwards et al. | Mar 2014 | A1 |
20140082255 | Powell | Mar 2014 | A1 |
20140082273 | Segev | Mar 2014 | A1 |
20140089683 | Miller et al. | Mar 2014 | A1 |
20140095758 | Smith et al. | Apr 2014 | A1 |
20140101115 | Ko et al. | Apr 2014 | A1 |
20140101298 | Shukla | Apr 2014 | A1 |
20140108350 | Marsden | Apr 2014 | A1 |
20140108797 | Johnson et al. | Apr 2014 | A1 |
20140149647 | Guo et al. | May 2014 | A1 |
20140172811 | Green | Jun 2014 | A1 |
20140181370 | Cohen et al. | Jun 2014 | A1 |
20140185615 | Ayoub et al. | Jul 2014 | A1 |
20140195480 | Talagala et al. | Jul 2014 | A1 |
20140195564 | Talagala et al. | Jul 2014 | A1 |
20140208003 | Cohen et al. | Jul 2014 | A1 |
20140215129 | Kuzmin et al. | Jul 2014 | A1 |
20140215170 | Scarpino et al. | Jul 2014 | A1 |
20140244962 | Arges et al. | Aug 2014 | A1 |
20140258681 | Prasky et al. | Sep 2014 | A1 |
20140279917 | Minh et al. | Sep 2014 | A1 |
20140279931 | Gupta et al. | Sep 2014 | A1 |
20140281055 | Davda et al. | Sep 2014 | A1 |
20140297980 | Yamazaki | Oct 2014 | A1 |
20140310231 | Sampathkumaran et al. | Oct 2014 | A1 |
20140310373 | Aviles et al. | Oct 2014 | A1 |
20140325117 | Canepa et al. | Oct 2014 | A1 |
20140325147 | Nayak | Oct 2014 | A1 |
20140344222 | Morris et al. | Nov 2014 | A1 |
20140379965 | Gole et al. | Dec 2014 | A1 |
20150019792 | Swanson et al. | Jan 2015 | A1 |
20150032928 | Andrews et al. | Jan 2015 | A1 |
20150039745 | Degioanni | Feb 2015 | A1 |
20150040052 | Noel | Feb 2015 | A1 |
20150058577 | Earl | Feb 2015 | A1 |
20150066852 | Beard et al. | Mar 2015 | A1 |
20150085665 | Kompella et al. | Mar 2015 | A1 |
20150085695 | Ryckbosch et al. | Mar 2015 | A1 |
20150089138 | Tao et al. | Mar 2015 | A1 |
20150095555 | Asnaashari et al. | Apr 2015 | A1 |
20150106556 | Yu et al. | Apr 2015 | A1 |
20150112939 | Cantwell et al. | Apr 2015 | A1 |
20150120754 | Chase et al. | Apr 2015 | A1 |
20150127922 | Camp et al. | May 2015 | A1 |
20150134926 | Yang et al. | May 2015 | A1 |
20150143164 | Veerla et al. | May 2015 | A1 |
20150169414 | Lalsangi et al. | Jun 2015 | A1 |
20150172111 | Lalsangi et al. | Jun 2015 | A1 |
20150193338 | Sundaram et al. | Jul 2015 | A1 |
20150205663 | Sundaram et al. | Jul 2015 | A1 |
20150220402 | Cantwell et al. | Aug 2015 | A1 |
20150242478 | Cantwell et al. | Aug 2015 | A1 |
20150244795 | Cantwell et al. | Aug 2015 | A1 |
20150261446 | Lee | Sep 2015 | A1 |
20150286438 | Simionescu et al. | Oct 2015 | A1 |
20150324264 | Chinnakkonda et al. | Nov 2015 | A1 |
20150339194 | Kalos et al. | Nov 2015 | A1 |
20150355985 | Holtz et al. | Dec 2015 | A1 |
20150378613 | Koseki | Dec 2015 | A1 |
20160026552 | Holden | Jan 2016 | A1 |
20160070480 | Babu et al. | Mar 2016 | A1 |
20160070618 | Pundir et al. | Mar 2016 | A1 |
20160070644 | D'Sa et al. | Mar 2016 | A1 |
20160070714 | D'Sa et al. | Mar 2016 | A1 |
20160077744 | Pundir et al. | Mar 2016 | A1 |
20160099844 | Colgrove | Apr 2016 | A1 |
20160139838 | D'Sa et al. | May 2016 | A1 |
20160149763 | Ingram | May 2016 | A1 |
20160149766 | Borowiec | May 2016 | A1 |
20160179410 | Haas et al. | Jun 2016 | A1 |
20160188370 | Razin | Jun 2016 | A1 |
20160248583 | McClanahan et al. | Aug 2016 | A1 |
Number | Date | Country |
---|---|---|
0726521 | Aug 1996 | EP |
1970821 | Sep 2008 | EP |
2693358 | Feb 2014 | EP |
2735978 | May 2014 | EP |
WO-2006050455 | May 2006 | WO |
WO-2012132943 | Oct 2012 | WO |
Entry |
---|
Agrawal, et al., “Design Tradeoffs for SSD Performance,” USENIX Annual Technical Conference, 2008, 14 Pages. |
Alvaraez C., “NetApp Deduplication for FAS and V-Series Deployment and Implementation Guide,” Technical Report TR-3505, 2011, 71 pages. |
Amit et al., “Strategies for Mitigating the IOTLB Bottleneck,” Technion—Israel Institute of Technology, IBM Research Haifa, WIOSCA 2010—Sixth Annual Workshop on the Interaction between Operating Systems and Computer Architecture, 2010, 12 pages. |
Arpaci-Dusseau R., et al., “Log-Structured File Systems,” Operating Systems: Three Easy Pieces published by Arpaci-Dusseau Books, May 25, 2014, 15 pages. |
Balakrishnan M., et al., “CORFU: A Shared Log Design for Flash Clusters,” Microsoft Research Silicon Vally, University of California, San Diego, Apr. 2012, https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/balakrishnan, 14 pages. |
Ben-Yehuda et al., “The Price of Safety: Evaluating IOMMU Performance,” Proceedings of the Linux Symposium, vol. 1, Jun. 27-30, 2007, pp. 9-20. |
Bitton D. et al., “Duplicate Record Elimination in Large Data Files,” Oct. 26, 1999, 11 pages. |
Bogaerdt, “cdeftutorial,” http://oss.oetiker.ch/rrdtool/tut/cdeftutorial.en.html Date obtained from the internet, Sep. 9, 2014, 14 pages. |
Bogaerdt, “Rates, Normalizing and Consolidating,” http://www.vandenbogaerdl.nl/rrdtool/process.php Date obtained from the internet: Sep. 9, 2014, 5 pages. |
Bogaerdt, “rrdtutorial,” http://oss.oetiker.ch/rrdtool/lul/rrdtutorial.en.html Date obtained from the internet, Sep. 9, 2014, 21 pages. |
Cornwell, M., “Anatomy of a Solid-state Drive,” ACM Queue-Networks, Oct. 2012, vol. 10 (10), pp. 1-7. |
Culik K., et al., “Dense Multiway Trees,” ACM Transactions on Database Systems, Sep. 1981, vol. 6 (3), pp. 486-512. |
Debnath B., et al., “FlashStore: High Throughput Persistent Key-Value Store,” Proceedings of the VLDB Endowment VLDB Endowment, Sep. 2010, vol. 3 (1-2), pp. 1414-1425. |
Debnath, et al., “ChunkStash: Speeding up in line Storage Deduplication using Flash Memory,” USENIX, USENIXATC '10, Jun. 2010, 15 pages. |
Fan, et al., “MemC3: Compact and Concurrent MemCache with Dumber Caching and Smarter Hashing,” USENIX NSDI '13, Apr. 2013, pp. 371-384. |
Final Office Action mailed Dec. 2, 2015, for U.S. Appl. No. 14/684,956, filed Apr. 13, 2015, 12 pages. |
Final Office Action mailed Dec. 22, 2015, for U.S. Appl. No. 13/857,008, filed Apr. 4, 2013, 10 pages. |
Final Office Action mailed Dec. 4, 2013, for U.S. Appl. No. 13/856,997 filed Apr. 4, 2013, 25 pages. |
Final Office Action mailed Dec. 4, 2015, for U.S. Appl. No. 14/454,197 filed Aug. 7, 2014, 11 pages. |
Final Office Action mailed Feb. 16, 2016, for U.S. Appl. No. 14/186,847, filed Feb. 21, 2014, 25 pages. |
Final Office Action mailed Feb. 2, 2016, for U.S. Appl. No. 13/856,958, filed Apr. 4, 2013, 18 pages. |
Final Office Action mailed Feb. 6, 2014, for U.S. Appl. No. 13/856,958, filed Apr. 4, 2013, 16 pages. |
Final Office Action mailed Mar. 2, 2016 for U.S. Appl. No. 14/701,832, filed May 1, 2015, 16 pages. |
Final Office Action mailed May 13, 2013, for U.S. Appl. No. 13/041,122, filed Mar. 4, 2011, 22 pages. |
Final Office Action mailed Nov. 25. 2015, for U.S. Appl. No. 14/684,966, filed Apr. 13, 2015, 21 pages. |
Gal E., et al., “Algorithms and Data Structures for Flash Memories,” ACM Computing Surveys (CSUR) Archive, Publisher ACM, New York City, NY, USA, Jun. 2005, vol. 37 (2), pp. 138-163. |
Gray J., et al., “Flash Disk Opportunity for Server Applications,” Queue—Enterprise Flash Storage, Jul.-Aug. 2008, vol. 6 (4), pp. 18-23. |
Gulati et al., “BASIL: Automated IO Load Balancing Across Storage Devices,” Proceedings of the 8th USENIX Conference on File and Storage Technologies, Fast'10, Berkeley, CA, USA, 2010, 14 pages. |
Handy J., “SSSI Tech Notes: How Controllers Maximize SSD Life,” SNIA, Jan. 2013, pp. 1-20. |
Hwang K., et al., “RAID-x: A New Distributed Disk Array for I/O-centric Cluster Computing,” IEEE High-Performance Distributed Computing, Aug. 2000, pp. 279-286. |
Intel, Product Specification—Intel® Solid-State Drive DC S3700, Jun. 2013, 32 pages. |
International Search Report and Written Opinion for Application No. PCT/EP2014/071446 mailed on Apr. 1, 2015, 14 pages. |
International Search Report and Written Opinion for Application No. PCT/US2012/071844 mailed Mar. 1, 2013, 12 pages. |
International Search Report and Written Opinion for Application No. PCT/US2014/035284 mailed on Apr. 1, 2015, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/US2014/055138 mailed on Dec. 12, 2014, 13 pages. |
International Search Report and Written Opinion for Application No. PCT/US2014/058728 mailed on Dec. 16, 2014, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/US2014/060031 mailed on Jan. 26, 2015, 9 pages. |
International Search Report and Written Opinion for Application No. PCT/US2014/071446 mailed on Apr. 1, 2015, 13 pages. |
International Search Report and Written Opinion for Application No. PCT/US2014/071465 mailed on Mar. 25, 2015, 12 pages. |
International Search Report and Written Opinion for Application No. PCT/US2014/071484 mailed on Mar. 25, 2015, 9 pages. |
International Search Report and Written Opinion for Application No. PCT/US2014/071581 mailed on Apr. 10, 2015, 9 pages. |
International Search Report and Written Opinion for Application No. PCT/US2014/071635 mailed on Mar. 31, 2015, 13 pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/016625 mailed on Sep. 17, 2015, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/021285 mailed Jun. 23, 2015, 8 pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/024067 mailed Jul. 8, 2015, 7 pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/048800 mailed on Nov. 25, 2015, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/048833 mailed on Nov. 25, 2015, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/056932 mailed on Jan. 21, 2016, 11 pages. |
International Search Report and Written Opinion for Application No. PCT/US2015/057532 mailed on Feb. 9, 2016, 12 pages. |
Kagel A.S, “two-way merge sort,” Dictionary of Algorithms and Data Structures [online], retrieved on Jan. 28, 2015, Retrieved from the Internet :< URL: http://xlinux.nist.gov/dads/HTMUIwowaymrgsrl.html>, May 2005, 1 page. |
Lamport L., “The Part-Time Parliament,” ACM Transactions on Computer Systems, May 1998, vol. 16 (2), pp. 133-169. |
Leventhal A.H., “A File System All its Own,” Communications of the ACM Queue, May 2013, vol. 56 (5), pp. 64-67. |
Lim H., et al., “SILT: A Memory-Efficient, High-Performance Key-Value Store,” Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP'11), Oct. 23-26, 2011, pp. 1-13. |
Moshayedi M., et al., “Enterprise SSDs,” ACM Queue—Enterprise Flash Storage, Jul.-Aug. 2008, vol. 6 (4), pp. 32-39. |
Non-Final Office Action mailed Aug. 12, 2015, for U.S. Appl. No. 14/684,929, filed on Apr. 13, 2015, 20 pages. |
Non-Final Office Action mailed Aug. 13, 2015, for U.S. Appl. No. 13/856,958, filed Apr. 4, 2013, 15 pages. |
Non-Final Office Action mailed Aug. 13, 2015, for U.S. Appl. No. 14/186,847, filed on Feb. 21, 2014, 20 pages. |
Non-Final Office Action mailed Aug. 21, 2013, for U.S. Appl. No. 13/856,997, filed Apr. 4, 2013, 19 pages. |
Non-Final Office Action mailed Aug. 7, 2015, for U.S. Appl. No. 14/684,894, filed on Apr. 13, 2015, 10 pages. |
Non-Final Office Action mailed Dec. 5, 2012, for U.S. Appl. No. 13/041,122, filed Mar. 4, 2011, 21 pages. |
Non-Final Office Action mailed Jan. 29, 2016, for U.S. Appl. No. 14/454,197, filed Aug. 7, 2014, 11 pages. |
Non-Final Office Action mailed Jul. 1, 2015, for U.S. Appl. No. 13/857,008, filed Apr. 4, 2013, 10 pages. |
Non-Final Office Action mailed Jul. 14, 2015, for U.S. Appl. No. 14/454,197, filed Aug. 7, 2014, 5 pages. |
Non-Final Office Action mailed Jul. 14, 2015, for U.S. Appl. No. 14/684,956, filed Apr. 13, 2015, 5 pages. |
Non-Final Office Action mailed Jul. 14, 2015, for U.S. Appl. No. 14/684,966, filed Apr. 13, 2015, 21 pages. |
Non-Final Office Action mailed Jul. 29, 2015, for U.S. Appl. No. 14/292,089, filed May 30, 2014, 4 pages. |
Non-Final Office Action mailed Jul. 31, 2013, for U.S. Appl. No. 13/856,958, filed Apr. 4, 2013, 15 pages. |
Non-Final Office Action mailed Jul. 31, 2015 for U.S. Appl. No. 14/259,467, filed on Apr. 23, 2014, 10 pages. |
Non-Final Office Action mailed Jul. 31, 2015, for U.S. Appl. No. 14/684,942, filed Apr. 13, 2015, 4 pages. |
Non-Final Office Action mailed Jun. 17, 2013, for U.S. Appl. No. 13/041,095, filed Mar. 4, 2011, 10 pages. |
Non-Final Office Action mailed Jun. 30, 2015, for U.S. Appl. No. 14/057,145, filed Oct. 18, 2015, 21 pages. |
Non-Final Office Action mailed Mar. 31, 2016, for U.S. Appl. No. 14/941,938. |
Non-Final Office Action mailed Oct. 19, 2015, for U.S. Appl. No. 14/701,832, filed May 1, 2015, 11 pages. |
Non-Final Office Action mailed on Jan. 26, 2016 for U.S. Appl. No. 14/932,063, filed Nov. 4, 2015, 9 pages. |
Non-Final Office Action mailed Sep. 10, 2014, for U.S. Appl. No. 13/338,039, filed Dec. 27, 2011, 10 pages. |
Notice Allowance mailed Jan. 21, 2016, for U.S. Appl. No. 14/684,894, filed Apr. 13, 2015, 13 pages. |
Notice of Allowance mailed Apr. 14, 2015, for U.S. Appl. No. 13/856,997, filed Apr. 4, 2013, 18 pages. |
Notice of Allowance mailed Apr. 24, 2014, for U.S. Appl. No. 13/041,122, filed Mar. 4, 2011, 14 pages. |
Notice of Allowance mailed Aug. 24, 2016, for U.S. Appl. No. 14/684,956, filed Apr. 13, 2015, 4 pages. |
Notice of Allowance mailed Aug. 27, 2015 for U.S. Appl. No. 14/684,914, filed Apr. 13, 2015, 10 pages. |
Notice of Allowance mailed Dec. 8, 2014, for U.S. Appl. No. 13/338,039, filed Dec. 27, 2011, 7 pages. |
Notice of Allowance mailed Feb. 22, 2016, for U.S. Appl. No. 14/057,145, filed Oct. 18, 2015, 12 pages. |
Notice of Allowance mailed Mar. 29, 2016, for U.S. Appl. No. 14/454,197, filed Aug. 7, 2014, 7 pages. |
Notice of Allowance mailed May 4, 2016 for U.S. Appl. No. 14/932,063, filed Nov. 4, 2015, 7 pages. |
Notice of Allowance mailed Oct. 9, 2013, for U.S. Appl. No. 13/041,095, filed Mar. 4, 2011, 7 pages. |
Oetiker, “rrdfetch,” http ://oss.oetiker.ch/rrdtool/doc/rrdfetch .en. html, Date obtained from the internet: Sep. 9, 2014, 5 pages. |
Oetiker, “rrdtool,” http :/loss. oetiker.ch/rrdtool/doc/rrdtool.en. html Date obtained from the internet: Sep. 9, 2014, 5 pages. |
O'Neil P., at al., “The Log-structured Merge-tree (lsm-tree),” Acta Informatica, 33, 1996, pp. 351-385. |
Ongaro D., et al., “In Search of an Understandable Consensus Algorithm,” Stanford University, URL: https://ramcloud.stanford.edu/wiki/download/attachments/11370504/raft.pdf, May 2013, 14 pages. |
Ongaro, et al., “In search of an understandable consensus algorithm (extended version),” 2014, 18 pages. |
Pagh R., et al., “Cuckoo Hashing,” Elsevier Science, Dec. 8, 2003, pp. 1-27. |
Pagh R., et al., “Cuckoo Hashing for Undergraduates,” IT University of Copenhagen, Mar. 27, 2006, pp. 1-6. |
Proceedings of the FAST 2002 Conference on File Storage Technologies, Monterey, California, USA, Jan. 28-30, 2002, 14 pages. |
Rosenblum M., et al., “The Design and Implementation of a Log-Structured File System,” In Proceedings of ACM Transactions on Computer Systems, vol. 10(1), Feb. 1992, pp. 26-52. |
Rosenblum M., et al., “The Design and Implementation of a Log-Structured File System,” (SUN00006867-SUN00006881), Jul. 1991, 15 pages. |
Rosenblum M., et al., “The Design and Implementation of a Log-Structured File System,”Proceedings of the 13th ACM Symposium on Operating Systems Principles, (SUN00007382-SUN00007396), Jul. 1991, 15 pages. |
Rosenblum M., et al., “The LFS Storage Manager,” USENIX Technical Conference, Anaheim, CA, (Sun 00007397-SUN00007412), Jun. 1990, 16 pages. |
Rosenblum M., et al., “The LFS Storage Manager,” USENIX Technical Conference, Computer Science Division, Electrical Engin. and Computer Sciences, Anaheim, CA, presented at Summer '90 USENIX Technical Conference, (SUN00006851-SUN00006866), Jun. 1990, 16 pages. |
Rosenblum M., “The Design and Implementation of a Log-Structured File System,” UC Berkeley,1992, pp. 1-101. |
Sears., et al., “Blsm: A General Purpose Log Structured Merge Tree,” Proceedings of the 2012 ACM SIGMOD International Conference on Management, 2012, 12 pages. |
Seltzer M., et al., “An Implementation of a Log Structured File System for UNIX,” Winter USENIX, San Diego, CA, Jan. 25-29, 1993, pp. 1-18. |
Seltzer M.I., et al., “File System Performance and Transaction Support,” University of California at Berkeley Dissertation, 1992, 131 pages. |
Smith K., “Garbage Collection,” Sand Force, Flash Memory Summit, Santa Clara, CA, Aug. 2011, pp. 1-9. |
Supplementary European Search Report for Application No. EP12863372 mailed on Jul. 16, 2015, 7 pages. |
Texas Instruments, User Guide, TMS320C674x/OMAP-L1 x Processor Serial ATA (SATA) Controller, Mar. 2011, 76 Pages. |
Twigg A., et al., “Stratified B-trees and Versioned Dictionaries,” Proceedings of the 3rd US EN IX Conference on Hot Topics in Storage and File Systems, 2011, vol. 11, pp. 1-5. |
Wikipedia, “Cuckoo hashing,” http://en.wikipedia.org/wiki/Cuckoo—hash, Apr. 2013, pp. 1-5. |
Wilkes J., et al., “The Hp Auto Raid Hierarchical Storage System,” Operating System Review, ACM, New York, NY, Dec. 1, 1995, vol. 29 (5), pp. 96-108. |
Wu P-L., et al., “A File-System-Aware FTL Design for Flash-Memory Storage Systems,” IEEE, Design, Automation & Test in Europe Conference & Exhibition, 2009, pp. 1-6. |
Chris K., et al., “How many primes are there?” Nov. 2001. https://web.archive.org/web/20011120073053/http://primes.utm.edu/howmany.shtml. |
Metreveli et al. “CPHash: A Cache-Partitioned Hash Table.” Nov. 2011. https://people.csail.mit.edu/nickolai/papers/metrevelicphash- tr.pdf. |
Stoica et al. “Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications.” Aug. 2001. ACM. SIGCOMM '01. |
Number | Date | Country | |
---|---|---|---|
20160285707 A1 | Sep 2016 | US |