This application claims priority to United Kingdom Patent Application No. 05 03 291.7, filed 17 Feb. 2005, the entire disclosure of which is incorporated herein by reference in its entirety as if fully set forth herein.
The present invention relates to apparatus for providing data input, having a data processing device configured to produce an output signal. The present invention also relates to a method of supplying data to a laptop computer.
The statements in this section merely provide background information related to the present disclosure and may not constitute prior art.
Keyboards and other input devices are used with laptop computers. For example, a laptop computer usually includes a keyboard for inputting data into the laptop computer.
According to an aspect of the present invention, there is provided a manually operable data input device constructed from fabric and configured to receive input data from a user; a low power consumption radio transmitting device is interfaced to the input device for transmitting input data; a radio receiving device receives transmitted input data and conveys this to a data processing device.
In various embodiments, the radio transmitting device may transmit data to the receiving device in accordance with the ZigBee protocol or the IEEE 802.15.4 protocol. The data processing device may be a computer, a laptop computer, a hand-held computer, a personal digital assistant, audio player (e.g., MP3 player, etc.), mobile cellular telephone, satellite telephone, image recorder, a voice recorder, a microcontroller, and/or a systems control processor.
Further aspects and features of the present disclosure will become apparent from the detailed description provided hereinafter. In addition, any one or more aspects of the present disclosure may be implemented individually or in any combination with any one or more of the other aspects of the present disclosure. It should be understood that the detailed description and specific examples, while indicating exemplary embodiments of the present disclosure, are intended for purposes of illustration only and are not intended to limit the scope of the present disclosure.
The drawings described herein are for illustration purposes only and are not intended to limit the scope of the present disclosure in any way.
The following description is merely exemplary in nature and is in no way intended to limit the present disclosure, application, or uses.
A manually operable data input device is illustrated in
In an embodiment, the radio transmitting device transmits data to the receiving device in accordance with the ZigBee protocol (an implementation of the IEEE 802.15.4 protocol), Bluetooth, or other appropriately configured radio transmission protocol.
As previously stated, the radio receiving device supplies input data to a data processing device. The data processing device may take the form of a computer, a laptop computer, a handheld computer, a personal digital assistant, an audio player (such as an MP3 player), a mobile cellular telephone, a satellite telephone, an image recorder (such as a digital camera), a voice recorder, a microcontroller, and/or a systems control processor for example.
Inner workings of a fabric keyboard illustrated in
The lower fabric layer 202 has a similar construction to the upper fabric layer 201, having connectors 211 and 212 located on an insulating stripe 213. The connectors 211 and 212 provide means for connecting the electronic processing device 103 with low resistance elements 214 and 215 respectively.
When a key press occurs, the insulating layers 204 and 205 are compressed such that electrical conduction is possible through the conducting layers 201, 203 and 202. By applying a potential across the lower layer and measuring a voltage at the upper layer a potential divider is created and it is possible to determine a position of the interaction in the direction of arrow 221. Thereafter, by reversing the process and applying a voltage across the upper layer and detecting a voltage in the lower layer it is possible to determine a position of the interaction in the direction of arrow 222. These two positions then define the position of the interaction on the two-dimensional plane of the keyboard, from which it is possible to identify the specific key that has been pressed.
Electronic processing device 103 is detailed in
The processing device supplies voltages to connectors 301, 302, 303, and 304 and provides output values for radio transmission. Resistors 306 and 307 have a resistance that is substantially similar to the resistance of the fabric detector measured from a first conducting layer 201 to the other conducting layer 202 when a typical target pressure has been applied; values in the region of 10 k ohm are typical for these resistors.
A detection process is controlled by a program executed by the microcontroller that is in turn configured to supply output voltages at pins 305 and 306 and to receive analogue voltages at pins 307. Input pins 307 receive outputs from high impedance buffers 309 and 310, typically being operational amplifiers of type TL062 operating at half unity gain to provide a high impedance buffer between the output voltages and the microcontroller input ports.
An IEEE 802.15.14 ZigBee environment is illustrated in
The fabric keyboard or controller illustrated in
The ZigBee network uses the IEEE 802.15.4 low rate wireless personal area network standard to describe its lower protocol layers, namely the physical layer and the medium access control portion of the data link layer. In this embodiment, wireless operation takes place at 2.4 gigahertz using DSSS which is managed by the digital stream into the modulator. An orthogonal signaling scheme is used that transmits four bits per symbol in the 2.4 gigahertz band to provide a raw over-the-air data rate of 250 kilobytes per channel in the 2.4 gigahertz band. Transmission range is typically between 10 meters and 75 meters. The channel mode access specified by IEEE 802.15.4 is carrier sense, multiple access such that nodes briefly check to see that no one else is transmitting before they themselves start transmitting.
The coordinator 401 is a data processing device configured to produce an output signal. Thus, an output signal may be provided to an application program executed by a local computing facility such that data is received within an operational package, such as a spreadsheet or an email program for example. Alternatively, the data processing device may produce an output signal to a wider network, such as that provided by the telephony functionality 402.
A manually operable data input device constructed from fabric is configured to receive input data from a user. In the example described so far, the input device takes the form of an alphanumeric keyboard but it should be appreciated that other input devices may be used (such as an alpha pad, a numeric key pad, an audio player controller, a telephone interface, and/or an input interface for an image recorder). Further examples are described with reference to FIGS. 7 to 12.
The IEEE 802.15.14 radio environment and specifically when using the ZigBee protocol provides a low power consumption radio transmitting device that is interfaced to the input device for transmitting input data. Thus, the fabric controller 403 includes the fabric keyboard device as illustrated in
A schematic representation of an application is illustrated in
It should be appreciated that within the region of the active fabric of device 501, the actual functionality provided will be determined by control software. Thus, in this example region 506 operates in an alternative manner. Region 506 is responsive to movement such that finger pressure may be applied to a part of the region whereafter the finger is moved while remaining in pressure. This movement is detected and may in turn be used to control variable parameters, such as a volume control or the physical movement of an actuator for example. Four analogue wires 507 from the fabric device are interfaced to a control circuit 508 as previously described. Control circuit 508 produces a digital output signal on a bus 509 to a low power consumption radio transmitting device 510, such that the radio transmitting device is interfaced to the input device 501 via control circuit 508.
In this example, the radio transmitting device 510 transmits data in accordance with the ZigBee protocols, as detailed above, such that data produced by the input device 501 is received at a radio receiving device 521. The radio receiving device 521 is interfaced to a data processing device 522 programmed so as to respond to input data commands. As previously stated, the actual nature of the data processing device 522 may take many forms and to illustrate this output, signals are shown being supplied to a visual output device 523, an audio output device 524, and a mechanical control device 525. Thus, in response to the input device 501, text data may be generated and displayed on the visual display 523. Alternatively, operations may result in media items being selected for display on device 523. Similarly, audio media may be supplied to audio output device 524 or the device may be used to produce alarm signals for example. Control system 525 may be used to control industrial processors or to control equipment in a domestic environment, for example.
A driver of a motor vehicle is illustrated at
When mounted as shown in
In some embodiments, the sun visor could also be provided with a visual screen 604. In some operational situations, it is possible that the keyboard could operate while retained in its sun visor orientation as illustrated in
With a wireless protocol network established within the motor vehicle, it is also possible that this network could communicate with a house enabled network as soon as the motor vehicle becomes within range.
The keyboard device includes rechargeable batteries such that these batteries are recharged when the sun visor is relocated as illustrated in
As an alternative to being fabricated as a stand-alone fabric keyboard, the fabric keyboard can be included as part of a bag or sack. An example is shown in
In this example, the bag itself includes the manually operable data input device in the form of a fabric keyboard configured to receive input data from the user. The bag includes a low power consumption radio transmitting device such that data input received may be transmitted and then received by other devices. The user may therefore wish to construct an email (effectively a string of text) which can then be incorporated within an application program when the laptop computer is operational, without actually activating the laptop computer at this point in time.
In order for the user to obtain feedback in response to key presses, radio communication is established with a portable display device 702, such as a mobile telephone or a PDA. The portable display device 702 may be supported by a stand 703, such as that as illustrated in British patent application no. 05 26 161.5, assigned to the present assignee. Thus, in this way, it is possible for a text string to be created (for subsequent transmission as a text message or as an email for example) using the personal computer (possibly after performing editing operations using the laptop computer) without actually activating the laptop computer or removing it from bag 701.
In this example, the laptop computer itself also includes radio capability. Processing devices forming part of the bag 701 also include a cache such that, in addition to the data being displayed by device 702, the data is also retained in the cache forming part of the bag 701. When an associated computer is detected, usually the laptop computer contained within the bag 701, this condition is also detected by the bag electronics such that a transfer of data takes place and, possibly, the cache is flushed. Thus, in this way, it is possible for a user to generate data that may be manipulated within the laptop computer and used for laptop computer based applications. However, when appropriate, this data may be created without removing the computer from its bag or even activating the computer in any way. A user would, for example, simply remove a mobile telephone from a pocket, appropriately position it and then establish communication via the fabric keyboard components fabricated onto the outer surface of the bag itself.
As previously stated, the manually operable data input device may take alternative configurations in addition to that of an alphanumeric keyboard. As illustrated in
In this embodiment, the device is being used to control audio and/or video entertainment apparatus. The low power consumption of the device ensures that operation is available for a significant period, easily compatible with the battery life of known infrared devices for example.
A data processing device 803 is provided that is configured to produce an output signal for controlling the operation of an audio device 804 and a television set 805. Manually operable data input device 801 is constructed from fabric and is configured to receive input data from a user. A low power consumption radio transmitting device 806 is interfaced to the input device for transmitting the input data. A radio receiving device is provided for receiving the transmitted input data and a radio receiving device is interfaced to the data processing device. Thus, in this way, it is possible for any device within the household environment to be controlled from a manually operable data input device. Furthermore, the input device is substantially made from fabric such that it may be removed from the radio transmitting device so as to be washed or easily replaced, when damaged or when wishing to modify the aesthetic appearance.
An alternative embodiment for use within a household environment is illustrated in
An alternative embodiment is shown in
The manually operable data input device constructed from fabric may be incorporated into other wrist or hand devices, such as a glove.
An alternative embodiment is illustrated in
In this way, workers could be provided with vests of the type shown at 1101 allowing each of them to be provided with appropriate control devices for controlling the operation of machinery, for example. Thus, in this way, it would be possible for all workers within an environment to be provided with emergency access controls, possibly shutting down a process should an emergency condition exist. Thus, controls of this type are always readily available and it is not necessary to move to a particular location where physical buttons are provided. Similarly, with such devices, overall efficiency could be improved in that again control devices are provided locally to each operative without the operatives being required to make specific manual operations.
Jackets of this type could also be useful within security applications and could, for example, be used to track the location of operatives within hazardous environments. Again in security applications, the input device could be used to specify access codes when an operative wishes to make progress through a secure door 1104. Similarly, being wireless enabled, each jacket could have a specific embedded unique identification reference and a further level of security could be provided by the manual application of an identification number. Thus, a user would be given a specific jacket (with a known access code) and a user would then be given a particular access code such that a user would only be given access when wearing the allocated jacket and when the access code was known.
An alternative embodiment is illustrated in
It is established that the ZigBee protocol is an appropriate network for establishing a wireless light switch environment within a commercial or residential building. In this embodiment, a switch wakes up when activated and thereafter sends a command to a lamp, receives an acknowledgement back to the effect that the lamp has been activated, and then returns to its sleep mode. The switch node is typically a reduced function device (RDF), such as RFD 405 illustrated in
In an example shown in
It should be appreciated that by providing fabric light switches, their construction is simple and inexpensive. Thus, as shown in
During renovation, the switch configuration of
A light switch of this type is also very attractive when deployed in environments with non-permanent walls, such as wall 1402. In this way, walls and dividers can be rearranged and light switches applied wherever it is considered appropriate for them to be applied. Thus, in some situations, traditional lighting switches are appropriately positioned for an open plan environment. However, as an open plan office becomes divided, the position of a light switch may be far from ideal and it would be preferable if the light switch could be located locally, possibly on a temporary screen or wall. In the present embodiment, the light switch is merely removed from one position and relocated at another position, possibly using easily detachable fasteners, such as Velcro® or other types of hook and loop fasteners.
Certain terminology is used herein for purposes of reference only, and thus is not intended to be limiting. For example, terms such as “upper”, “lower”, “above”, and “below” refer to directions in the drawings to which reference is made. Terms such as “front”, “back”, “rear”, “bottom” and “side”, describe the orientation of portions of the component within a consistent but arbitrary frame of reference which is made clear by reference to the text and the associated drawings describing the component under discussion. Such terminology may include the words specifically mentioned above, derivatives thereof, and words of similar import. Similarly, the terms “first”, “second” and other such numerical terms referring to structures do not imply a sequence or order unless clearly indicated by the context.
When introducing elements or features of the present disclosure and the exemplary embodiments, the articles “a”, “an”, “the” and “said” are intended to mean that there are one or more of such elements or features. The terms “comprising”, “including” and “having” are intended to be inclusive and mean that there may be additional elements or features other than those specifically noted. It is further to be understood that the method steps, processes, and operations described herein are not to be construed as necessarily requiring their performance in the particular order discussed or illustrated, unless specifically identified as an order or performance. It is also to be understood that additional or alternative steps may be employed.
The description of the disclosure is merely exemplary in nature and, thus, variations that do not depart from the gist of the disclosure are intended to be within the scope of the disclosure. Such variations are not to be regarded as a departure from the spirit and scope of the disclosure.
Number | Date | Country | Kind |
---|---|---|---|
05 03 291.7 | Feb 2005 | GB | national |