The present application claims priority from Korean Patent Application No. 10-2009-0031063 filed on Apr. 10, 2009, the entire subject matter of which is incorporated herein by reference.
The present disclosure generally relates to ultrasound systems, and more particularly to providing stress information in an ultrasound system.
Recently, an ultrasound system has been extensively used in the medical field due to its non-invasive and non-destructive nature. Modern high-performance ultrasound imaging systems and techniques are commonly used to produce two-dimensional ultrasound images and three-dimensional ultrasound images of internal features of patients.
Generally, the ultrasound image is displayed in a Brightness mode (B-mode) by using reflectivity caused by an acoustic impedance difference between the tissues of a target object. However, if the reflectivity of the target object is hardly different from those of the neighboring tissues such as tumor, cancer or the like, then it is not easy to discriminate the target object in the B-mode image. Further, an ultrasound elastic imaging technology has been developed to display an image of the target object by using mechanical characteristics of the target object. Such technology is very helpful for diagnosing lesions such as tumor or cancer, which is relatively stiffer than the neighboring tissues. When stress is uniformly applied to the target object, a variation of the tumor or cancer is typically smaller than those of the neighboring tissues. The elasticity of a tissue is measured by using ultrasound data obtained before and after applying stress to the target object.
A compression plate mounted on an ultrasound probe may be used to apply the stress to the target object. A user may press the compression plate on the target object to thereby apply the stress to the target object. In such a case, strain data cannot be obtained under the same stress since every user applies different stress. Thus, the video quality of an elastic image may be changed depending on the users.
Embodiments for providing stress information in an ultrasound system are disclosed herein. In one embodiment, by way of non-limiting example, an ultrasound system comprises: an ultrasound data acquisition unit configured to transmit/receive ultrasound signals to/from a target object while applying a stress to the target object to thereby output first ultrasound data and to transmit/receive ultrasound signals to/from the target object while releasing the stress applied to the target object to thereby output second ultrasound data; and a processing unit in communication with the ultrasound data acquisition unit and being configured to form stress information based on the first and second ultrasound data, wherein the stress information includes stress magnitude information, stress application period information and ultrasound probe gradient information.
In another embodiment, there is provided a method of providing stress information, comprising: a) transmitting/receiving ultrasound signals to/from a target object while applying a stress to the target object to thereby output first ultrasound data; b) transmitting/receiving ultrasound signals to/from the target object while releasing the stress applied to the target object to thereby output second ultrasound data; and c) forming stress information based on the first and second ultrasound data, wherein the stress information includes stress magnitude information, stress application period information and ultrasound probe gradient information.
In yet another embodiment, there is provided a computer readable medium comprising computer executable instructions configured to perform the following acts: a) transmitting/receiving ultrasound signals to/from a target object while applying a stress to the target object to thereby output first ultrasound data; b) transmitting/receiving ultrasound signals to/from the target object while releasing the stress applied to the target object to thereby output second ultrasound data; and c) forming stress information based on the first and second ultrasound data, wherein the stress information includes stress magnitude information, stress application period information and ultrasound probe gradient information.
The Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key or essential features of the claimed subject matter, nor is it intended to be used in determining the scope of the claimed subject matter.
A detailed description may be provided with reference to the accompanying drawings. One of ordinary skill in the art may realize that the following description is illustrative only and is not in any way limiting. Other embodiments of the present invention may readily suggest themselves to such skilled persons having the benefit of this disclosure.
Referring to
Referring to
The ultrasound data acquisition unit 110 may further include an ultrasound probe 112 containing a plurality of elements for reciprocally converting between ultrasound signals and electrical signals. The ultrasound probe 112 may deliver the stress provided from an external to the target object. The ultrasound probe 112 may be configured to transmit ultrasound signals into the target object in response to the first Tx signals. The ultrasound probe 112 may be further configured to receive echo signals reflected from the target object (which received the first Tx signals) to thereby output first received signals. The ultrasound probe 112 may be also configured to transmit ultrasound signals into the target object in response to the second Tx signals. Moreover, the ultrasound probe 112 may be configured to the receive echo signals reflected from the target object (which received the second Tx signals) to thereby output second received signals.
The ultrasound data acquisition unit 110 may further include a beam former 113. The beam former 113 may be configured to convert the first received signals into first digital signals. The beam former 113 may be additionally configured to apply delays to the first digital signals in consideration of distance between the elements and focal points to thereby output first digital receive-focused signals. The beam former 113 may be further configured to convert the second received signals into second digital signals. The beam former 113 may be further configured to apply delays to the second digital signals in consideration of distance between the elements and the focal points to thereby output second digital receive-focused signals.
The ultrasound data acquisition unit 110 may further include an ultrasound data forming section 114. The ultrasound data forming section 114 may be configured to form first ultrasound data corresponding to each of first frames F11 to F1n based on the first digital receive-focused signals, as shown in
Referring back to
The ultrasound system 100 may further include a processing unit 130 placed in communication with the ultrasound data acquisition unit 110 and the sensing unit 120. The processing unit 130 may be configured to form stress information based on the first and second ultrasound data provided from the ultrasound data acquisition unit 110 and the sensed stress magnitude signals provided from the sensing unit 120. The stress information may include stress magnitude information, stress application period information and ultrasound probe gradient information. Thus, a user may appropriately apply the stress to the target object by referring to the stress information displayed on a display unit 150. The processing unit 130 may be further configured to form an elastic image based on the first and second ultrasound data.
Referring to
The stress magnitude calculating section 131 may be configured to calculate stress magnitudes based on the sensed stress magnitude signals provided from the sensing unit 120. The methods of calculating the stress magnitude based on the sensed stress magnitude signals are well known in the art. Thus, they have not been described in detail so as not to unnecessarily obscure the present invention.
The displacement calculating section 132 may be configured to calculate displacements based on the first and second ultrasound data between the neighboring frames. The displacement may be calculated by using an auto-correlation method or a cross-correlation method. Referring to
The stress application period calculating section 133 may be configured to calculate stress application periods based on the displacements provided from the displacement calculating section 132. In one embodiment, the stress application period calculating section 133 may be configured to calculate first time durations T1 based on the displacements having the positive sign, and calculate second time durations T2 based on the displacements having the negative sign, as shown in
The magnitude of the stress, which is applied to the target object (not shown), may be changed along the scan-lines S1 to Sn. As shown in
The stress information forming section 135 may be configured to form the stress information based on the stress magnitudes provided from the stress magnitude calculating section 131, the stress application periods provided from the stress application period calculating section 133 and the ultrasound probe gradients provided from the ultrasound probe gradient calculating section 134.
In one embodiment, the stress information forming section 135 may be configured to form stress magnitude information 211 representing the stress magnitude provided from the stress magnitude calculating section 131 as a size of a first symbol (e.g., arrow) based on the predetermined stress magnitude, as shown in
In other embodiment, the stress information forming section 135 may be configured to form stress magnitude information representing the stress magnitude provided from the stress magnitude as a size and color of the first symbol such as the arrow (not shown). If the stress magnitude provided from the stress magnitude calculating section 131 is larger than the predetermined stress magnitude, then the stress information forming section 135 may be configured to form the stress magnitude information representing the color of the first symbol as red (not shown). If the stress magnitude provided from the stress magnitude calculating section 131 is equal to the predetermined stress magnitude, then the stress information forming section 135 may be configured to form the stress magnitude information representing the color of the first symbol as blue (not shown). If the stress magnitude provided from the stress magnitude calculating section 131 is smaller than the predetermined stress magnitude, then the stress information forming section 135 may be configured to form the stress magnitude information representing the color of the first symbol as black (not shown). The stress information forming section 135 may form stress application period information, ultrasound probe gradient information and stress information, as described in the foregoing embodiment.
In another embodiment, the stress information forming section 135 may be configured to form stress magnitude information 221 representing the stress magnitude provided from the stress magnitude calculating section 131 as an expression of a character based on the predetermined stress magnitude as shown in
In yet another embodiment, the stress information forming section 135 may be configured to form stress magnitude information representing the stress magnitude provided from the stress magnitude calculating section 131 as a height of graph bar based on the predetermined stress magnitude as shown in
While the stress magnitude, the stress application period and the ultrasound probe gradient are represented as the symbol and/or the color in foregoing embodiments, the stress magnitude, the stress application period and the ultrasound probe gradient are represented as at least one of a symbol, a graph, numerical value, text and colors.
Referring back to
The ultrasound system 100 may further include the display unit 150. The display unit 150 may display the stress information formed from the processing unit 130. The display unit 150 may further display the elastic image formed from the processing unit 130.
Referring to
The ultrasound system 300 may further include processing unit 320. The processing unit 320 may be configured to form stress information based on the ultrasound data provided from the ultrasound data acquisition unit 310. The stress information may include stress magnitude information, stress application period information and ultrasound probe gradient information. Thus, a user may appropriately apply the stress to the target object by referring to the stress information. The processing unit 320 may be further configured to form an elastic image based on the ultrasound data.
The displacement calculating section 321 may be configured to calculate displacements based on the ultrasound data between the neighboring frames. The displacement may be calculated by using an auto-correlation method or a cross-correlation method. The displacement calculating section 321 in the second embodiment is similar to the displacement calculating section 132 shown in
The stress magnitude calculating section 322 may be configured to calculate stress magnitudes corresponding to each of scan-lines S1 to Sn of elastic image frames E11, E12, . . . , E1n−1, E1n, E21, . . . , E2m−1 based on the displacements provided from the displacement calculating section 321, as shown in
The stress application period calculating section 323 may be configured to calculate stress application periods based on the displacements provided from the displacement calculating section 321. The stress application period calculating section 323 in the second embodiment is similar to the stress application period calculating section 133 in the first embodiment shown in
The ultrasound probe gradient calculating section 324 may be configured to calculate ultrasound probe gradients of the ultrasound probe 112 based on the displacements provided from the displacement calculating section 321. The ultrasound probe gradient calculating section 324 in the second embodiment is similar to the ultrasound probe gradient calculating section 134 in the first embodiment shown in
The stress information forming section 325 may be configured to form the stress information including the stress magnitude information, the stress application period information and the ultrasound probe gradient information based on the stress magnitudes, the stress application periods and the ultrasound probe. The stress information forming section 325 in the second embodiment is similar to the stress information forming section 135 in the first embodiment shown in
Referring back to
The ultrasound system 300 may further include a display unit 340. The display unit 340 may display the stress information formed from the processing unit 320. The display unit 340 may further display the elastic image formed from the processing unit 320.
In another embodiment, the present invention may provide a computer readable medium comprising computer executable instructions configured to perform following acts: a) transmitting/receiving ultrasound signals to/from a target object while applying a stress to the target object to thereby output first ultrasound data; b) transmitting/receiving ultrasound signals to/from the target object while releasing the stress applied to the target object to thereby output second ultrasound data; and c) forming stress information based on the first and second ultrasound data, wherein the stress information includes stress magnitude information, stress application period information and ultrasound probe gradient information. The computer readable medium may comprise a floppy disk, a hard disk, a memory, a compact disk, a digital video disk, etc.
Although embodiments have been described with reference to a number of illustrative embodiments thereof, it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this disclosure. More particularly, numerous variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the disclosure, the drawings and the appended claims. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Number | Date | Country | Kind |
---|---|---|---|
10-2009-0031063 | Apr 2009 | KR | national |