A variety of techniques exists for sharing files, printers, and other resources between two computers on a network. For example, two application-layer network protocols for sharing resources are Server Message Block (SMB) and Network File System (NFS). SMB is used by MICROSOFT™ WINDOWS™ and other operating systems to allow two computers or other resources to communicate, request access to resources, specify intended access of resources (e.g., reading, writing, etc.), lock resources, and so on. MICROSOFT™ WINDOWS™ Vista introduced SMB 2.0, which simplified the command set of SMB 1.0 and added many other enhancements. MICROSOFT™ WINDOWS™ 7 and Server 2008 R2 introduced SMB 2.1, which added opportunistic locking (oplocks) and other enhancements.
Most protocols for remote sharing of resources assume a one-to-one relationship between connections and sessions. A session represents the lifetime of any single request to access a resource and the subsequent access of that resource until the connection is terminated. A session may also be associated with a particular security principal and validated security credentials that determine the actions that are authorized during the session. A connection can include a Transmission Control Protocol (TCP). User Datagram Protocol (UDP), or other type of connection over which higher-level protocols like SMB and NFS can communicate to carry out commands. An SMB or NFS session typically involves opening a TCP or UDP connection between a source of a request and a target of the request, sending one or more SMB or NFS commands to access the target resource, and then closing the session. Sometimes connections are lost during a session (e.g., due to a network failure), tearing down any client and server state established during the connection. To reestablish a connection the client and server typically have to repeat all of the steps used to initially establish the connection over again.
The SMB2 protocol provides a resume key that allows clients to quickly reestablish a file handle to a server if a client is disconnected from the server, enabling clients to reduce network round trips to the server and reduce the load on the server when a client reconnects. However, today the resume key does not provide restoration of state in the event of server failover in which the SMB2 server loses volatile state during a server reboot or failover of a cluster. State information associated with existing opens is lost and must be reestablished. In addition, the resume key is an application-level concept that can only be created and used within the boundary of an application but not shared.
A connection state system is described herein that allows a client to resume a connection with a server or a different replacement server by remotely storing client state information in association with a resume key. The system provides a resume key filter operating at the server that facilitates the storing of volatile server state information. The state information can include information such as oplocks, leases granted to a client, and in-flight operations on a file handle. The resume key filter driver sits above the file system, which allows multiple file access protocols to use the filter, as well as permitting the filter to provide this functionality across multiple file systems. The system provides state information to the protocol, independent of the actual protocol. Upon a failover event, such as a server going down or losing connectivity to a client, the system can bring up another server or the same server and reestablish state for file handles held by various clients using the resume key filter. The filter enforces a blackout window on active files after failover that guarantees that the active file state can be consistently restored and that other clients do not step in to access the file in the interim. In the resume phase, the resume key is used to map existing pre-failover file handles to post-failover preserved file state stored by the resume key filter. Thus, the connection state system allows the same or another server to resume the state of a previous session with a client after a failover event with as little disruption as possible to clients.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
A connection state system is described herein that allows a client to resume a connection with a server or a different replacement server by remotely storing client state information in association with a resume key. The system provides a resume key filter operating at the server that facilitates the storing of volatile server state information. The state information can include information such as oplocks, leases granted to a client, and in-flight operations on a file handle. The resume key filter driver sits above the file system, which allows multiple file access protocols to use the filter, as well as permitting the filter to provide this functionality across multiple file systems. The system provides state information to the protocol, independent of the actual protocol. Upon a failover event, such as a server going down or losing connectivity to a client, the system can bring up another server or the same server (e.g., via different connection, such as a redundant Ethernet connection) and reestablish state for file handles held by various clients using the resume key filter.
The system provides a resume key filter that can be used for transparent failover after a server loses its connection to a client. The resume key filter sits atop the file system and is therefore independent of protocol used to access the file system. The resume key filter records active file state and than restores the active file state after a failover. The resume key filter can capture a variety of state information. For example, the filter records the active file system state comprising open handles (statically referenced by a resume key), uncommitted file state (such as delete on close, delete pending, and lock state), and certain in-flight/interrupted file operations. The filter restores the active file system state after failover such that the open handles are resumed to match those prior to failover and in-flight operations can be consistently replayed. The filter provides a means for multiple Remote File Systems (RFS) to store and retrieve private opaque data that is associated with an open file handle referenced through a resume key. The filter enforces a blackout window on active files after failover that guarantees that the active file state can be consistently restored and that other clients do not step in to access the file in the interim. The filter also allows a currently active file to be “suspended” and then resumed without a failover in order to support SMB in the cluster scenario where nodes failover.
A remote file system (RFS) supplies a resume key with every file create operation as an extra parameter during create. The key is unique to the RFS. The resume key filter uses a resume key and an RFS identification key together as a globally unique identifier (GUID) for a file handle. In the resume phase, the resume key is used to map existing pre-failover file handles to post-failover preserved file state stored by the resume key filter. Thus, the connection state system allows the same or another server to resume the state of a previous session with a client after a failover event with as little disruption as possible to clients.
The state collection component 110 creates a state record for each file handle and collects state information as a client request operations using the file handle. The component 110 may operate at a server and store state information externally from the server so that the state information can be accessed if the server is unavailable. For example, the component 110 may store the state information the state data store 130 described further herein. The state collection component 110 may receive a resume key from the client when the client connects to the server, and the component 110 associates collected state information with the resume key in the state data store 130. If a client is reconnecting after a failover event, the client will provide the same resume key used to open the initial connection and the current server can find the state information stored by the previous server and recreate the server state from the state information.
The state storing component 120 stores collected state information in association with a resume key provided by the client. The component 120 stores the state information in the state data store 130 and keeps a record of operations related to the resume key that would be restored in the event of a failover event. The state information may include open file handles, oplocks granted, leases and lease information, in-progress file operations, byte range locks, and any other information that another server would use to carry out the client's requests without the client reestablishing all of the previous state.
The state data store 130 persistently stores file system state information that a resuming server uses to recreate state information stored by a failing server. In some cases, the resuming server and the failing server may be the same server using a different connection to the client or coming back up after a brief outage. In other cases, the resuming server and failing server are different servers, and the state data store 130 is provided in a location accessible to both servers for sharing the state information. The state data store 130 may include one or more files, file systems, hard drives, databases, storage area networks (SANs), cloud-based storage services, or other storage facility for persistently storing data and accessible to both the failing and resuming server for exchanging information. As the failing server is performing operations, it is storing state information about the operations' progress in the state data store 130. Upon a failure, the failing server will be interrupted, and a resuming server accesses the state information to resume the state and continue carrying out any operations that did not complete.
The resume detection component 140 detects a condition that makes a failing server unavailable and informs a resuming server to act in the failing server's place. The detection may be client driven, such that the system does not perform any resuming steps until the client reconnects to the system and provides a previously used resume key. The system identifies the key and any state information stored in association with the key and restores that state information as part of setting up the connection. The resuming server may be the same or a different server from the failing server, and the resume detection component 140 ensures that the resuming server becomes active to handle the client's requests. In other embodiments, the detection may be server driven and the system may proactively bring up a resuming server upon detecting that a failing server has gone down. The system may also prepopulate the resuming server with stored state information even before a client requests a connection to the server.
The state retrieval component 150 retrieves stored state information from a location accessible to the resuming server, wherein the state information allows the resuming server to resume any previously requested file system operations that were interrupted by the detected failure condition. The state retrieval component 150 retrieves state information from the state data store 130 and invokes the state restoration component 160 to load the information into the resuming server so that the resuming server can continue the operations requested by the client.
The state restoration component 160 loads the retrieved state information into the resuming server so that the resuming server can continue operations previously requested by the client. The restoration may also include refreshing any oplocks and/or leases held by the client to ensure that other clients abide by previously requested access levels and/or exclusivity granted to the client. The state restoration component 160 allows a new server or node to take the place of a failing server or node without placing a heavy burden upon the client to restore state information by repeating past operations. Clients using protocols like SMB 2.0 already know how to use a resume key to restore a connection to the same server, and the connection state system allows a substitute server to take the place of a failing server transparently to the client. Resume keys can also be used with NFS. In the case of NFS, the concept of a resume key is completely opaque to the client. The client does not explicitly refer to or participate in resume key generation, management, and association. Rather, the resume key is a server side concept.
The blackout enforcement component 170 enforces a blackout period on access to one or more files or other resources that prevents a second client from interfering with resources in a way that would conflict with a first client resuming a connection to the resuming server. The component 170 may automatically select a period deemed to be long enough to avoid most conflicting operations (e.g., 15 or 30 seconds), but not so long as to prevent other clients from accessing resources if the first client does not resume the connection. The period allows the first client time to resume the connection if the first client chooses. In some embodiments, the system allows an administrator or other user to configure the duration of the blackout period to tune the system for application-specific purposes. The system may also allow individual clients to request a blackout period as a parameter to a create/open request or other application programming interface (API). In response to attempts to access a blacked out resource, the component 170 may provide an indication to try again after a particular period or simply fail the request. After the blackout period if no client has resumed the connection, then the blackout is over and requests to access the resource will succeed as normal.
The resource suspension component 180 allows a currently active resource to be suspended and resumed without a failover event to allow a cluster to failover to another node in planned manner. One example is load balancing. Suspending allows scenarios where a subset of the state is being transitioned to a new node. For example, if one node in the cluster is overloaded, an administrator may want to migrate half the node's clients to a new node. Suspending allows capturing the state of the opens that are being migrated and allows the client to connect to the new node as a continuation of the same open (e.g., without reestablishing server state). As another example, SMB supports clustering scenarios in which generic nodes are brought into a cluster and can be used interchangeably to service client requests. Sometimes there is a reason to bring down a particular node, such as for maintenance, and it is desirable to cleanly suspend the current node, activate the new node, deactivate the old node, and then perform any maintenance operations on the deactivated node. This can have an undesirable impact on clients, but using the techniques described herein, the system 100 can suspend the node in an organized manner, and allow clients to resume operations with the new node efficiently.
The computing device on which the connection state system is implemented may include a central processing unit, memory, input devices (e.g., keyboard and pointing devices), output devices (e.g., display devices), and storage devices (e.g., disk drives or other non-volatile storage media). The memory and storage devices are computer-readable storage media that may be encoded with computer-executable instructions (e.g., software) that implement or enable the system. In addition, the data structures and message structures may be stored or transmitted via a data transmission medium, such as a signal on a communication link. Various communication links may be used, such as the Internet, a local area network, a wide area network, a point-to-point dial-up connection, a cell phone network, and so on.
Embodiments of the system may be implemented in various operating environments that include personal computers, server computers, handheld or laptop devices, multiprocessor systems, microprocessor-based systems, programmable consumer electronics, digital cameras, network PCs, minicomputers, mainframe computers, distributed computing environments that include any of the above systems or devices, set top boxes, systems on a chip (SOCs), and so on. The computer systems may be cell phones, personal digital assistants, smart phones, personal computers, programmable consumer electronics, digital cameras, and so on.
The system may be described in the general context of computer-executable instructions, such as program modules, executed by one or more computers or other devices. Generally, program modules include routines, programs, objects, components, data structures, and so on that perform particular tasks or implement particular abstract data types. Typically, the functionality of the program modules may be combined or distributed as desired in various embodiments.
Continuing in block 220, the system determines an identifier that identifies a client session related to the request. The identifier in some cases is a resume key that the client provides for durable handles that allow resuming sessions that get disconnected for various reasons. The access request may include one or more parameters at well-defined locations in the protocol so that the system can extract the key by reading the appropriate location in the request. Alternatively or additionally, the server may include an automated process for determining the identifier that does not involve information explicitly provided by the client. For example, the server may identify the client by Internet Protocol (IP) address or other inferred data that indicates to the server that the client connection is correlated with a previous session.
Continuing in block 230, the system creates a resume record searchable by the extracted identifier that associates state information created by operations requested by the client with the extracted identifier. The resume record can be stored at a location external to the server handling the present access request so that if the server fails another server will be able to read the record to resume the operations and act in the original server's place. The resume record may include a file, database record, or other form of storage. The record may contain a list of open file handles, oplocks obtained by the client, leases, or other file system state information.
Continuing in block 240, the system receives a file operation from the client that requests access to a file accessible through the server. The file operation may be a request to open a file, close a file, read a file, write a file, print to a shared printer, or other file system operations. The received operation involves a certain amount of state information being created on the server. For example, if the client opens a handle to the file, then the server tracks that handle to manage other client requests related to the file and to manage lifetime and/or cleanup processing for the handle.
Continuing in block 250, the system stores resume state information in the created resume record that provides information to resume the received file operation if the client loses its connection with the server. If the client connection fails, the client will attempt to resume the connection by again opening a remote resource and specifying the same resume key or other session identifier. This will allow the server or another server to access the stored resume record and reestablish the previous state information.
Continuing in block 260, the system performs the requested file operation. The operation may open a file, read the contents of the file, write data to the file, change access rights to the file, or any other file system operation. The outcome of the operation may change the state stored by the server. For example, if the client attempts to close a handle and the server successfully closes the handle, then the server state will be updated to remove the handle from a list of handles tracked by the server.
Continuing in block 270, the system updates the stored resume state information in the created resume record based on an outcome of the performed file operation. The system cannot know in advance when a failure will occur that causes failover, so the system keeps an up to date view of the server state in the resume record that allows a server to reestablish the state as close to the previous server's state as possible. Operations that were not completed may be replayed to complete the operations while operations that did complete will not need to be repeated (but the server may resend the result to the client). Thus, the system updates the state as needed during and after various file system operations that change server state information.
Continuing in block 280, the system sends a response to the client that indicates the outcome of the requested file operation. If the client and server are still connected, then operations continue as they are requested by the client and the server continues to track updated state information. If at any time the connection is lost, another server can be brought up or the existing server repaired and the state information can be loaded from the state store to reestablish the prior server state. Upon receiving a new request from the client to resume the session, the client need not be aware that failover has occurred and that the client is potentially interacting with a different server than the original one. After block 280, these steps conclude.
Continuing in block 320, the system determines a session identifier that identifies a client session related to the request. The identifier in some cases is an SMB 2 resume key that the client provides for durable handles that allow resuming sessions that get disconnected for various reasons. The access request may include one or more parameters at well-defined locations in the protocol so that the system can extract the key by reading the appropriate location in the request. In other cases, the server may determine the identifier automatically based on information about the client.
Continuing in block 330, the system looks up the received session identifier in a state store to identify a resume record associated with the session identifier. Any previous server interacting with the client using a resumable session stores state information on an ongoing basis throughout interaction with the client. When the client attempts to reestablish the connection, the state information is available to a failover server standing in for the original server. The state information may be stored externally to the original server so that the information is accessible after a failure of the original server.
Continuing in block 340, the system receives from the state store previous state information associated with the resume record. The state information identifies static state, such as open file handles, obtained leases, obtained oplocks, and so forth, as well as dynamic state, such as in-flight operations that may not have completed. The stored state information allows the failover server to take the place of the original server without specific processing by the client. The client understands resumable handles and performs steps to make a connection resumable, but may not be aware of which server ends up handling the connection at any particular time. The client may access the server via a domain name or network file share that can resolve to an address of any one of several servers, including the failover server.
Continuing in block 350, the system restores the received previous state information by loading the information into the file system components that track file system state. After loading the state, the local state of the failover server is similar to how the state would look if all of the previous operations had occurred on the failover server. Thus, the failover server is as useful to the client for continuing the series of operations as the original server would have been had the connection not failed.
Continuing in block 360, the system responds to the client access request indicating that the server found the resume record and is ready to receive client operations related to the previous session. Based on the server's response, the client can determine whether the session is resumed or whether the client needs to take steps to repeat previous operations. If the session was successfully resumed, then the client can continue knowing the previous operations completed or were replayed to complete after the server resumed. In some cases, the system may hand the client a new file handle that has the same state as the pre-failover file handle. After block 360, these steps conclude.
In some embodiments, the connection state system stores opaque blobs of data on behalf of file system components to allow the system to resume connections without component-specific knowledge. For example, the resume key filter described herein can ask the server service for any data the server service would need to recreate its present state. The filter can then store any received data as an opaque blob (i.e., the filter need not know what is in the blob or its semantic meaning) in the state store. Upon a failover condition, a resume key filter operating on the new server can access the stored state information, retrieve the stored blob, and provide the blob to the server service so that the server service can restore its own state. In this way, the system can be made to work with many types of protocols without specific knowledge of the internal operations of components that implement each protocol for a server.
In some embodiments, the connection state system blocks other clients from accessing files or other resources related to a resumable handle for some amount of time (i.e., blackout period). If the original client reconnects during the blackout period, then the original client gets its connection back with all of the previous state, and can resume operations. If another client attempts to connect, the server may provide a message indicating to wait an amount of time and retry. Resume aware clients can use this information to delay retrying until after the blackout period, while older clients may simple fail the connection and manually retry at the user's request. If the original client does not return within the blackout period, the server cleans up the resume state information and allows new clients to access the resources as usual.
In some embodiments, the connection state system can use a variety of storage devices or strategies for speeding up resumes. For example, the system may use a fast, nonvolatile storage device (e.g., a solid state disk (SSD)) for storing resume state information so that resumes get faster access to data to avoid delaying operations already interrupted by a failure any further. As another example, the system may broadcast all changes made by each server to a group of servers, so that each server can maintain its own copy of the state information and can be the elected failover server in the event of a failure of the original server.
From the foregoing, it will be appreciated that specific embodiments of the connection state system have been described herein for purposes of illustration, but that various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the invention is not limited except as by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4399504 | Obermarck | Aug 1983 | A |
4780821 | Crossley | Oct 1988 | A |
4791566 | Sudama | Dec 1988 | A |
4825354 | Agrawal | Apr 1989 | A |
4887204 | Johnson | Dec 1989 | A |
4891785 | Donohoo | Jan 1990 | A |
4914570 | Peacock | Apr 1990 | A |
5008853 | Bly | Apr 1991 | A |
5109519 | Zimmet | Apr 1992 | A |
5113519 | Johnson | May 1992 | A |
5202971 | Henson | Apr 1993 | A |
5218696 | Baird et al. | Jun 1993 | A |
5261051 | Masden et al. | Nov 1993 | A |
5265261 | Rubin et al. | Nov 1993 | A |
5313646 | Hendricks et al. | May 1994 | A |
5349642 | Kingdon | Sep 1994 | A |
5375207 | Blakely et al. | Dec 1994 | A |
5410697 | Baird | Apr 1995 | A |
5437013 | Rubin et al. | Jul 1995 | A |
5452447 | Nelson | Sep 1995 | A |
5491752 | Kaufman et al. | Feb 1996 | A |
5493728 | Solton | Feb 1996 | A |
5513314 | Kandasamy | Apr 1996 | A |
5522042 | Fee et al. | May 1996 | A |
5535375 | Eshel et al. | Jul 1996 | A |
5560008 | Johnson et al. | Sep 1996 | A |
5588117 | Karp et al. | Dec 1996 | A |
5628005 | Hurvig | May 1997 | A |
5764887 | Kells et al. | Jun 1998 | A |
5826027 | Pedersen et al. | Oct 1998 | A |
5931913 | Meriwether et al. | Aug 1999 | A |
5933602 | Grover | Aug 1999 | A |
5978802 | Hurvig | Nov 1999 | A |
6085247 | Parsons et al. | Jul 2000 | A |
6092199 | Dutcher | Jul 2000 | A |
6125122 | Favichia et al. | Sep 2000 | A |
6131125 | Rostoker et al. | Oct 2000 | A |
6208952 | Goertzel | Mar 2001 | B1 |
6219799 | Kandasamy | Apr 2001 | B1 |
6243862 | Lebow | Jun 2001 | B1 |
6247139 | Walker et al. | Jun 2001 | B1 |
6275953 | Vahalia et al. | Aug 2001 | B1 |
6317844 | Kleiman | Nov 2001 | B1 |
6324581 | Xu et al. | Nov 2001 | B1 |
6349250 | Hart et al. | Feb 2002 | B1 |
6349350 | Hathorn et al. | Feb 2002 | B1 |
6401123 | Shields et al. | Jun 2002 | B1 |
6430691 | Di Santo et al. | Aug 2002 | B1 |
6438691 | Mao | Aug 2002 | B1 |
6452903 | Peck et al. | Sep 2002 | B1 |
6453354 | Jiang et al. | Sep 2002 | B1 |
6640226 | Shringeri et al. | Oct 2003 | B1 |
6658476 | Van | Dec 2003 | B1 |
6829473 | Raman et al. | Dec 2004 | B2 |
6883015 | Geen et al. | Apr 2005 | B1 |
6910082 | Marcotte | Jun 2005 | B1 |
6928577 | Moser et al. | Aug 2005 | B2 |
7020651 | Ripley | Mar 2006 | B2 |
7103007 | Natarajan et al. | Sep 2006 | B2 |
7111035 | McClellan et al. | Sep 2006 | B2 |
7111060 | Araujo et al. | Sep 2006 | B2 |
7197535 | Salesky et al. | Mar 2007 | B2 |
7243132 | Choi | Jul 2007 | B2 |
7290141 | Sengodan et al. | Oct 2007 | B2 |
7293192 | Allen et al. | Nov 2007 | B2 |
7318102 | Krause et al. | Jan 2008 | B1 |
7330910 | Young et al. | Feb 2008 | B2 |
7339885 | Ahrens et al. | Mar 2008 | B2 |
7380080 | Hughes | May 2008 | B2 |
7380155 | Fung et al. | May 2008 | B2 |
7383463 | Hayden et al. | Jun 2008 | B2 |
7386889 | Shay | Jun 2008 | B2 |
7388866 | Fan et al. | Jun 2008 | B2 |
7409420 | Pullara et al. | Aug 2008 | B2 |
7421502 | Czap et al. | Sep 2008 | B2 |
7434087 | Singh | Oct 2008 | B1 |
7444536 | Jairath | Oct 2008 | B1 |
7451221 | Basani et al. | Nov 2008 | B2 |
7453879 | Lo | Nov 2008 | B1 |
7457722 | Shain et al. | Nov 2008 | B1 |
7509407 | Miller et al. | Mar 2009 | B2 |
7526658 | He et al. | Apr 2009 | B1 |
7526668 | Shitomi et al. | Apr 2009 | B2 |
7539722 | Mohamed et al. | May 2009 | B2 |
7562129 | Lee et al. | Jul 2009 | B1 |
7664991 | Gunda et al. | Feb 2010 | B1 |
7673066 | Zheng | Mar 2010 | B2 |
7702745 | Lin et al. | Apr 2010 | B2 |
8275815 | Aronovich et al. | Sep 2012 | B2 |
20020019874 | Borr | Feb 2002 | A1 |
20020073211 | Lin et al. | Jun 2002 | A1 |
20020083130 | Shimada et al. | Jun 2002 | A1 |
20020152315 | Kagan et al. | Oct 2002 | A1 |
20020161980 | Nishikawa | Oct 2002 | A1 |
20030018927 | Gadir et al. | Jan 2003 | A1 |
20030056069 | Cabrera et al. | Mar 2003 | A1 |
20030058277 | Bowman-Amuah | Mar 2003 | A1 |
20030093643 | Britt, Jr. | May 2003 | A1 |
20030093678 | Bowe et al. | May 2003 | A1 |
20030112754 | Ramani et al. | Jun 2003 | A1 |
20030115341 | Sinha et al. | Jun 2003 | A1 |
20030126195 | Reynolds et al. | Jul 2003 | A1 |
20030140129 | Livnat et al. | Jul 2003 | A1 |
20030169859 | Strathmeyer et al. | Sep 2003 | A1 |
20030182282 | Ripley | Sep 2003 | A1 |
20040003210 | Duale et al. | Jan 2004 | A1 |
20040003241 | Sengodan et al. | Jan 2004 | A1 |
20040018829 | Raman et al. | Jan 2004 | A1 |
20040019660 | E. et al. | Jan 2004 | A1 |
20040032876 | Garg et al. | Feb 2004 | A1 |
20040044930 | Keller et al. | Mar 2004 | A1 |
20040103342 | Moser et al. | May 2004 | A1 |
20040136325 | Dobric et al. | Jul 2004 | A1 |
20040160909 | Sheynblat | Aug 2004 | A1 |
20040215794 | Lauer | Oct 2004 | A1 |
20040225952 | Brown et al. | Nov 2004 | A1 |
20040260748 | Springer et al. | Dec 2004 | A1 |
20040267932 | Voellm et al. | Dec 2004 | A1 |
20040268118 | Bazan Bejarano | Dec 2004 | A1 |
20050010670 | Greschler et al. | Jan 2005 | A1 |
20050015511 | Izmailov et al. | Jan 2005 | A1 |
20050015747 | Zatloukal et al. | Jan 2005 | A1 |
20050021832 | Bennett et al. | Jan 2005 | A1 |
20050038828 | Kaluskar et al. | Feb 2005 | A1 |
20050041686 | Roy et al. | Feb 2005 | A1 |
20050055345 | Ripley | Mar 2005 | A1 |
20050060442 | Beverly et al. | Mar 2005 | A1 |
20050091212 | Mohamed et al. | Apr 2005 | A1 |
20050102537 | Zheng | May 2005 | A1 |
20050111030 | Berkema et al. | May 2005 | A1 |
20050114670 | Bowe et al. | May 2005 | A1 |
20050125378 | Kawada | Jun 2005 | A1 |
20050129045 | Machulsky et al. | Jun 2005 | A1 |
20050131832 | Fransdonk | Jun 2005 | A1 |
20050132077 | Biran et al. | Jun 2005 | A1 |
20050138528 | Ameigeiras et al. | Jun 2005 | A1 |
20050149817 | Biran et al. | Jul 2005 | A1 |
20050177635 | Schmidt et al. | Aug 2005 | A1 |
20050182850 | Kohno | Aug 2005 | A1 |
20050198113 | Mohamed et al. | Sep 2005 | A1 |
20050198247 | Perry et al. | Sep 2005 | A1 |
20050198359 | Basani et al. | Sep 2005 | A1 |
20050198380 | Panasyuk et al. | Sep 2005 | A1 |
20050223014 | Sharma et al. | Oct 2005 | A1 |
20050228884 | Hawley | Oct 2005 | A1 |
20050246803 | Spencer | Nov 2005 | A1 |
20050248803 | Ohara | Nov 2005 | A1 |
20050251448 | Gropper | Nov 2005 | A1 |
20050257022 | Hughes | Nov 2005 | A1 |
20050258022 | Horton et al. | Nov 2005 | A1 |
20050262084 | Tomita | Nov 2005 | A1 |
20050262103 | Stakutis et al. | Nov 2005 | A1 |
20060031519 | Helliwell et al. | Feb 2006 | A1 |
20060041698 | Han et al. | Feb 2006 | A1 |
20060045005 | Blackmore et al. | Mar 2006 | A1 |
20060047818 | Kruglick et al. | Mar 2006 | A1 |
20060059118 | Byrd et al. | Mar 2006 | A1 |
20060080443 | Kruglick et al. | Apr 2006 | A1 |
20060080568 | Subbaraman et al. | Apr 2006 | A1 |
20060085328 | Cohen et al. | Apr 2006 | A1 |
20060095382 | Mahlbacher | May 2006 | A1 |
20060130107 | Gonder et al. | Jun 2006 | A1 |
20060168262 | Frazer | Jul 2006 | A1 |
20060206705 | Khosravi | Sep 2006 | A1 |
20060271692 | Kruse et al. | Nov 2006 | A1 |
20060271697 | Kruse et al. | Nov 2006 | A1 |
20060281525 | Borissov | Dec 2006 | A1 |
20070150558 | Teodosiu et al. | Jun 2007 | A1 |
20070171793 | Mesut et al. | Jul 2007 | A1 |
20070192326 | Angal et al. | Aug 2007 | A1 |
20070220155 | Nalla et al. | Sep 2007 | A1 |
20080151885 | Horn et al. | Jun 2008 | A1 |
20080172397 | Maeda et al. | Jul 2008 | A1 |
20090077097 | Lacapra et al. | Mar 2009 | A1 |
20090138615 | Cristallo et al. | May 2009 | A1 |
20090172085 | Arthursson | Jul 2009 | A1 |
20090319661 | Shiozawa et al. | Dec 2009 | A1 |
20090327798 | D'Amato et al. | Dec 2009 | A1 |
20100042715 | Tham et al. | Feb 2010 | A1 |
20100161855 | Mohamed et al. | Jun 2010 | A1 |
20100185704 | George et al. | Jul 2010 | A1 |
20110040826 | Chadzelek et al. | Feb 2011 | A1 |
20130007180 | Talpey et al. | Jan 2013 | A1 |
20130007518 | George et al. | Jan 2013 | A1 |
20130066941 | Kruse et al. | Mar 2013 | A1 |
20130067095 | Kruse et al. | Mar 2013 | A1 |
20130091199 | Kruse et al. | Apr 2013 | A1 |
20130097211 | Kruse et al. | Apr 2013 | A1 |
Number | Date | Country |
---|---|---|
1 259 045 | Nov 2002 | EP |
1 259 045 | Nov 2002 | EP |
1 727 056 | Nov 2006 | EP |
60-019341 | Jan 1985 | JP |
62-297927 | Dec 1987 | JP |
63-061148 | Mar 1988 | JP |
63-205747 | Aug 1988 | JP |
64-061148 | Mar 1989 | JP |
02-101847 | Apr 1990 | JP |
03-048558 | Mar 1991 | JP |
03-074745 | Mar 1991 | JP |
04-172039 | Jun 1992 | JP |
04-229746 | Aug 1992 | JP |
05-089048 | Apr 1993 | JP |
05-143488 | Jun 1993 | JP |
06-075890 | Mar 1994 | JP |
63-256165 | Oct 1998 | JP |
10-313342 | Nov 1998 | JP |
11-055314 | Feb 1999 | JP |
2001-094613 | Apr 2001 | JP |
2003-016766 | Jan 2003 | JP |
2003-069610 | Mar 2003 | JP |
2003-281091 | Mar 2003 | JP |
2003-125022 | Apr 2003 | JP |
2004-005427 | Jan 2004 | JP |
2004-229143 | Aug 2004 | JP |
2005-322016 | Nov 2005 | JP |
2007-49755 | Feb 2007 | JP |
3967758 | Jun 2007 | JP |
10-1994-0001700 | Mar 1994 | KR |
10-0860152 | Sep 2008 | KR |
WO 03096646 | Nov 2003 | WO |
Entry |
---|
Microsoft Computer Dictionary, Fifth Edition, 2002, p. 486. |
Danilo Almeida, FIFS: A Framework for Implementing User-Mode File Systems in Windows NT, Proceedings of the 3rd USENIX Windows NT Symposium, Jul. 12-13, 1999. |
Aboba et al., Extensible Authentication Protocol (EAP) [online], See Fast Connect, RFC 3748, Jun. 2004, [Retrieved Mar. 3, 2007], Retrieved from: http://www.ietf.org/rfc/rfc3748.txt?number=3748. |
Alvisi et al., “Low-Overhead Protocols for Fault-Tolerant File Sharing”; In Proceedings of the IEEE 18th International Conference on Distributed Computing Systems; 1998; 10 pgs. |
ANSI, Financial Institution Message Authentication (Wholesale), Financial Services Technical Publication, ANSI X9.9-1994, Aug. 15, 1986; 38 pgs. |
Asokan et al., Server Supported Signatures, Journal of Computer Security, Fall 1997; 13 pgs. |
Bell Labs, Plan 9 default Fossil File System [online], [Retrieved Sep. 17, 2007], Retrieved from: http://plan9.bell-labs.com/magic/man2htm1/4/fossil; 4 pgs. |
Bensaou et al., Credit-Based Fair Queueing (CBFQ): A Simple Service-Scheduling Algorithm for Packet-Switched Networks, IEEE/ACM Transactions on Networking, vol. 9, No. 5, Oct. 2001. |
CIFS http://msdn.microsoft.com/library/default.asp?url= /library/en-us/cifs/protocol/cifs.asp, 2 pgs. |
CIFS Oplock File Locking, MSDN, [Retrieved Jan. 7, 2008], Retrieved from: http://msdn2.microsoft.com/en-us/library/aa302210.aspx; 3 pgs. |
CIFS or Public SMB Information on Common Internet File System http://support.microsoft.com/default.aspx ?scid=kb;en-us;199072; 2 pgs. |
Dehaese, G., The ISO 9660 File System [online], May 1995, [Retrieved Sep. 14, 2007], Retrieved from: http://users.pandora.be/it3.consultants.bvba/handouts/IS09960.html. |
Digital Equipment Corporation, Introduction to RSX-11M online, Order No. AA-L763B-TC, RSX-11M Version 4.2, First Printing Sep. 1979, Revised Nov. 1981 and Jul. 1985, [Retrieved Aug. 9, 2007], Retrieved from: http://www.computer.museum.uq.edu.au/RSX-11%20Manuals.html; 65 pgs. |
ECMA, Volume and File Structure for Write-Once and Rewritable Media using Non-Sequential Recording for Information Interchange 3rd Edition [online], ECMA-167, Jun. 1997, Retrieved Aug. 9, 2007, Retrieved from: http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-167.pdf; 150 pgs. |
French, Steven M., “A New Network File System is Born: Comparison of SMB2, CIFS, and NFS”, retrieved Mar. 23, 2011, 14 pgs. |
Gifford et al., The Cedar File System, Communications of the ACM, vol. 31, No. 3, Mar. 1998; 11 pgs. |
Greenberg et al., “NFILE—A File Access Protocol”; Network Working Group; RFC 1037; Dec. 1997; 43 pgs. |
Gu et al., “SABUL: A High Performance Data Transfer Protocol”; IEEE Communications Letters; 2001; 11 pgs. |
Hartman; “The Zebra Striped Network File System”; Doctoral dissertation at the University of California at Berkeley; 1991; 159 pgs. |
Hiltunen et al., “Implementing Integrated Fine-Grain Customizable QoS Using Cactus”; The 29th Annual International Symposium on Fault-Tolerant Computing (Fast Abstract); Madison, WI; 1999, 2 pgs. |
Hitz et al., File System Design for an NFS File Server Appliance [online], Network Appliance, TR 3002, 1994, [Retrieved Aug. 9, 2007], Retrieved from: http://www.netapp.conn/library/tr/3002.pdf; 13 pgs. |
Hobbit, CIFS: Common Insecurities Fail Scrutiny [online], Avian Research, Jan. 1997, Retrieved from: http://web.textfiles.com/hacking/cifs.txt; 39 pgs. |
IBM, IBM Personal Computer Seminar Proceedings, vol. 2, No. 5, Sep. 1984; 13 pgs. |
International Organization for Standardization, Banking—Approved algorithms for message authentication—, ISO 8731-1, Jun. 1, 1987; 4 pgs. |
John H. Samba Team Terpstra, “Chapter 32. High Availability Part III. Advanced Configuration”, retrieved Mar. 22, 2011, 6 pages. |
Kent et al., IP Authentication Header [online], RFC 2402, Nov. 1998, [Retrieved Aug. 9, 2007], Retrieved from: http://tools.ietf.org/html/rfc2402, 20 pgs. |
Kent et al., Security Architecture for the Internet Protocol [online], RFC 2401, Nov. 1998, [Retrieved Jun. 6, 2007], Retrieved from: http://www.ietf.rg/rfc/rfc2401.txt? number=2401, 62 pgs. |
Klima, “Tunnels in Hash Functions: MD5 Collisions Within a Minute”, Version 1, Mar. 2006, Version Apr. 2, 2006, Cryptology ePrint Archive, 17 pgs. |
Krawczyk, “HMAC: Keyed-Hashing for Message Authentication”, RFC-2104, Feb. 1997, http://www.jetf.org/rfc/rfc2104.txt, 10 pgs. |
Leach et al., CIFS Logon and Pass Through Authentication Preliminary Draft [online], Jan. 3, 1997, 22 pgs. |
Leach et al., CIFS/E Browser Protocol Preliminary Draft [online], Jan. 10, 1997, 33 pgs. |
Leach et al., draft-leach-cifs-print-spec-00.txt, CFIS Printing Specification Preliminary Draft [online], Jan. 31, 1997; 30 pgs. |
Leach et al., draft-leach-cifs-rap-spec-00.txt, CFIS Remote Administration Protocol Preliminary Draft online , Feb. 26, 1997; 39 pgs. |
Leach, P. et a., “A Common Internet File System (CIFS/1.0) Protocol Preliminary Draft”, draft-leach-cifs-v1-spec-02, Mar. 13, 1997, http://microsoft.com/mscorp/ip/protocols/BSTD/CIFS: 160 pgs. |
Leach, P., Naik, D., A Common Internet File System (CIFS/1.0) Protocol Preliminary Draft [online], Dec. 19, 1997. Retrieved from: http://tools.ietf.org/html/draft-leach-cifs-v1-spec-01; 132 pgs. |
LeGrow, “Maintenance—MSRPC Update (Version 11) and SMB Update (Version 3)”; cfr-users mailing list; http://list.nfr.com/mailman/listingfo/nfr-users; May 20, 2004; 2 pgs. |
Linn, “Generic Security Service Application Program Interface, Version 2, Update 1”, RFC 2743, Jan. 2000, http://www.ieft.org/rfc/rfc2743.txt, 90 pgs. |
Loafman, Zach, “SMB1/SMB2; A BSD Perspective”, retrieved Mar. 22, 2011, 35 pgs. |
Morris, “Andrew: A Distributed Personal Computing Environment”, Communications of the ACM, vol. 29, No. 3, Mar. 1986, New York, 20 pgs. |
MS-SMB2—Preview: Server Message Block (SMB) Version 2 Protocol Specification, copyright 2010 Microsoft Corporation, 309 pgs. |
Mullender, “A Distributed File Service Based on Optimistic Concurrency Control”, Proceedings of the Tenth ACM Symposium on Operating Systems Principles, Dec. 1-4, 1985, Orcas Island, WA, 14 pgs. |
Murphy, Origins and Development of TOPS-20 [online], © 1989, 1996, [Retrieved Aug. 9, 2007], Retrieved from: http://www.opost.com/dlm/tenex/hbook.html; 28 pgs. |
National Bureau of Standards, Computer Data Authentication, Federal Information Processing Standards Publication 113, May 30, 1985; 9 pgs. |
Pawlowski, Brian et al. “The NFS Version 4 Protocol” (Publication date not available), 20 pgs. |
Periasamy, Anand Babu, “Next-Gen Linux File Systems: Change is the New Constant”, retrieved Mar. 23, 2011, 4 pages. |
Platform SDK: File Systems: Microsoft SMB Protocol and CIFS Protocol Overview http://msdn.microsoft.com/ library/default.asp?ur1=/library/ en-us/fileio/fs/ microsoft—smb—protocol—and—cifs—protocol—overview.asp; 1 pg. |
Pranevich, “The Wonderful World of Linux 2.6”; 2005; 17 pgs. |
Rivest, “The MD5 Message-Digest-Algorithm”, RFC 1321, Apr. 1992, http://www.jetf.org/rfc/rfc2104.txt, 19 pgs. |
Rubin, F., Message Authentication Using Quadratic Residues [online], Jan. 31, 1995, [Retrieved Sep. 14, 2007], Retrieved from: http://www.mastersoftware.biz/crypt002.htm; 6 pgs. |
Samba Team, The Samba Team are pleased to announce Samba1.9.18 [online], Jan. 7, 1998, [Retrieved Jan. 4, 2008], Retrieved from: http://de.samba.org/samba/history/samba1.9.18.html; 4 pgs. |
Satran et al. Internet Small Computer Systems Interface (iSCSI) [online], RFC 3720, Apr. 2004, [Retrieved Mar. 3, 2007], Retrieved from: http://www.ietf.org/rfc/rfc3720.txt?number=3720; 67 pgs. |
Satyanaryanan et al, “Scalable, Secure and Highly Available Distributed File Access”, May 1990, 12 pgs. |
Schneier, B., Applied Cryptography Protocols, Algorithm and Source Code in C Second Edition, John Wiley & Sons, Inc., © 1996; 788 pgs. |
Shepler, S. et al., “Network File System (NFS) Version 4 Protocol”, Network Working Group, Request for Comments: 3530, Apr. 2003, 275 pgs. |
Shepler, S. et al., “NFS Version 4 Protocol”, RFC 3010, Proceedings on the 2nd International System Administration and Networking Conference (SANE2000), Dec. 2000, 212 pgs. |
Shepler, S., NFS Version 4 Design Considerations [online], RFC 2624, Jun. 1999, [Retrieved Jan. 4, 2008], Retrieved from: http://tools.ietf.org/html/rfc2624; 22 pgs. |
SNIA, Common Internet File System (CIFS) Technical Reference [online], Mar. 1, 2002, Retrieved from: http://www.snia.org/tech—activities/CIFS/CIFS-TR-1p00—FINAL.pdf; 150 pgs. |
Soules et al., Metadata Efficiency in a Comprehensive Versioning File System, May 2002; 33 pgs. |
Srinivasan et al., Spritely NFS: Implementation and Performance of Cache-Consistency Protocols [online], May 1989, [Retrieved Jan. 4, 2008], Retrieved from: http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-89-5.pdf; 35 pgs. |
Szczerbina, “Novell's NetWare Core Protocol”, Dr. Dobb's Journal, Nov. 1993, 17 pgs. |
Talpey et al., “NFSv4 Session Extensions, draft-ietf-nfsv4-sess-01”; Internet Draft; The Internet Society; Feb. 2005; 70 pgs. |
The Java CIFS Client Library [online], [Retrieved Jul. 13, 2007], Retrieved from: http://jcifs.samba.org/, 8 pgs. |
The Open Group; Technical Standard; Protocols for X/Open PC lnterworking: SMB, Version 2; http://www.opengroup.org/onlinepubs/9697999099/toc.pdf; retrieved on Sep. 1, 1992; 534 pgs. |
Tichy, W., RCS—A System for Version Control [online], Jan. 3, 1991, [Retrieved Aug. 6, 2007], Retrieved from: http://www.cs.purdue.edu/homes/trinkle/RCS/rcs.ps; 20 pgs. |
TOPS-20 [online], Wikipedia, [Retrieved Mar. 4, 2007], Retrieved from: http://en.wikipedia.org/wiki/TOPS-20; 4 pgs. |
Tridgell, “Inside Microsoft Networking”, Jun. 25, 1998, 6 pgs. |
U.S. Official Action dated Feb. 2, 2010 cited in U.S. Appl. No. 11/182,989, 18 pgs. |
U.S. Official Action dated Jan. 25, 2010 cited in U.S. Appl. No. 11/182,251, 20 pgs. |
U.S. Official Action dated Jul. 23, 2010 cited in U.S. Appl. No. 11/182,989, 17 pgs. |
U.S. Official Action dated Jul. 30, 2010 cited in U.S. Appl. No. 11/182,251, 23 pgs. |
U.S. Official Action dated Mar. 13, 2009 cited in U.S. Appl. No. 11/182,251, 20 pgs. |
U.S. Official Action dated May 14, 2009 cited in U.S. Appl. No. 11/182,989, 23 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Nov. 26, 2008, 12 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Nov. 30, 2010, 17 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Nov. 4, 2011, 17 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Apr. 26, 2010, 17 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Jun. 15, 2009, 14 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Sep. 14, 2009, 7 pgs. |
U.S. Appl. No. 11/182,251, Office Action mailed Jan. 30, 2012, 24 pgs. |
U.S. Appl. No. 11/182,251, Office Action mailed Nov. 6, 2008, 4 pgs. |
U.S. Appl. No. 11/182,251, Office Action mailed Aug. 22, 2008, 7 pgs. |
U.S. Appl. No. 11/182,251, Office Action mailed Aug. 4, 2011, 23 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response filed Dec. 1, 2011, 13 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response mailed Oct. 19, 2009, 6 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response mailed Oct. 29, 2010, 14 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response mailed Nov. 26, 2008, 12 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response mailed May 3, 2010, 14 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response mailed Aug. 14, 2009, 11 pgs. |
U.S. Appl. No. 11/182,989, Office Action mailed Feb. 28, 2012, 20 pgs. |
U.S. Appl. No. 11/182,989, Office Action mailed Sep. 1, 2011, 19 pgs. |
U.S. Appl. No. 11/182,989, Office Action mailed Sep. 5, 2008, 6 pgs. |
Vanwasi, “Unleashing the power of P2P”; Network Magazine India; Apr. 2002; 5 pgs. |
Zhu, “The Simple and Protected Generic Security Service Application Program Interface (GSS-API) Negotiation Mechanism”, RFC-4178, Oct. 2005, http://www.ietf.org/rfc/rfc4178.txt, 20 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed May 30, 2012, 14 pgs. |
U.S. Appl. No. 11/182,251, Notice of Allowance mailed Jul. 12, 2012, 8 pgs. |
U.S. Appl. No. 11/182,989, Amendment and Response filed May 29, 2012, 11 pgs. |
U.S. Appl. No. 11/182,989, Notice of Allowance mailed Jun. 21, 2012, 5 pgs. |
Oehme, et al.,“IBM Scale out File Services: Reinventing network-attached storage”, Retrieved at << http://www-935.ibm.com/services/us/its/pdf/sofs-am-journal-final-070108.pdf >>, vol. 52 No. 4/5 Jul./Sep. 2008, pp. 10. |
Maiworm, Daniel, “Symantec Enterprise Vault”, Retrieved at << http://www.cstl.com/products/Symantec/Symantec-Enterprise—Vault/File System Archiving.pdf >>, Feb. 5, 2007, pp. 35. |
“NTFS Design Goals and Features”, Retrieved at http://wininternals.uw.hu/ch12lev1sec4.html >>, Retrieved Date: Oct. 11, 2010, pp. 9. |
PCT International Search Report and Written Opinion in International Application PCT/US2011/063618, mailed Jun. 28, 2012, 9 pgs. |
U.S. Appl. No. 11/182,251, Amendment and Response filed Oct. 11, 2012, 2 pgs. |
U.S. Appl. No. 13/663,827, Office Action mailed Jan. 29, 2013, 16 pgs. |
U.S. Appl. No. 13/664,012, Office Action mailed Jan. 25, 2013, 19 pgs. |
Almeida, “FIFS: A Framework for Implementing User-Mode File Systems in Windows NT”, Proceedings of the 3rd USENIX Windows NT Symposium, Jul. 12-15, 1999, 19 pgs. |
Chinese 4th Office Action in Application 200510127998.2, mailed Nov. 16, 2011, 7 pgs. |
Chinese 5th Office Action in Application 200510127998.2, mailed Mar. 2, 2012, 8 pgs. |
Chinese Notice of Allowance in Application 2005101279978.2, mailed Dec. 5, 2011, 4 pgs. |
Chinese Notice of Allowance in Application 200510127998.2, mailed Aug. 20, 2012, 4 pgs. |
Chinese Office Action dated Apr. 29, 2010 in Application No. 200510127997.8, 10 pgs. |
Chinese Office Action dated Apr. 29, 2010 in Application No. 200510127998.2, 10 pgs. |
Chinese Second Office Action dated Mar. 3, 2011 in Application No. 200510127998.2, 8 pgs. |
Chinese Second Office Action dated Mar. 30, 2011 in Application No. 200510127997.8, 26 pgs. |
Chinese Third Office Action dated Jul. 7, 2011 in Application No. 200510127998.2, 9 pgs. |
Digital Equipment Corporation, RSX-11M/M-Plus RMS-11 User's Guide [online], Order No. AA-L669A-TC, Apr. 1983, [Retrieved Aug. 17, 2007], Retrieved from: http://www.computer.museum.uq.edu.au/RSX-11%20Manuals.html; 186 pgs. |
European Exam Report in Application 05111885.9 mailed Sep. 13, 2007, 5 pgs. |
European Invitation to Correct Defects in Application No. 08008916.2 mailed Sep. 4, 2008, 6 pgs. |
European Notice of Allowance in Application 05111885.9 mailed Jun. 11, 2008, 6 pgs. |
European Notice of Allowance in Application 080089162 mailed Jan. 24, 2011, 6 pgs. |
European Notice to Grant in Application 05111885.9 mailed Oct. 9, 2008, 1 p. |
European Search Report dated Feb. 1, 2011 in Application No. 10013021.0 , 9 pgs. |
European Search Report dated Feb. 15, 2006 in Application No. 05111729.9, 193 pgs. |
European Search Report dated Feb. 22, 2006 in Application No. 05111729.9, 8 pgs. |
European Search Report dated Jan. 20, 2006 in Application No. RS113279/US18298905, 2 pgs. |
European Search Report dated Jan. 20, 2006 in Application No. RS113280/US18225105, 4 pgs. |
European Search Report dated Jan. 4, 2011 in Application No. 10012923.8, 9 pgs. |
European Search Report dated Jun. 18, 2008 in Application No. 08008916.2,9 pgs. |
European Search Report dated Sep. 19, 2006 in Application No. 055111885.9, 8 pgs. |
Hertel, Implementing CIFS the Common Internet File System [online], [Retrieved Jul. 13, 2007], Retrieved from: http://ubiqx.org/cifs/; 3 pgs. |
Hong Kong Certificate of Grant in Application 07105689.8 mailed Jun. 26, 2009, 2 pgs. |
Indian First Exam Report in Application 3305/DE/L2005, mailed Mar. 28, 2013, 2 pgs. |
Internet Assigned Numbers Authority, Well-Known Port Numbers, http://www.jana.org/assignments/port-numbers, 233 pgs. |
Japanese Office Action in Application 200510127997.8 mailed Aug. 3, 2011, 8 pgs. |
Japanese Office Notice of Allowance in Application 2006-307121 mailed Feb. 14, 2012, 6 pgs. |
Japanese Office Notice of Rejection in Application 2006-307121 mailed Aug. 12, 2011, 5 pgs. |
Japanese Office Notice of Rejection mailed Apr. 3, 2007 in Application No. 2005-356145, 6 pgs. |
Japanese Office Notice of Rejection mailed Jan. 15, 2008 in Application No. 2005-356145, 5 pgs. |
Japanese Office Notice of Rejection mailed Mar. 10, 2006 in Application No. 2005-356146, 5 pgs. |
Japanese Office Notice of Rejection mailed May 12, 2006 in Application No. 2005-356145, 4 pgs. |
Japanese Office Notice of Rejection mailed Nov. 10, 2006 in Application No. 2005-356146, 3 pgs. |
Korean Notice of Preliminary Rejection mailed Jan. 21, 2011, Application No. 10-2007-80691, 8 pgs. |
Korean Notice of Rejection mailed Nov. 17, 2006 in Application No. 10-2005-0124340, 5 pgs. |
PCT International Search Report and Written Opinion in International Application PCT/US2012/041049, mailed Jan. 17, 2013, 12 pgs. |
PCT International Search Report and Written Opinion in International Application PCT/US2012/054038, mailed Feb. 20, 2013, 10 pgs. |
SMB: The Server Message Block Protocol [online], 1999, Retrieved from: http://ubiqx.org/cifs/SMB.html. |
U.S. Appl. No. 13/172,757, Office Action mailed Apr. 19, 2013, 23 pgs. |
U.S. Appl. No. 13/663,827, Amendment and Response filed Apr. 29, 2013, 10 pgs. |
U.S. Appl. No. 13/664,012, Amendment and Response filed Apr. 24, 2013, 10 pgs. |
U.S. Appl. No. 13/664,012, Office Action mailed Apr. 30, 2013, 16 pgs. |
U.S. Appl. No. 13/663,827, Office Action mailed May 7, 2013, 16 pgs. |
U.S. Appl. No. 13/228,732, Office Action mailed Jul. 8, 2013, 16 pgs. |
U.S. Appl. No. 13/228,818, Office Action mailed Jul. 18, 2013, 18 pgs. |
Chinese Notice of Entering into Substantive Examination in Application 201210331041.X, mailed Mar. 6, 2013, 3 pgs. |
PCT International Search Report and Written Opinion in International Application PCT/US2012/041703, mailed Feb. 14, 2013, 13 pgs. |
PCT International Search Report and Written Opinion in International Application PCT/US2012/054039, mailed Feb. 27, 2013, 11 pgs. |
U.S. Appl. No. 13/228,818, Amendment and Response filed Oct. 18, 2013, 24 pgs. |
U.S. Appl. No. 13/663,827, Amendment and Response filed Aug. 6, 2013, 7 pgs. |
U.S. Appl. No. 13/663,827, Advisory Action mailed Aug. 22, 2013, 3 pgs. |
U.S. Appl. No. 13/663,827, Amendment and Response filed Sep. 9, 2013, 8 pgs. |
U.S. Appl. No. 13/663,827, Notice of Allowance mailed Sep. 26, 2013, 11 pgs. |
U.S. Appl. No. 13/664,012, Amendment and Response filed Jul. 30, 2013, 12 pgs. |
U.S. Appl. No. 13/664,012, Notice of Allowance mailed Sep. 12, 2013, 14 pgs. |
U.S. Appl. No. 13/172,757, Amendment and Response filed Aug. 19, 2013, 14 pgs. |
Chinese 1st Office Action in Application 201110329007.4, mailed Oct. 10, 2013, 13 pgs. |
Number | Date | Country | |
---|---|---|---|
20120151249 A1 | Jun 2012 | US |