1. Field of the Invention
The present invention relates to a system for providing TDM service, such as DS1, in a GPON system using Virtual Tributary (VT) encapsulation.
2. Background of the Prior Art
A Passive Optical Network (PON) is a point-to-multipoint, fiber to the premises network architecture in which unpowered optical splitters are used to enable a single optical fiber to serve multiple premises, typically 32. A PON consists of an Optical Line Termination (OLT) at the service provider's central office and a number of Optical Network Units (ONUs) near end users. A PON configuration reduces the amount of fiber and central office equipment required compared with point to point architectures. Downstream signals are broadcast to each premises sharing a fiber. Encryption is used to prevent eavesdropping. Upstream signals are combined using a multiple access protocol, typically time division multiple access (TDMA). The OLTs “range” the ONUs in order to provide time slot assignments for upstream communication.
There are a number of standard types of PON that have been implemented. APON (ATM Passive Optical Network) was the first Passive optical network standard. It was used primarily for business applications, and was based on ATM. BPON (Broadband PON) is a standard based on APON. It adds support for WDM, dynamic and higher upstream bandwidth allocation, and survivability. GPON (Gigabit PON) is an evolution of BPON. It supports higher rates, enhanced security, and choice of Layer 2 protocol (ATM, GEM, Ethernet). GPON represents a significant boost in both the total bandwidth and bandwidth efficiency through the use of larger, variable-length packets. A GPON network delivers up to 2,488 megabits per second (Mbit/s) of downstream bandwidth, and 2,488 Mbit/s of upstream bandwidth. GPON Encapsulation Method (GEM) allows very efficient packaging of user traffic, with frame segmentation to allow for higher Quality of Service (QoS) for delay-sensitive traffic such as voice and video communications.
One type of service that is important for business applications is the Digital Signal 1 (DS1) service. DS1 provides twenty-four 8-bit channels, each channel being a 64 kbit/s multiplexed pseudo-circuit, for a total throughput of 1.544 Mbit/s. However, the cost of a GPON system must be optimized for residential service. This includes the cost of the ONU and the allocated share of the OLT. While the business application uses a special ONU, the OLT is common to both business and residential service, thus it is important to provide the capability to serve a significant number of DS1's without embedding significant cost in the OLT. While there will be a future need to provide DS1 service over packet service to the network interface, there will still be an important application to hand off DS1's via SONET encapsulation. Thus, a need arises for a technique by which DS1service can be provided in a GPON system that is cost-effective, flexible, and that is easiy configured and reconfigured.
The present invention provides DS1 service in a GPON system that is cost-effective, flexible, and that is easily configured and reconfigured. Flexibility is provided in the ONU to map DS1's to enable either SONET or Packet network handoffs at the OLT. DS1's from the customer can either be synchronous (loop timed from the network) or asynchronous (not loop timed from the network). Asynchronous format is most general and most difficult-since allowed variations in frequency need to be accommodated by some version of bit stuffing.
The concept here is to encapsulate the customer's DS1 into a VT1.5 superframe at the business ONU. While the DS1 is asynchronous, the VT1.5 encapsulation is network timed and synchronous. Since VT1.5 is also the DS1 encapsulation for SONET handoffs—the OLT doesn't need to handle individual DS1's—remove GPON encapsulation, provide jitter filtering, and re-encapsulate. Instead the OLT maps these synchronous VT1.5 superframes into SONET frames.
Downstream—the SONET frames from the SONET network are de-multiplexed to individual VT1.5 superframes and sent down to the business ONUs which remove the VT1.5 encapsulation, and recover the native DS1 signal.
A system for telecommunications comprises circuitry operable to receive time division multiplexed data traffic, circuitry operable to form Virtual Tributary encapsulated data traffic including the time division multiplexed data traffic, circuitry operable to transmit the Virtual Tributary encapsulated data traffic, circuitry operable to receive the Virtual Tributary encapsulated data traffic, and circuitry operable to extract the time division multiplexed data traffic from the Virtual Tributary encapsulated data traffic. The time division multiplexed data traffic may be DS1,E1,or DS3 data traffic. The circuitry operable to form Virtual Tributary encapsulated data traffic may comprise circuitry operable to encapsulate the DS1, E1, or DS3 data traffic using VT1.5 encapsulation. The circuitry operable to transmit the Virtual Tributary encapsulated data traffic may comprise an optical network. The circuitry operable to transmit the Virtual Tributary encapsulated data traffic may comprise a Gigabit Passive Optical Network. The system may further comprise circuitry operable to encapsulate the Virtual Tributary encapsulated data traffic with Ethernet encapsulation. The system may further comprise circuitry operable to decapsulate the Ethernet encapsulation to form Virtual Tributary encapsulated data traffic. The circuitry operable to extract the time division multiplexed data traffic from the Virtual Tributary encapsulated data traffic may comprise circuitry operable to map the Virtual Tributary encapsulated data traffic to Synchronous Optical Network data traffic.
a is an exemplary format of a DS1 structure agnostic GPON frame.
b is an exemplary format of a DS1 structure agnostic GPON frame with a locked VT1.5 structure.
a is an exemplary format of a structure of the CESoETH control word shown in
b is an exemplary format of an optional RTP Header Structure shown in
The present invention provides DS1 service in a GPON system that is cost-effective, flexible, and that is easily configured and reconfigured. Flexibility is provided in the ONU to map DS1s, E1s, DS3s, etc., to enable either SONET or Packet network handoffs at the OLT. DS1's from the customer can either be synchronous (loop timed from the network) or asynchronous (not loop timed from the network). Asynchronous format is most general and most difficult—since allowed variations in frequency need to be accommodated by some version of bit stuffing.
The concept here is to encapsulate the customer's DS1 into a VT1.5 superframe at the business ONU. While the DS1 is asynchronous, the VT1.5 encapsulation is network timed and synchronous. Since VT1.5 is also the DS1 encapsulation for SONET handoffs—the OLT doesn't need to handle individual DS1's—remove GPON encapsulation, provide jitter filtering, and re-encapsulate. Instead the OLT maps these synchronous VT1.5 superframes into SONET frames.
Downstream—the SONET frames from the SONET network are de-multiplexed to individual VT1.5 superframes and sent down to the business ONUs which remove the VT1.5 encapsulation, and recover the native DS1 signal.
Although, for simplicity, the present invention is described in using DS1 as an example, it is to be noted that this is merely an example. The present invention contemplates application to DS1, E1, DS3, etc., and any Time Division Multiplexed (TDM) data stream.
An example of an optical network unit (ONU) 100, in which the present invention may be implemented, is shown in
A network switch, such as an Ethernet switch 102A-N is a networking device that performs transparent bridging (connection of multiple network segments with forwarding based on MAC addresses) at full wire speed in hardware. The use of specially designed hardware also makes it possible to have large numbers of ports. A switch can connect Ethernet, Token Ring, Fibre Channel or other types of packet switched network segments together to form a heterogeneous network operating at OSI Layer 2 (though there may be complications caused by the different MTUs of the standards).
SONET line units 104A-M (LUs), provide communication interface with the SONET network, while service units 106A-L (SUs), provide communication with the GPON networks. Each LU 104A-M typically provides timing control, SONET frame pulse reference, and may contain optical interfaces to transmit part of all of the SONET data on the GPON network to the SONET network, to supplement data fed directly to the SONET network by the OLT.
A block diagram of a system 200 in which the present invention may be implemented is shown in
An exemplary block diagram of a system 300 in which the present invention may be implemented is shown in
In the example shown in
GPON 306 is a point-to-multipoint, fiber to the customer network architecture in which unpowered optical splitters are used to enable a single optical fiber to serve multiple customer locations. A PON configuration reduces the amount of fiber and central office equipment required compared with point to point architectures. Downstream signals are broadcast to each premises sharing a fiber. Encryption is used to prevent eavesdropping. Upstream signals are combined using a multiple access protocol, invariably time division multiple access (TDMA). The OLTs “range” the ONUs in order to provide time slot assignments for upstream communication. GPON (Gigabit PON) supports higher rates, enhanced security, and choice of Layer 2 protocol (ATM, GEM, Ethernet). It also created a standard management interface, called OMCI, between the OLT and ONU/ONT, enabling mixed-vendor networks.
ONU 304 includes GPON MAC 312 and L2 Ethernet queues and switch 314, which handles data traffic between connected customer networks (not shown) and GPON 306. Ethernet queues and switch 308 communicates with GPON 306 via GPON Media Access Control block (MAC) 310.
In system 300, VT1.5 is used to encapsulate and transport DS1 data traffic through the system between the DS1 users and the SONET network. VT1.5 is a type of virtual tributary in SONET. SONET bandwidth is defined in multiples of an OC-1/STS-1 each of which can transport up to 51.84 Mbit/s. However, it is frequently desirable to address much smaller portions of bandwidth. To meet this need, sub-STS1 facilities called Virtual Tributaries have been defined. In North America, the VT1.5 is the most common virtual tributary because it can carry 1.728 Mbit/s; just enough room for a DS1/T1 signal. Some SONET systems offer the capability to switch at the VT1.5 level. Such equipment is able to re-arrange the data payloads so that inbound VT1.5s are placed into a completely different set of outbound STSs than the ones they arrived in. Among other things, this allows the bandwidth usage to be optimized and facilitates a cleaner network design.
In system 300, DS1 data traffic is communicated via block 314, in which DS1 to VT1.5 encapsulation is performed on received DS1 data traffic and VT1.5 to DS1 decapsulation is performed on transmitted DS1 data traffic. In block 316, Ethernet encapsulation is performed on received VT1.5 data traffic from block 314 and the Ethernet encapsulated, VT1.5 encapsulated data traffic is transmitted via Ethernet switch 314. Likewise, in block 316, Ethernet encapsulated, VT1.5 encapsulated data traffic is received from Ethernet switch 314, the Ethernet encapsulation is decapsulated, and the VT1.5 encapsulated data traffic is transmitted to block 314.
Ethernet encapsulated, VT1.5 encapsulated data traffic is communicated between Ethernet switch 314 and Ethernet switch 308 via GPON 306. At Ethernet switch 308, Ethernet encapsulated, VT1.5 encapsulated data traffic is communicated between Ethernet switch 308 and block 318. In block 318, Ethernet encapsulation is performed on received VT1.5 data traffic from block 320 and the Ethernet encapsulated, VT1.5 encapsulated data traffic is transmitted via Ethernet switch 308. Likewise, in block 318, Ethernet encapsulated, VT1.5 encapsulated data traffic is received from Ethernet switch 308, the Ethernet encapsulation is decapsulated, and the VT1.5 encapsulated data traffic is transmitted to block 320. Since VT1.5 is also the DS1 encapsulation for SONET handoffs, the OLT doesn't need to handle individual DS1 data streams. Rather, the OLT need only map synchronous VT1.5 superframes into SONET frames. Block 320 includes VT1.5 Superframe buffers which store VT1.5 Superframes received from block 318. Block 322 maps the stored received VT1.5 Superframes into SONET frames for transmission over the SONET network. Likewise, block 322 receives SONET frames from the SONET network and demaps them into VT1.5 Superframes. The demapped superframes are then stored in VT1.5 Superframe buffers 320 for transmission to block 318.
An example of the operation of the systems shown in
As shown, the SONET network VT path layer 416 is extended to the customer premises. Asynchronous DS1 402 is mapped at ONT 404 into a VT Synchronous Payload Envelope. The VT structure (with pointers) is encapsulated into Ethernet frames with adaptation headers per MEF8 (VT structure locked, SPE indicated). A GPON Encapsulation Method (GEM) header is added for transport over GPON 406. Thus, the DS1 path 418 is provided from DS1 services 402 to SONET router 410, over VT1.5 path 416, and over GPON path 420 and SONET path 422. A similar approach is applicable for E1 DS3 etc.
An exemplary format of payload mapping in a GEM frame payload 502 is shown in
An exemplary format of a DS1 structure agnostic GPON frame 600 is shown in
An exemplary format of a DS1 structure agnostic GPON frame 620 with a locked VT1.5 structure is shown in
An exemplary format 700 of a structure of the CESoETH control word 626, shown in
An exemplary format 720 of an optional RTP Header Structure 514 (defined in RFC 3550), shown in
The present invention provides multiple options for transporting TDM, such as DS1 over GPON. The 802.1ad Service Provider encapsulation is used to allow for standard xMII interfacing to MAC devices while allowing service provider marking for Priority and Discard Eligibility. MEF8 header are used for Circuit emulation adaptation functions. The payload of 802.1ad frame is optimized for the intended Network handoff type. The VT mapped payload allows efficient handoff to a SONET Network. The cost of retiming asynchronous DS1 circuits is eliminated. The VT path is kept intact from termination point to termination.
Although specific embodiments of the present invention have been described, it will be understood by those of skill in the art that there are other embodiments that are equivalent to the described embodiments. Accordingly, it is to be understood that the invention is not to be limited by the specific illustrated embodiments, but only by the scope of the appended claims.
This application claims the benefit of provisional application 60/749,577, filed Dec. 13, 2005, the entirety of which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
4046193 | Dougherty | Sep 1977 | A |
4557225 | Sagues | Dec 1985 | A |
4720850 | Oberlander | Jan 1988 | A |
4858069 | Hughes | Aug 1989 | A |
5105336 | Jacoby | Apr 1992 | A |
5280191 | Chang | Jan 1994 | A |
5636215 | Kubo | Jun 1997 | A |
5748445 | North | May 1998 | A |
5812373 | Hwang | Sep 1998 | A |
5812528 | VanDervort | Sep 1998 | A |
5825621 | Giannatto | Oct 1998 | A |
5829514 | Smith | Nov 1998 | A |
5831830 | Mahler | Nov 1998 | A |
5867494 | Krishnaswamy | Feb 1999 | A |
5867495 | Elliott | Feb 1999 | A |
5953207 | Aakalu | Sep 1999 | A |
6002585 | Leeb | Dec 1999 | A |
6038129 | Falaki | Mar 2000 | A |
6047002 | Hartmann | Apr 2000 | A |
6101090 | Gates | Aug 2000 | A |
6434000 | Pandolfi | Aug 2002 | B1 |
6532088 | Dantu | Mar 2003 | B1 |
6614758 | Wong | Sep 2003 | B2 |
6621818 | Szczepanek | Sep 2003 | B1 |
6671818 | Mikurak | Dec 2003 | B1 |
6789191 | Lapstun | Sep 2004 | B1 |
6972959 | Asai | Dec 2005 | B2 |
6985467 | Lomp et al. | Jan 2006 | B2 |
7020111 | Ozluturk et al. | Mar 2006 | B2 |
7046679 | Sampath | May 2006 | B2 |
7085281 | Thomas et al. | Aug 2006 | B2 |
7095611 | Kunz | Aug 2006 | B2 |
7103807 | Bosa | Sep 2006 | B2 |
7124101 | Mikurak | Oct 2006 | B1 |
7133415 | Zelig et al. | Nov 2006 | B2 |
7154755 | Araujo | Dec 2006 | B2 |
7158380 | Green | Jan 2007 | B2 |
7245628 | Shi et al. | Jul 2007 | B2 |
7277443 | Goode | Oct 2007 | B2 |
7283519 | Girard | Oct 2007 | B2 |
7322850 | Neer | Jan 2008 | B2 |
7376136 | Song | May 2008 | B2 |
7403477 | Takeuchi | Jul 2008 | B2 |
7428211 | Yu | Sep 2008 | B2 |
7492719 | Lim | Feb 2009 | B2 |
7512147 | Sato | Mar 2009 | B2 |
7599620 | Graves | Oct 2009 | B2 |
20020059637 | Rakib | May 2002 | A1 |
20020085548 | Ku | Jul 2002 | A1 |
20020141159 | Bloemen | Oct 2002 | A1 |
20020196792 | McNeil et al. | Dec 2002 | A1 |
20020196811 | Park et al. | Dec 2002 | A1 |
20030091267 | Alvarez | May 2003 | A1 |
20040064351 | Mikurak | Apr 2004 | A1 |
20040107169 | Lowe | Jun 2004 | A1 |
20040177161 | Hoang | Sep 2004 | A1 |
20040190548 | Harel et al. | Sep 2004 | A1 |
20040202470 | Lim et al. | Oct 2004 | A1 |
20050008013 | Jamieson et al. | Jan 2005 | A1 |
20050013314 | Lim et al. | Jan 2005 | A1 |
20050099949 | Mohan | May 2005 | A1 |
20050100015 | Eubanks | May 2005 | A1 |
20050180749 | Koley | Aug 2005 | A1 |
20050198247 | Perry | Sep 2005 | A1 |
20060098578 | Mallya | May 2006 | A1 |
20060120389 | Sampath | Jun 2006 | A1 |
20060209825 | Carroll et al. | Sep 2006 | A1 |
20060285536 | Pauwels | Dec 2006 | A1 |
20070025370 | Ghasem et al. | Feb 2007 | A1 |
20070070997 | Weitz et al. | Mar 2007 | A1 |
20070109974 | Cutillo et al. | May 2007 | A1 |
20070136743 | Hasek | Jun 2007 | A1 |
20070136777 | Hasek | Jun 2007 | A1 |
20080068807 | Horng | Mar 2008 | A1 |
Number | Date | Country |
---|---|---|
2004063453 | Jul 2004 | KR |
Number | Date | Country | |
---|---|---|---|
20070211763 A1 | Sep 2007 | US |
Number | Date | Country | |
---|---|---|---|
60749577 | Dec 2005 | US |