Proximity-based system for object tracking and automatic application initialization

Information

  • Patent Grant
  • 12056558
  • Patent Number
    12,056,558
  • Date Filed
    Friday, July 9, 2021
    3 years ago
  • Date Issued
    Tuesday, August 6, 2024
    5 months ago
Abstract
A system and method provides for one or more of tracking of an object and providing automatic access to applications or data. Depending upon the embodiment, the system includes a personal digital key (PDK), a reader, a computing device and one or more of an auto login server and a tracking server. The PDK stores one or more profiles in memory. A reader is configured to wirelessly communicate with the PDK. The computing device is coupled to the reader and one or more of the auto login server and tracking server. The auto login server is configured to communicate with the reader and launches one or more applications associated with a user name identified by a profile received from the PDK. The tracking server is configured to communicate with the reader and to track and log information received from the PDK associated with the object.
Description
BACKGROUND OF THE INVENTION
1. Field of Art

This disclosure generally relates to the field of radio frequency identification (RFID) and electronic authentication, and more specifically, to systems and methods for object tracking and automatic and secure authentication of users.


2. Description of the Related Art

Optimizing patient care is an ever-changing and challenging endeavor. Ensuring quality patient care that is safe, efficient and cost-effective is very important to patients, as well as healthcare providers. Conventional technologies used in the healthcare industry for aiding provider patient care, monitoring patient treatment, receiving and retrieving patient data and monitoring provider activity have not yet provided optimal features to meet these needs. Recently, software application systems have been developed in an attempt to improve patient care and provider performance.


Currently, many healthcare facilities utilize electronic software and applications to securely store and efficiently access private patient information. In many healthcare institutions, healthcare providers access patient electronic records with authorized entry into the healthcare software application system. In most conventional systems, providers are provided with a unique user name and password that they must enter into a system each time they need to access patient information. Further, when a healthcare provider is done accessing patient records, the healthcare provider must log out of the system to ensure that unauthorized use does not occur. The process of logging in and logging off each time may prove to be quite time-consuming given the number of patients a provider visits in a given day.


Another problem for many healthcare facilities is making sure that equipment is deployed in a manner that maximizes their usage and availability. For example, in many hospitals the location of equipment is not tracked and monitored other than during an annual equipment inventory. Thus, healthcare providers may not be aware of the precise location of equipment or know when equipment is currently in use. Thus, conventional methods provided limited ability to track the location of equipment.


BRIEF SUMMARY OF THE INVENTION

A system and method provides for one or more of tracking of an object and automatic access to applications or data while maintaining application or data security. A portable physical device, referred to herein as a Personal Digital Key or “PDK”, stores one or more profiles uniquely associated with a user in a memory. In one embodiment, one of the profiles is a biometric profile that is acquired in a secure trusted process and is uniquely associated with a user authorized to use the PDK and associated with the PDK. A reader wirelessly communicates with the PDK and receives a profile from the PDK. A computing device is coupled to the reader and displays data on a display device responsive to receiving data associated with the profile from the reader. Additionally, an auto login sever is coupled to the computing device and to the reader and the auto login server receives the profile from the reader and automatically launches, on the computing device, one or more applications associated with a user name identified by the profile.


In one embodiment, the reader acquires a biometric input from the user associated. The biometric input can be acquired by, for example, a fingerprint scan, iris scan, retinal scan, palm scan, face scan, DNA analysis, signature analysis, voice analysis or any other input mechanism that provides physical or behavioral characteristics uniquely associated with the individual. The reader compares the biometric profile received from the PDK to the biometric input acquired from the user to determine if an application should be launched or if data access is authorized.


A tracking server is configured to communicate with the reader. The tracking server is configured to track and log information of the PDK associated with the object. The information is received from the reader. A computing device is configured to communicate with the reader and the tracking server, the computing device configured to display data on a display device responsive to receiving the information from the reader.


A method for tracking an object includes receiving a search query. The search query includes at least one identifier associated with the object. The object is carrying a personal digital key (PDK) and the PDK is associated with the object and wirelessly communicating with a receiver/decoder circuit (RDC). The method also includes retrieving information from a tracking server. The information includes information of the PDK associated with the object. The method also includes enabling the user to locate the object based at least in part on the information retrieved from the tracking server.


The features and advantages described in the specification are not all inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and may not have been selected to delineate or circumscribe the disclosed subject matter.





BRIEF DESCRIPTION OF DRAWINGS

The disclosed embodiments have other advantages and features which will be more readily apparent from the detailed description, the appended claims, and the accompanying figures (or drawings). A brief introduction of the figures is below.



FIG. 1 is a block diagram illustrating a system for securely authenticating an individual for accessing data or one or more applications in accordance with the present invention.



FIG. 2 is a block diagram illustrating one embodiment of a local services module in accordance with the present invention.



FIG. 3 is a block diagram illustrating one embodiment of a Personal Digital Key (PDK) in accordance with the present invention.



FIG. 4 is a block diagram illustrating one embodiment of a biometric reader of a PDK in accordance with the present invention.



FIG. 5 is a block diagram illustrating one embodiment of a reader in accordance with the present invention.



FIG. 6 is a block diagram illustrating one embodiment of a computing device in accordance with the present invention.



FIG. 7 is a flowchart of a method for authorizing a communication connection using secure authentication in accordance with the present invention.



FIG. 8 is a flowchart of a method for device authentication by a reader in accordance with the present invention.



FIG. 9 is a flowchart of a method for profile authentication by a reader in accordance with the present invention.



FIG. 10A is a flowchart of a method for biometric authentication in accordance with the present invention.



FIG. 10B is a flowchart of a method for profile testing using a personal identification number in accordance with the present invention.



FIG. 10C is a flowchart of a method for profile testing using a picture profile in accordance with the present invention.



FIG. 10D is a flowchart of a method for profile testing using a private or central registry in accordance with the present invention.



FIG. 11A illustrates an example scenario of a reader operating with multiple PDKs in its proximity zone in accordance with the present invention.



FIG. 11B illustrates an example scenario of operation of a reader with a directional proximity zone in an environment with multiple PDKs in accordance with the present invention.



FIG. 12 is a flowchart of a method for differentiating between multiple PDKs within the proximity zone of a reader in accordance with the present invention.



FIG. 13 is a block diagram of a system for estimating location of a PDK using coordinate triangulation in accordance with the present invention.



FIG. 14 is a block diagram of an alternative system for location tracking of a PDK in accordance with the present invention.



FIG. 15 is a block diagram of a tracking server in accordance with the present invention.



FIG. 16A is a flowchart of a method for tracking assets or users in accordance with the present invention.



FIG. 16B is a graphical representation illustrating an example where patient, provider and equipment tracking is provided within a healthcare facility.



FIG. 17 is a block diagram of an auto login server in accordance with the present invention.



FIG. 18 is a flowchart of a method for automatic login of a user in accordance with the present invention.



FIG. 19 is a flowchart of a method for automatically allowing access to one or more applications in accordance with the present invention.



FIG. 20 is a flowchart of a method for identifying one or more applications launched when a user is within the proximity zone of a reader in accordance with the present invention.



FIG. 21 is a flowchart of a method for locking a computing device coupled to a reader responsive to a PDK exiting the proximity zone of the reader in accordance with the present invention.



FIG. 22 is a graphical representation of one embodiment of automatic login of users.



FIG. 23 is a block diagram of a portal server in accordance with the present invention.



FIG. 24 is a flowchart of a method for communicating with remote services provided by a third party site in accordance with the present invention.



FIG. 25 is a flow chart of a method for initially storing data on a PDK in accordance with the present invention.



FIG. 26 is an example user interface for configuring user information associated with a PDK in accordance with the present invention.



FIG. 27 is an example user interface for configuring asset information associated with a PDK in accordance with the present invention.



FIG. 28 is an example user interface for manually identifying assets or users included in a group in accordance with the present invention.



FIG. 29 is an example user interface for automatically identifying assets or users included in a group in accordance with the present invention.



FIG. 30 is an example user interface for tracking a user or an asset associated with a PDK in accordance with the present invention.



FIG. 31 is an example user interface for identifying the location of a tracked user or asset associated with a PDK in accordance with the present invention.



FIG. 32 is an example user interface for describing an alert for a tracked user or asset in accordance with the present invention.



FIG. 33 is an example user interface for describing a report for a tracked user or asset in accordance with the present invention.





The figures depict various embodiments of the present invention for purposes of illustration only. One skilled in the art will readily recognize from the following discussion that alternative embodiments of the structures and methods illustrated herein may be employed without departing from the principles of the invention described herein.


DETAILED DESCRIPTION

A system and method for providing automatic access to applications or data while maintaining application or data security are described. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the invention. It will be apparent, however, to one skilled in the art that the invention can be practiced without these specific details. In other instances, structures and devices are shown in block diagram form in order to avoid obscuring the invention.


Reference in the specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one embodiment of the invention. The appearances of the phrase “in one embodiment” in various places in the specification are not necessarily all referring to the same embodiment.


Some portions of the detailed descriptions that follow are presented in terms of algorithms and symbolic representations of operations on data bits within a computer memory. These algorithmic descriptions and representations are the means used by those skilled in the data processing arts to most effectively convey the substance of their work to others skilled in the art. An algorithm is here, and generally, conceived to be a self consistent sequence of steps leading to a desired result. The steps are those requiring physical manipulations of physical quantities. Usually, though not necessarily, these quantities take the form of electrical or magnetic signals capable of being stored, transferred, combined, compared, and otherwise manipulated. It has proven convenient at times, principally for reasons of common usage, to refer to these signals as bits, values, elements, symbols, characters, terms, numbers or the like.


It should be borne in mind, however, that all of these and similar terms are to be associated with the appropriate physical quantities and are merely convenient labels applied to these quantities. Unless specifically stated otherwise as apparent from the following discussion, it is appreciated that throughout the description, discussions utilizing terms such as “processing” or “computing” or “calculating” or “determining” or “displaying” or the like, refer to the action and processes of a computer system, or similar electronic computing device, that manipulates and transforms data represented as physical (electronic) quantities within the computer system's registers and memories into other data similarly represented as physical quantities within the computer system memories or registers or other such information storage, transmission or display devices.


The specification also relates to an apparatus for performing the operations herein. This apparatus may be specially constructed for the required purposes, or it may comprise a general-purpose computer selectively activated or reconfigured by a computer program stored in the computer. Such a computer program may be stored in a computer readable storage medium, such as, but is not limited to, any type of disk including floppy disks, optical disks, CD-ROMs, and magnetic-optical disks, read-only memories (ROMs), random access memories (RAMs), EPROMs, EEPROMs, magnetic or optical cards, or any type of media suitable for storing electronic instructions, each coupled to a computer system bus.


The invention can take the form of an entirely hardware embodiment, an entirely software embodiment or an embodiment containing both hardware and software elements. In a preferred embodiment, the invention is implemented in software, which includes but is not limited to firmware, resident software, microcode, etc.


Furthermore, the invention can take the form of a computer program product accessible from a computer-usable or computer-readable medium providing program code for use by or in connection with a computer or any instruction execution system. For the purposes of this description, a computer-usable or computer readable medium can be any apparatus that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.


The medium can be an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system (or apparatus or device) or a propagation medium. Examples of a computer-readable medium include a semiconductor or solid state memory, magnetic tape, a removable computer diskette, a random access memory (RAM), a read-only memory (ROM), a rigid magnetic disk and an optical disk. Current examples of optical disks include compact disk-read only memory (CD-ROM), compact disk-read/write (CD-R/W) and DVD.


A data processing system suitable for storing and/or executing program code will include at least one processor coupled directly or indirectly to memory elements through a system bus. The memory elements can include local memory employed during actual execution of the program code, bulk storage, and cache memories which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution.


Input/output or I/O devices (including but not limited to keyboards, displays, pointing devices, etc.) can be coupled to the system either directly or through intervening I/O controllers.


Network adapters may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modem and Ethernet cards are just a few of the currently available types of network adapters.


Finally, the algorithms and displays presented herein are not inherently related to any particular computer or other apparatus. Various general-purpose systems may be used with programs in accordance with the teachings herein, or it may prove convenient to construct more specialized apparatus to perform the required method steps. The required structure for a variety of these systems will appear from the description below. In addition, the present embodiment of invention is not described with reference to a particular programming language. It will be appreciated that a variety of programming languages may be used to implement the teachings of the invention as described herein.



FIG. 1 is a high level block diagram illustrating a system for securely authenticating an individual for accessing data or one or more applications. The system 100 comprises a Personal Digital Key (PDK) 102, a Reader 108, a network 110, a computing device 120, a local services module 124, a third party link module 126, a record system 128, a network 130 and a third party site 140. The Reader 108 is coupled to PDK 102 by a wireless link 106 and coupled to a network 110 by either a wired or wireless link represented by lines 152 and 154. The Reader 108 is also adapted to receive a biometric input 122 from a user and is capable of displaying status to a user. The PDK 102 is also adapted to receive biometric input 122 from a user. The network 110 couples the local services module 124 and third party link module 126 to the Reader 108. The network 110 also couples the local services module 124 and third party link module 126 to the record system 128 via signal lines 158 and 160. In alternative embodiments, different or additional external services, registries or databases (not shown) are coupled to the network 110. In another embodiment, the Reader 108 operates as a standalone device without a connection to the network 110. The network 130 couples the third party link module 126 to the third party site 140 and services provided by the third party site 140, such as pharmacy services, insurance services or lab services.


The system 100 addresses applications where it is important to ensure a specific individual is authorized to perform a given transaction. A transaction as used herein includes executing a purchase or financial dealing, enabling access to physical and/or digital items (e.g., logging into a computer system, launching applications or retrieving data), providing identification or personal information or executing other tasks where it is important to authenticate an individual for use. In one embodiment, the Reader 108 wirelessly receives information stored in the PDK 102 that uniquely identifies the PDK 102 and the individual carrying the PDK 102. In another embodiment, the Reader 108 also receives a biometric input 122 from the individual. For example, the Reader 108 receives a fingerprint, a retinal scan, an iris scan, a facial scan or any other suitable biometric input associated with the individual. In one embodiment, the PDK 102 receives the biometric input 122 from the individual. Based on the received information, the Reader 108 determines if the transaction should be authorized. Beneficially, the system 100 provides comprehensive authentication without the need for PINs or passwords. Moreover, personal biometric information need not be stored in any local or remote storage database and is only stored on the user's own PDK 102. Furthermore, in one embodiment, purchase transactions can be efficiently completed without requiring the use of physical credit cards, tokens or other user action beyond initiating the transaction.


The PDK 102 is a compact, portable uniquely identifiable wireless device typically carried by an individual or affixed to an object or device. The PDK 102 stores digital information in a tamper-proof format uniquely associating the PDK 102 with an individual. Example embodiments of PDKs are described in more detail in U.S. patent application Ser. No. 11/292,330, entitled “Personal Digital Key And Receiver/Decoder Circuit System And Method” filed on Nov. 30, 2005; U.S. patent application Ser. No. 11/620,581 entitled “Wireless Network Synchronization Of Cells And Client Devices On A Network” filed on Jan. 5, 2007; and U.S. patent application Ser. No. 11/620,577 entitled “Dynamic Real-Time Tiered Client Access” filed on Jan. 5, 2007, the entire contents of which are all incorporated herein by reference.


To establish the trust, credibility and confidence of the authentication system, information stored in the PDK 102 is acquired by a process that is trusted, audited and easily verified. The process is ensured by a trusted third-party system, referred to herein as a “Notary,” that administers the acquisition and storage of information in the PDK 102 according to defined security protocols. In one embodiment, the Notary is a system and/or a trusted individual that witnesses the acquisition and storage either in person or remotely. In another embodiment, the Notary comprises trusted hardware that administers the initialization process by an automated system. Thus, once initialized by the trusted process, the PDK 102 can prove that the information it stores is that of the individual. Example embodiments of the initialization process are described in U.S. patent application Ser. No. 11/744,832 to John Giobbi, et al., entitled “Personal Digital Key Initialization and Registration For Secure Transaction” filed on May 5, 2007, the entire contents of which are incorporated herein by reference.


The Reader 108 wirelessly communicates with the PDK 102 when the PDK 102 is within a proximity zone of the Reader 108. The proximity zone can be, for example, several meters in radius and can be adjusted dynamically by the Reader 108. Thus, in contrast to many conventional radio frequency identification (RFID) devices, the Reader 108 is able to detect and communicate with the PDK 102 without requiring an individual using, or associated with the PDK 102, to remove the PDK 102 from his/her pocket, wallet, purse, etc. Generally, the Reader 108 receives uniquely identifying information from the PDK 102 and initiates an authentication process for the individual carrying the PDK 102. In one embodiment, the Reader 108 is adapted to receive a biometric input 122 from the individual. The biometric input 122 comprises a representation of physical or behavioral characteristics unique to the individual. For example, the biometric input 122 can include a fingerprint, a palm print, a retinal scan, an iris scan, a photograph, a signature, a voice sample or any other biometric information such as DNA, RNA or their derivatives that can uniquely identify the individual. The Reader 108 compares the biometric input 122 to information received from the PDK 102 to determine if a transaction should be authorized. In one embodiment, the biometric input 122 can be obtained by a biometric reader 470 (FIG. 4) on the PDK 102 and transmitted to the Reader 108 for authentication. In another embodiment, some or all of the authentication process can be performed by the PDK 102 instead of the Reader 108.


The Reader 108 is further communicatively coupled to the network 110 in order to receive and/or transmit information to remote databases for remote authentication. In an alternative embodiment, the Reader 108 includes a non-volatile data storage that can be synchronized with one or more remote databases 112 or registries 114, 116a, 116b (FIG. 2). Such an embodiment alleviates the need for a continuous connection to the network 110 and allows the Reader 108 to operate in a standalone mode and for the local data storage to be updated when a connection is available. For example, a standalone Reader 108 can periodically download updated registry entries and perform authentication locally without any remote lookup.


The network 110 provides communication between the Reader 108 and the computing device 120, local services module 124, and third party link module 126. For example, a communication channel 156 couples the computing device 120 to the network 110. For example, the communication channel 156 is a wired or wireless connection. In alternative embodiments, one or more of these connections may not be present or different or additional network connections may be present. In one embodiment, the network 110 uses standard communications technologies and/or protocols. Thus, the network 110 can include links using technologies such as Ethernet, 802.11, 802.16, integrated services digital network (ISDN), digital subscriber line (DSL), asynchronous transfer mode (ATM), etc. Similarly, the networking protocols used on the network 110 can include the transmission control protocol/Internet protocol (TCP/IP), the hypertext transport protocol (HTTP), the simple mail transfer protocol (SMTP), the file transfer protocol (FTP), etc. The data exchanged over the network 110 can be represented using technologies and/or formats including the hypertext markup language (HTML), the extensible markup language (XML), etc. In addition, all or some of links can be encrypted using conventional encryption technologies such as the secure sockets layer (SSL), Secure HTTP and/or virtual private networks (VPNs). In another embodiment, the entities can use custom and/or dedicated data communications technologies instead of, or in addition to, the ones described above.


Similarly, the network 130 provides communication between the local services module 124 and third party site 140. In alternative embodiments, one or more of these connections may not be present or different or additional network connections may be present. In one embodiment, the network 130 uses standard communications technologies and/or protocols. Thus, the network 130 can include links using technologies such as Ethernet, 802.11, 802.16, integrated services digital network (ISDN), digital subscriber line (DSL), asynchronous transfer mode (ATM), etc. Similarly, the networking protocols used on the network 110 can include the transmission control protocol/Internet protocol (TCP/IP), the hypertext transport protocol (HTTP), the simple mail transfer protocol (SMTP), the file transfer protocol (FTP), etc. The data exchanged over the network 110 can be represented using technologies and/or formats including the hypertext markup language (HTML), the extensible markup language (XML), etc. In addition, all or some of links can be encrypted using conventional encryption technologies such as the secure sockets layer (SSL), Secure HTTP and/or virtual private networks (VPNs). In another embodiment, the entities can use custom and/or dedicated data communications technologies instead of, or in addition to, the ones described above.



FIG. 2 is a block diagram illustrating a local services module 124, which includes one or more external databases including a validation database 112, a Central Registry 114 and one or more private registries 116a, 116b. The local services module 124 also includes a medical services controller 202, a registration server 205, a tracking server 210, an auto login server 220, a portal server 230, an application server 240, an alert server 250 and a search server 260.


The validation database 112 stores additional information that may be used for authorizing a transaction to be processed at the Reader 108. For example, in purchase transactions, the validation database 112 is a credit card validation database that is separate from the merchant providing the sale. Alternatively, a different database may be used to validate different types of purchasing means such as a debit card, ATM card, or bank account number. As another example in healthcare systems, the validation database 112 is a medical record number validation database that separate from the healthcare institution providing the patient care, which provides confirmation of the patient's identification.


The registries 114, 116a, 116b are securely-accessible databases coupled to the network 110 that store, among other items, PDK, Notary, and Reader information. In one embodiment, the registries 114, 116a, 116b do not store biometric information. In an alternative embodiment, the registries 114, 116a, 116b store biometric information in an encoded format that can only be recovered using an algorithm or encoding key stored in the PDK 102. Information stored in the registries 114, 116a, 116b can be accessed by the Reader 108 via the network 110 for use in the authentication process. There are two basic types of registries 114, 116a, 116b illustrated: private registries 116a, 116b and the Central Registry 114. Private registries 116a, 116b are generally established and administered by their controlling entities (e.g., a health care provider, business authority, or other entity administering authentication). Private registries 116a, 116b can be custom configured to meet the specialized and independent needs of each controlling entity. The Central Registry 114 is a single highly-secured, centrally-located database administered by a trusted third-party organization. In one embodiment, all PDKs 102 are registered with the Central Registry 114 and may be optionally registered with one or more selected private registries 116a, 116b. In alternative embodiments, a different number or different types of registries 114, 116a, 116b may be coupled to the network 110.


In one embodiment, a registry 114, 116 or the database 112 includes one or more records. A record includes login information associated with one or more applications. For example, the record includes a PDK ID 312, an application identifier, an application username and an application password. When the PDK 102 is identified by a Reader, data from the registry profile is communicated to the local services module 124 and used to allow a user to login or access an application using the data stored in the registry profile. In one embodiment, different records in the registry 114, 116 or database 112 are encrypted using a registry key that is also stored in the PDK 102 to prevent access to a record without the PDK 102. One embodiment of launching, or accessing, an application using a registry profile is further described below in conjunction with FIGS. 18-20.


The medical services controller 202 enables communication between the servers and modules of the local services module 124 and third party link module 126 with the computing device 120. In one embodiment, the medical services controller 202 receives information and requests from the computing device 120 via the network 110. In another embodiment, the medical services controller 202 coordinates the operation of the various servers and modules of the local services module 124 and third party link module 126. For example, when a patient registration request is received from the Reader 108, the medical services controller 202 routes the request to the registration server 205 and forwards registration confirmation to the appropriate destination, such as the computing device 120.


The registration server 205 automates the process of registering new patients and ensures that a patient does not need to register more than once. In one embodiment, the registration server 205 resides in the local services module 124, which is coupled to the network via signal line 158. In one embodiment, the registration server 205 is coupled to the validation database 112, central registry 114 and private registries 116a, 116b. The registration server 205 receives patient registration requests from Readers 108 via the network 110 and sends information to the computing device 120 also via the network 110.


The tracking server 210 enables real-time tracking of individuals, equipment and supplies. In one embodiment, the tracking server 210 resides in the local services module 124, which is coupled to the network 110 via signal line 158. The tracking server 210 receives information from the Readers 108 and sends information back to the Readers 108 and PDK 102. One embodiment of the tracking server 210 is described in more detail below with reference to FIG. 15.


The auto login server 220 allows for automated logging in of a user into a computer system. In one embodiment, the user is a healthcare provider logging into a healthcare computer system. In one embodiment, the auto login server 220 resides in the local services module 124 and is coupled to the validation database 112, central registry 114 and private registries 116a, 116b. The auto login server receives login requests from the Readers 108 and sends login authorization to the computing device 120. One embodiment of the auto login server 220 is described in more detail below with reference to FIG. 17.


The portal server 230 exchanges data between the local services module 124 and one or more third party sites 140. For example, the portal server 230 includes identifiers associated with one or more third party sites 140 to identify a third party site 140 and enable access to data maintained by the third party site 140. In one embodiment, the portal server 230 also modifies the format of data received from a third party site 140 to expedite use of the received data by another component, such as the application server 240 or a computing device 120 coupled to the local services module 124.


The application server 240 includes data that, when executed by a processor, implements one or more applications to provide one or more types of functionality. In one embodiment, the application server 240 is included in the local services module 124. Additionally, in one embodiment, the application server 240 communicates with one or more third party sites 140 via a signal line 164, which communicates with the third party link module 126, which connects to the network 130 via a communication channel 170, which communicates with the third party site 140 via a communication channel 172. This allows the application server 240 to communicate data from the third party site 140 to the computing device 120. One embodiment of the application server 240 is described in more detail below with reference to FIG. 24. Such third party services may include accessing a patient's virtual database records or insurance information or sending prescription requests to remote pharmacies. More detailed information describing the components and functions of these servers is described in more detail below.


The alert server 250 provides automatic updates and alerts for monitored patients or other entities. The alert server 250 receives information from Readers 108 and sends information to the computing device 120. In one embodiment, the alert server 250 resides in the local services module 124. In one embodiment, the alert server 250 receives data from the tracking server 210 to allow generation of updates or alerts based on the location of a PDK 102. In one embodiment, the alert server 250 is configured to receive data from an alert editor. In one embodiment, the data received from the alert editor includes alert identifiers and objects associated with the alert identifiers.


The search server 260 enables the user to search the tracking server 210 for one or more tracked items (e.g., users or assets) and request that the tracking server 210 generate or display one or more of a time and motion report, an audit report, a tracked items location, historic locations and an alert. In an alternative embodiment, the search server 260 and or its functionality are part of the tracking server 210.


Turning now to FIG. 3, an example embodiment of a PDK 102 is illustrated. The PDK 102 comprises a memory 310, a programmer I/O 340, control logic 350, a transceiver 360, a biometric reader 370 and a temp sensor 375 coupled by a bus 380. The PDK 102 can be standalone as a portable, physical device or can be integrated into commonly carried items. For example, a PDK 102 can be integrated into a portable electronic device such as a cell phone, Personal Digital Assistant (PDA), or GPS unit, an employee identification tag or badge, clothing, or jewelry items such as watches, rings, necklaces or bracelets. In one embodiment, the PDK 102 can be, for example, about the size of a Subscriber Identity Module (SIM) card and be as small as a square inch in area or less. In another embodiment, the PDK 102 can be easily contained in a pocket, on a keychain, or in a wallet. In yet another embodiment, a PDK 102 can be integrated into a sticker, tag or other item attachable to various items or equipment. In other embodiments, the PDK 102 can be integrated into a clipboard, patient wristband or other patient identification tags or badges. In some embodiments, where the PDK 102 is attached to equipment for tracking purposes, the PDK 102 also includes a button or switch that can be activated or deactivated to indicate whether the equipment is in use.


The memory 310 can be a read-only memory, a once-programmable memory, a read/write memory or any combination of memory types including physical access secured and tamper-proof memories. The memory 310 typically stores a unique PDK ID 312, an activity log 390 and one or more profiles 320. The PDK ID 312 comprises a public section and a private section of information, each of which can be used for identification and authentication. In one embodiment, the PDK ID 312 is stored in a read-only format that cannot be changed subsequent to manufacture. The PDK ID 312 is used as an identifying feature of a PDK 102 and distinguishes between PDKs 102 in private 116 or Central 114 registry entries. In an alternative embodiment, the registries can identify a PDK 102 by a different ID than the PDK ID 412 stored in the PDK 102, or may use both the PDK ID 312 and the different ID in conjunction. The PDK ID 312 can also be used in basic PDK authentication to ensure that the PDK 102 is a valid device.


The activity log 390 stores information associated with various activities of the PDK. For example, if the PDK 102 is a patient's PDK, the activity log 390 stores information identifying the patient's location throughout various times. In one embodiment, the activity log 390 keeps track of each time a patient visits a healthcare facility or each time a doctor or nurse visits a department within the healthcare facility. In another embodiment, the activity log 390 stores the patient's location throughout various points as the patient is in the provider's facility. Similarly, the if PDK 102 is attached to a piece of equipment or a cart of supplies, the activity log 390 stores location information as well. In another embodiment, if the PDK 102 is that of a provider, the activity log 390 stores information associated with the provider's rounds, i.e. each time a provider visits a certain patient or uses a particular medical device. In some embodiments where the PDK is associated with a piece of equipment, the activity log 390 stores information regarding one or more of the equipment's usage, maintenance and calibration.


The profile fields 320 can be initially empty at the time of manufacture but can be written to by authorized individuals (e.g., a Notary) and/or hardware (e.g., a Programmer). In one embodiment, each profile 320 comprises a profile history 322 and profile data 330. Many different types of profiles 320 are possible. A biometric profile, for example, includes profile data 330 representing physical and/or behavioral information that can uniquely identify the PDK owner. A PDK 102 can store multiple biometric profiles, each comprising a different type of biometric information. In one embodiment, the biometric profile 320 comprises biometric information transformed by a mathematical operation, algorithm, or hash that represents the complete biometric information (e.g., a complete fingerprint scan). In one embodiment, a mathematical hash is a “one-way” operation such that there is no practical way to re-compute or recover the complete biometric information from the biometric profile. This both reduces the amount of data to be stored and adds an additional layer of protection to the user's personal biometric information. In one embodiment, the biometric profile is further encoded using an encoding key and/or algorithm that is stored with the biometric profile data. Then, for authentication, the biometric profile data and the encoding key and/or algorithm are passed to the Reader 108.


In one embodiment, the PDK 102 also stores one or more biometric profile “samples” associated with each biometric profile. The biometric profile sample is a subset of the complete profile that can be used for quick comparisons of biometric data. In one embodiment, the profile samples can be transmitted over a public communication channel or transmitted with reduced level of encryption while the full biometric profiles are only transmitted over secure channels. In the case of fingerprint authentication, for example, the biometric profile sample may represent only small portion area of the full fingerprint image. In another embodiment, the fingerprint profile sample is data that describes an arc of one or more lines of the fingerprint. In yet another embodiment, the fingerprint profile sample can be data representing color information of the fingerprint.


In another embodiment, the stored profiles 320 include a PIN profile that stores one or more PINs or passwords associated with the PDK owner. Here, the number or password stored in the PIN profile can be compared against an input provided by the user at the point of transaction to authenticate the user. In one embodiment, a PIN profile sample is also stored with the PIN profile that comprises a subset of the full PIN. For example, a PIN profile sample can be only the first two numbers of the PIN that can be used to quickly compare the stored PIN profile to a PIN obtained at the point of transaction.


In yet another embodiment, the PDK 102 stores a picture profile that includes one or more pictures of the PDK owner. In a picture profile authentication, the picture stored in the PDK 102 is transmitted to a display at the point of transaction to allow an administrator (e.g., a clerk or security guard) to confirm or reject the identity of the individual requesting the transaction. In another embodiment, an image is captured of the individual at the point of transaction and compared to the picture profile by an automated image analysis means. Furthermore, picture profiles could be used, for example, in place of conventional passports or drivers licenses to authenticate the identity of an individual and allow for remote identification of individuals. For example, a police officer following a vehicle could obtain an image and identity of the driver while still maintaining a safe distance from the vehicle. In the hospitality industry, a host could greet a guest at the door of a hotel, casino or restaurant and easily recognize the guest by obtaining the guest's picture profile as he/she enters. In healthcare, a doctor or nurse can ensure that he or she is administering the correct medication to the right patient by looking at the profile picture associated with that patient.


A registry or database profile typically stores information associating the user with a registry. The registry profile can be used to determine if the individual is associated with the controlling entity for that registry and if different types of transactions are authorized for the individual. A registry profile can further include additional user information for use with the registry. For example, a private registry profile associated with a particular merchant may include a credit card number that the user has selected as a default for that merchant. In one embodiment, a profile can further include spending limits that limits the amount of purchases a user can make with a particular vendor or using a particular profile.


A registry profile may include one or more service blocks identifying a registry 114, 116 or database 112 in the local services module 124 and identify a record within the identified registry 114, 116 or database 112. In one embodiment, the service block includes a registry identifier, a record identifier to specify a record within the identified registry and a registry key. In one embodiment, different records in the registry 114, 116 or database 112 are encrypted using registry key that is stored in the PDK 102 to prevent access to a record without the PDK 102. In one embodiment, one or more processes implemented by the control logic 350 are used to identify a service block within a registry profile, allowing access to specific service blocks. This also allows application of service block-specific security by making different service blocks independent of each other. One embodiment of launching, or accessing, an application using a registry profile is further described below in conjunction with FIGS. 18-21.


Additionally, a profile may include application specific information, allowing a registry profile to be used to launch or access an application and application specific information included in the registry profile or in another profile to be accessed by the application. This allows the PDK 102 to include data customizing operation of an application. For example, a patient of a healthcare facility may have a PDK 102 having a profile that stores the patient's medical records, allowing a computing device 120 to retrieve the patient's medical records when the PDK 102 communicates with a Reader 108 coupled to the computing device 120. As another example, a PDK 102 profile includes user preference data, allowing configuration of an application executed by a computing device 120 by communicating the user preference data from the PDK 102 to the computing device 120 via a Reader 108 coupled to the computing device 120. Hence, in addition to including data used for authentication or security, a PDK 102 may include profiles for customizing operation of applications or for storing data for subsequent access.


A profile can further include personal identification information such as name, address, phone number, etc., insurance information, credit/debit card information, or information regarding visited providers. This information can be useful for certain types of transactions. For example, patient office visits, a PDK 102 can automatically transmit address, insurance and billing information to the Reader 108 at the conclusion of the office visit.


Generally, some types of profile information (e.g., a biometric profile) can only be acquired during a trusted initialization process that is administered by a trusted Notary. In one embodiment, other secure information such as medical conditions are also stored to the PDK 102 in the presence of a Notary. Alternatively, certain types of low-risk information can be added by the user without a Notary, such as, for example a change of address. In another embodiment, once an initial profile has been stored to the PDK 102, a user can add information to the PDK 102 using a Programmer without a Notary through self-authentication. For example, in one embodiment, a PDK 102 that has a stored biometric profile can be “unlocked” by providing a matching biometric input. Then, once unlocked, the user can add or remove additional profiles, insurance cards, personal information, etc. to the PDK 102 using a Programmer. For example, in one embodiment, a user that has unlocked his/her own PDK 102 can store additional biometric information (such as fingerprint information for other fingers) in his/her PDK 102. In another example, a user that cancels an insurance card, can unlock his/her PDK 102 to remove the insurance card information. In another embodiment, the user can make copies of the PDK 102 or move profiles from one PDK 102 to another once the PDK 102 is unlocked. FIG. 25 provides additional description of acquisition of an initialization process.


The profile history 322 includes a programmer ID field 324, a Notary ID 326, and a site ID field 328. The profile history 322 relates to the specific hardware, Notary, and site used at the time the profile data was created and stored to the PDK. Typically each profile 320 stores its specific profile history 322 along with the profile data 330. The profile history 322 can be recalled for auditing purposes at a later time to ensure the credibility of the stored data. In one embodiment, transaction history can also be stored to the PDK memory 310. Here, the PDK 102 stores information associated with any transactions made with the PDK 102 such as the healthcare provider, reason for office visit and insurance used, etc.


The PDK 102 also includes a programmer I/O 340 that provides an interface to a trusted Programmer (not shown). The Programmer comprises trusted hardware that is used to program the memory 310 of the PDK 102. An example embodiment of a Programmer is described in U.S. patent application Ser. No. 11/744,832 to John Giobbi, et al., entitled “Personal Digital Key Initialization and Registration For Secure Transaction” and filed on May 5, 2007, the entire contents of which are incorporated herein by reference. The programmer I/O 340 can be, for example, a USB interface, serial interface, parallel interface, or any other direct or wireless link for transferring information between the PDK 102 and the Programmer. When coupled to the Programmer, the programmer I/O 340 receives initialization data, registration data or other information to be stored in the memory 310.


In one embodiment, the programmer I/O 340 is attached to an asset (e.g., equipment) in order to monitor the asset and trigger alerts. For example, in one embodiment, the programmer I/O may be connected to the equipment and monitor the calibration of the equipment and/or its usage. In one such embodiment, one or more of the tracking server 210 and the alert server 250 utilize that information to generate an alert when the equipment is out of calibration and schedule maintenance on the equipment at a time when the equipment is seldom used and/or an alternative piece of equipment is normally available. For another example, in one embodiment, the programmer I/O 340 may be connected to a piece of equipment, detect a low battery and generate an alert. In one embodiment, if the battery is low, the programmer I/O 340 may send an output to the equipment to turn on an LED or make a sound, for example, to make the equipment easier to identify in a crowded supply closet especially if the closet contains similar equipment. As described below, in some embodiments, such an output is sent responsive to the satisfaction of one or more alert criteria and/or the selection of the PDK 102 or the item (i.e., user or asset) associated with the PDK 102 using a software interface on a computing device 120.


In some embodiments, the PDK 102 includes (not shown) or is communicatively connected (e.g. via the programmer I/O 340) to an input device such as a button. In one such embodiment, use of the input device signals the system 100 to display information related to that item. For example, assume a PDK 102 associated with includes a button, in one embodiment, when that button is pressed information regarding the equipment including its usage and/or calibration information is sent for display on the equipment itself and/or a computing device 120.


The control logic 350 coordinates between functions of the PDK 102. In one embodiment, the control logic 350 facilitates the flow of information between the programmer I/O 340, transceiver 360 and memory 310. The control logic 350 can further process data received from the memories 310, programmer I/O 340 and transceiver 360. Note that the control logic 350 is merely a grouping of control functions in a central architecture, and in other embodiments, the control functions can be distributed between the different modules of the PDK 102. The operation of the control logic will be understood to those skilled in the art based on the description below corresponding to FIGS. 8-11D.


Optionally, the PDK 102 can also include a built in biometric reader 370 to acquire a biometric input from the user. The biometric reader 370 is configured to obtain a representation of physical or behavioral characteristics derived from the individual. The biometric input can be used to unlock the PDK 102 for profile updates, or for various types of authentication. For example, in one embodiment, a biometric input is received by the PDK 102 and compared to stored biometric information. Then, if the user is authenticated, the PDK 102 can indicate to the Reader 108 that the user is authenticated and transmit additional information (e.g., a credit card number) needed to complete a transaction.


Optionally, the PDK 102 can also include a temp sensor 375 to acquire temperature readings, which may be used in tracking and reporting an asset's temperature or generating a temperature alert as described further below. The temp sensor 375 can be communicatively coupled to the PDK 102 or integrated into the PDK as illustrated depending upon the embodiment. In another embodiment, the temp sensor 375 is separate from the PDK and communicatively coupled to the PDK through the PDK's I/O port or is communicatively coupled to a Reader 108.


The transceiver 360 is a wireless transmitter and receiver for wirelessly communicating with a Reader 108 or other wireless device. The transceiver 360 sends and receives data as modulated electromagnetic signals. Moreover, the data can be encrypted by the transceiver 360 and transmitted over a secure link. Further, the transceiver 360 can actively send connection requests, or can passively detect connection requests from another wireless source. In one embodiment, the transceiver 360 is used in place of a separate programmer I/O 340 and is used to wirelessly communicate with the Programmer for programming. In one embodiment, the transceiver 360 is adapted to communicate over a range of up to around 5 meters.



FIG. 4 is a block diagram illustrating one embodiment of a biometric reader 370 of a PDK 102. The biometric reader 370 includes a biometric capture module 402, a validation module 404, an enrollment module 406 and persistent storage 408. In one embodiment, the enrollment module 406 registers a user with a PDK 102 by persistently storing biometric data associated with the user. Further, enrollment module 406 registers PDK 102 with a trusted authority by providing the code (e.g., device ID or PDK ID 312) to the trusted authority. Or conversely, the trusted authority can provide the code to PDK 102 to be stored therein.


The biometric capture module 402 comprises a scan pad to capture scan data from a user's fingerprint (e.g., a digital or analog representation of the fingerprint). Other embodiments of the biometric capture module 402 includes retinal scanners, iris scanners, facial scanner, palm scanners, DNA/RNA analyzers, signature analyzers, cameras, microphones, and voice analyzers to capture other identifying biometric data. Using the biometric data, validation module 404 determines whether the user's fingerprint, or other biometric data, matches the stored biometric data from enrollment. Conventional techniques for comparing fingerprints can be used. For example, the unique pattern of ridges and valleys of the fingerprints can be compared. A statistical model can be used to determine comparison results. Validation module 404 can send comparison results to control logic 350 of the PDK 102.


In other embodiments, validation module 404 can be configured to capture biometric data for other human characteristics. For example, a digital image of a retina, iris, and/or handwriting sample can be captured. In another example, a microphone can capture a voice sample.


Persistent storage 408 persistently stores biometric data from one or more users which can be provided according to specific implementations. In one embodiment, at least some of persistent storage 408 is a memory element that can be written to once but cannot subsequently be altered. Persistent storage 408 can include, for example, a ROM element, a flash memory element, or any other type of non-volatile storage element. Persistent storage 508 is itself, and stores data in, a tamper-proof format to prevent any changes to the stored data. Tamper-proofing increases reliability of authentication because it does not allow any changes to biometric data (i.e., allows reads of stored data, but not writes to store new data or modify existing data). Furthermore, data can be stored in an encrypted form.


In one embodiment, persistent storage 408 also stores the code that is provided by the PDK 102 responsive to successful verification of the user. Further, in some embodiments persistent storage 408 stores other data utilized during the operation of PDK 102. For example, persistent storage 408 can store encryption/decryption keys utilized to establish secure communications links.


An example embodiment of PDK 102 including a biometric reader is described in U.S. patent application Ser. No. 11/314,199 to John Giobbi, et al., entitled “Biometric Personal Data Key (PDK) Authentication”, the entire contents of which are incorporated herein by reference.


Turning now to FIG. 5, an example embodiment of a Reader 108 is illustrated. The embodiment includes one or more biometric readers 502, a receiver-decoder circuit (RDC) 504, a processor 506, a network interface 508, an I/O port 612, optionally a credit card terminal I/O 510 and a reader ID 518. In alternative embodiments, different or additional modules can be included in the Reader 108.


The RDC 504 provides the wireless interface to the PDK 102. Generally, the RDC 504 wirelessly receives data from the PDKs 102 in an encrypted format and decodes the encrypted data for processing by the processor 506. An example embodiment of an RDC is described in U.S. patent application Ser. No. 11/292,330 entitled “Personal Digital Key And Receiver/Decoder Circuit System And Method”, the entire contents of which are incorporated herein by reference. Encrypting data transmitted between the PDK 102 and Reader 108 minimizes the possibility of eavesdropping or other fraudulent activity. In one embodiment, the RDC 504 is also configured to transmit and receive certain types of information in an unencrypted or public format.


The biometric reader 502 receives and processes the biometric input 122 from an individual and is configured to obtain a representation of physical or behavioral characteristics derived from the individual. In one embodiment, the biometric reader 602 is a fingerprint scanner. Here, the biometric reader 502 includes an image capture device adapted to capture the unique pattern of ridges and valleys in a fingerprint also known as minutiae. Other embodiments of biometric readers 502 include retinal scanners, iris scanners, facial scanner, palm scanners, DNA/RNA analyzers, signature analyzers, cameras, microphones, and voice analyzers. Furthermore, the Reader 108 can include multiple biometric readers 502 of different types. In one embodiment, the biometric reader 502 automatically computes mathematical representations or hashes of the scanned data that can be compared to the mathematically processed biometric profile information stored in the PDK 102.


The processor 506 can be any general-purpose processor for implementing a number of processing tasks. Generally, the processor 506 processes data received by the Reader 108 or data to be transmitted by the Reader 108. For example, a biometric input 122 received by the biometric reader 502 can be processed and compared to the biometric profile 320 received from the PDK 102 in order to determine if a transaction should be authorized. In different embodiments, processing tasks can be performed within each individual module or can be distributed between local processors and a central processor. The processor 506 further includes a working memory for use in various processes.


The network interface 508 is a wired or wireless communication link between the Reader 108 and one or more external databases such as, for example, a validation database 112, the Central Registry 114 or a private registry 116a, 116b. For example, in one type of authentication, information is received from the PDK 102 at the RDC 504, processed by the processor 506, and transmitted to an external database 112-116 through the network interface 508. The network interface 508 can also receive data sent through the network 110 for local processing by the Reader 108. In one embodiment, the network interface 508 provides a connection to a remote system administrator to configure the Reader 108 according to various control settings.


The I/O port 512 provides a general input and output interface to the Reader 108. The I/O port 512 may be coupled to any variety of input devices to receive inputs such as a numerical or alphabetic input from a keypad, control settings, menu selections, confirmations, and so on. Outputs can include, for example, status LEDs, an LCD, or other display that provides instructions, menus or control options to a user.


The credit card terminal I/O 510 optionally provides an interface to an existing credit card terminal 514. In embodiments including the credit card terminal I/O 510, the Reader 108 supplements existing hardware and acts in conjunction with a conventional credit card terminal 514. In an alternative embodiment, the functions of an external credit card terminal 514 are instead built into the Reader 108. Here, a Reader 108 can completely replace an existing credit card terminal 514.


In one embodiment, a Reader 108 is adapted to detect and prevent fraudulent use of PDKs that are lost, stolen, revoked, expired or otherwise invalid. For example, the Reader 108 can download lists of invalid PDKs IDs 312 from a remote database and block these PDKs 102 from use with the Reader 108. Furthermore, in one embodiment, the Reader 108 can update the blocked list and/or send updates to remote registries 114, 116a, 116b or remote Readers 108 upon detecting a fraudulently used PDK 102. For example, if a biometric input 122 is received by the Reader 108 that does not match the biometric profile received from the PDK 102, the Reader 108 can obtain the PDK ID 312 and add it to a list of blocked PDK IDs 312. In another embodiment, upon detecting fraudulent use, the Reader 108 can send a signal to the PDK 102 that instructs the PDK 102 to deactivate itself. The deactivation period can be, for example, a fixed period of time, or until the rightful owner requests re-activation of the PDK 102. In yet another embodiment, the Reader 108 can send a signal instructing the fraudulently obtained PDK 102 to send alarm signals indicating that the PDK 102 is a stolen device. Here, a stolen PDK 102 can be tracked, located and recovered by monitoring the alarm signals. In one embodiment, the Reader 108 stores biometric or other identifying information from an individual that attempts to fraudulently use a PDK 102 so that the individual's identity can be determined.


The reader ID 518 is memory that stores the reader's unique identification number. The memory can be a read-only memory, a once-programmable memory, a read/write memory or any combination of memory types including physical access secured and tamper-proof memories. The reader ID 518 plays an integral role in the process for tracking equipment, supplies and individuals as will be explained in more detail below.


Generally, the Reader 108 is configured to implement at least one type of authentication prior to enabling a transaction. In many cases, multiple layers of authentication are used. A first layer of authentication, referred to herein as “device authentication,” begins any time a PDK 102 moves within range of a Reader 108. In device authentication, the Reader 108 and the PDK 102 each ensure that the other is valid based on the device characteristics, independent of any profiles stored in the PDK 102. In some configurations, when fast and simple authentication is desirable, only device authentication is required to initiate the transaction. For example, a Reader 108 may be configured to use only device authentication for office visit check-ins. The configuration is also useful in other types of low risk transactions where speed is preferred over additional layers of authentication.


Other configurations of the Reader 108 require one or more additional layers of authentication, referred to herein as “profile authentication” based on one or more profiles stored in the PDK 102. Profile authentication can include, for example, a biometric authentication, a PIN authentication, a photo authentication, a registry authentication, etc. or any combination of the above authentication types. Profile authentications are useful when a more exhaustive authentication process is desired, for example, for invasive patient treatments or drug administration. For example, profile authentication may be required for an invasive patient treatment such as a surgery in order to ensure that correct procedure is done on the correct patient and the correct body part. Beneficially minimizing the risk of removing the wrong person's leg, rebuilding the left knee when the right knee was supposed to be rebuilt, etc. For another example, profile authentication may be required prior to administering medication to ensure that the user is not given a medication the user is allergic to and/or that would be dangerous in combination with medications the user has already taken. Moreover, the profile authentication may be useful for a patient's administrative records such as but not limited to insurance information, information regarding the appointment of a medical power of attorney and whether the user has signed a do not resuscitate (“DNR”).



FIG. 6 is a high-level block diagram of one embodiment of a computing device 120. In one embodiment, the computing device 120 is a personal computer. In another embodiment, the computing device 120 is a smart phone or other mobile computing and communication device. Illustrated are at least one processor 602 coupled to a bus 604. Also coupled to the bus 604 are a memory 606, a storage device 608, a keyboard 610, a graphics adapter 612, a pointing device 614, a network adapter 616 and a reader 620. In one embodiment, the functionality of the bus 604 is provided by an interconnecting chipset. A display device 618 is coupled to the graphics adapter 612.


The memory 606 includes an application 630. In one embodiment, the application 630 enables the computing device 120 to communicate with the local services 124. In another embodiment, the application 630 processes information and data received from the readers 620 and various modules and servers of the local services 124 and third party link module 126.


The storage device 608 is any device capable of holding data, like a hard drive, compact disk read-only memory (CD-ROM), DVD, or a solid-state memory device. The memory 606 holds instructions and data used by the processor 602. The pointing device 614 may be a mouse, track ball, or other type of pointing device, and is used in combination with the keyboard 610 to input data into the computing device 120. The graphics adapter 612 displays images and other information on the display device 618. The network adapter 616 couples the computing device 120 to a local or wide area network.


As is known in the art, a computing device 120 can have different and/or other components than those shown in FIG. 6. In addition, the computing device 120 can lack certain illustrated components. In one embodiment, a computing device 120 lacks a keyboard 610, a pointing device 614, a graphics adapter 612, and/or a display device 618. Moreover, the storage device 608 can be local and/or remote from computing device 120 (such as embodied within a storage area network (SAN)). The reader 620 includes all or some of the components as the Reader 108 described above in conjunction with FIG. 5.


As is known in the art, the computing device 120 is adapted to execute computer program modules for providing functionality described herein. As used herein, the term “module” refers to computer program logic utilized to provide the specified functionality. Thus, a module can be implemented in hardware, firmware, and/or software. In one embodiment, program modules are stored on the storage device 608, loaded into the memory 606, and executed by the processor 602.


Embodiments of the entities described herein can include other and/or different modules than the ones described here. In addition, the functionality attributed to the modules can be performed by other or different modules in other embodiments. Moreover, this description occasionally omits the term “module” for purposes of clarity and convenience.



FIG. 7 is a flowchart illustrating one embodiment of a process for authorizing a communication connection using secure authentication. When a PDK 102 comes within range of a Reader 108, communication is automatically established 702 between the RDC 504 of the Reader 108 and the PDK 102. It should be noted that the processes described herein with regards to Reader 108 may be also performed with reader 620 of the computing device 120.


In one embodiment, the RDC 504 continually transmits beacons that are detected by the PDK 102 when it enters a proximity zone of the Reader 108. In an alternative embodiment, the communication is instead initiated by the PDK 102 and acknowledged by the Reader 108. The initial communication between the Reader 108 and the PDK 102 may or may not be encrypted to provide increased security of communication between the Reader and the PDK 102.


In step 704, a device authentication is performed. Here, the Reader 108 establishes if the PDK 102 is a valid device and PDK 102 establishes if the Reader 108 is valid. Furthermore, device authentication determines if the PDK 102 is capable of providing the type of authentication required by the Reader 108.


An example embodiment of a method 800 for performing 704 device authentication is illustrated in FIG. 8. The RDC 504 receives and analyzes 802 information from the PDK 102 and the PDK 102 receives and analyzes 802 information received from the RDC 504. Generally, this initial information is transmitted over a public communication channel in an unencrypted format. Based on the received information, each device 102, 504 determines 804 if the other is valid. As will be apparent to one of ordinary skill in the art, a number of different protocols can be used for this type of authentication such as, for example, a challenge-response authentication or a challenge handshake authentication protocol (CHAP). If either of the devices 102, 504 is invalid 812, the process ends. If both the PDK 102 and the RDC 604 are determined by the other to be valid, the Reader 108 requests and receives 806 authentication type information from the PDK 102 indicating the different types of authentication the PDK 102 is capable of satisfying based on the types of profiles stored by the PDK 102.


The available profile types in the PDK 102 are compared against the authentication types that can be used by the Reader 108. For example, a particular Reader 108 may be configured to perform only a fingerprint authentication and therefore any PDK without a fingerprint biometric profile cannot be used with the Reader 108. In one embodiment, the Reader 108 can allow more than one type of profile to be used. In another embodiment, the Reader 108 requires more than one type of profile for authentication, while in yet further embodiments no profile authentications are required. Next, the method determines 808 whether the PDK 102 has one or more profiles sufficient for authentication. If the PDK 102 does not have one or more profiles sufficient for authentication with the Reader 108, the devices 102, 504 are determined to be invalid 812 because they cannot be used with each other. If the PDK 102 does have one or more sufficient types of profiles, the devices are valid 810.


Turning back to FIG. 7, if either the PDK 102 or RDC 504 is not found valid (706—No) during device authentication 704, the connection is not authorized 718 and the process ends. If the devices are valid (706—Yes), the RDC 504 temporarily buffers 708 the received PDK information. It is noted that in one embodiment, steps 702-708 are automatically initiated each time a PDK 102 enters the proximity zone of the Reader 108. Thus, if multiple PDKs 102 enter the proximity zone, the Reader 108 automatically determines which PDKs 102 are valid and buffers the received information from each valid PDK 102.


The method next determines 710 whether profile authentication is required based on the configuration of the Reader 108, the type of transaction desired or by request of a merchant or other administrator. If the Reader 108 configuration does not require a profile authentication in addition to the PDK authentication, then the Reader 108 proceeds to complete the transaction for the PDK 102. If the Reader 108 does require profile authentication, the profile authentication is performed 712 as will be described below with references to FIGS. 9-10D. If a required profile is determined 714 to be valid, the Reader 108 allows 716 the connection. Otherwise, the Reader 108 indicates that the connection is not authorized 718. In one embodiment, allowing 716 the connection includes enabling access to secure patient records. In another embodiment, allowing 716 the connection includes enabling the automatic logging in and out of software and system applications. Patient or provider name or medical record number (typically stored in a profile memory field 332) can be transmitted by the PDK 102 for identification purposes. In one embodiment, the PDK 102 is configured with multiple purchasing means and a default is configured for different types of transactions. In another embodiment, each insurance card or medical billing information is displayed to the customer by the Reader 108 and the customer is allowed to select which to apply to the office visit.


Turning now to FIG. 9, an embodiment of a method 900 for profile authentication is illustrated. In step 902, a secure communication channel is established between the RDC 504 and the PDK 102. Information sent and received over the secure channel is in an encrypted format that cannot be practically decoded, retransmitted, reused, or replayed to achieve valid responses by an eavesdropping device. The Reader 108 transmits 904 profile authentication requests to the PDK 102 requesting transmission of one or more stored profiles over the secure channel.


In one embodiment, a trigger is required certain times, but not required within specified time intervals. This allows a trigger to initially be required to authenticate a profile, but not required after initial authentication of the profile. For example, a trigger may be required to authenticate a profile the first time the Reader 108 transmits 904 a profile authentication request to the PDK 102, prompting a biometric authentication, or other type of authentication, as further described below. If the profile is authenticated, the next time the Reader 108 transmits 904 a profile authentication request to the PDK 102 during a specified time interval, no trigger is required and the Reader 108 relies on the previous authentication to authenticate the profile. Thus, the time interval simplifies access to a computing device 120 associated with the Reader 108 by identifying a length of time during which the profile is considered to be authenticated without being tested or without requiring detection of a trigger, as described below.


For example, the first time a healthcare provider accesses a computing device 120, the healthcare provider is required to provide a biometric input, as further described below, to verify the identity of the healthcare provider. To simplify subsequent access to the computing device 120, a time interval of four hours is associated with the healthcare provider's profile, so that the healthcare provider's profile remains authenticated by the Reader 108 for four hours after initial authentication. This allows the healthcare provider to subsequently access the computing device 120 without again providing biometric input. However, after four hours have elapsed, when the healthcare provider again accesses the Reader 108, the Reader 108 again requires the healthcare provider to provide a biometric input to verify the healthcare provider's profile.


Accordingly, after the Reader 108 transmits 904 profile authentication requests to the PDK 102 requesting transmission of one or more stored profiles over the secure channel and received a stored profile for authentication, the Reader 108 determines 906 whether a requested profile is within an associated time interval. In one embodiment, the time interval data is transmitted by the PDK 102 along with the profile. Alternatively, the Reader 108 includes data describing time interval data associated with different profiles and uses the included data to determine 906 whether the profile is within its associated time interval. For example, the time interval data includes a profile ID, the time interval and the time when the profile was last authenticated. The Reader 108 determines whether the time when the profile is received responsive to an authentication request is within the duration specified by the time interval of the time when the profile was last authenticated.


If the profile is not within its associated time interval (906—No), the process determines 908 whether a “trigger” is required for authentication. The requirement for a trigger depends on the configuration of the Reader 108, the specific type of transaction to be executed and the type of authentication requested. For example, if it has been longer than the time interval from the time when the profile was previously authenticated to the time when the profile is received responsive to the authentication request, the process determines 908 whether a trigger is needed to authenticate the profile.


In a first configuration, a trigger is required to continue the process because of the type of authentication being used. For example, in biometric authentication, the authentication process cannot continue until the Reader 108 detects a biometric contact and receives biometric information. It is noted that biometric contact is not limited to physical contact and can be, for example, the touch of a finger to a fingerprint scanner, the positioning of a face in front of a facial or retinal scanner, the receipt of a signature, the detection of a voice, the receipt of a DNA sample, RNA sample, or derivatives or any other action that permits the Reader 108 to begin acquiring the biometric input 122. By supplying the biometric contact, the user indicates that the authentication and transaction process should proceed. For example, a PDK holder that wants log in to the healthcare software application system via the computing device 120 initiates the login process by touching a finger to the reader 720 of the computing device 120. The computing device 120 then displays confirmation of the user's login.


In a second configuration, some other user action is required as a trigger to proceed with the transaction even if the authentication process itself does not necessarily require any input. This can be used for many purchasing transactions to ensure that the purchase is not executed until intent to purchase is clear. For example, a Reader 108 at a gas station can be configured to trigger the transaction when a customer begins dispensing gas. At a supermarket, a Reader 108 can be configured to trigger the transaction when items are scanned at a checkout counter. Similarly, a user may login to a healthcare software application system via the computing device 120 by simply being in the proximity zone of the reader 620 of a computing device 120 and beginning to use the keyboard 610 or pointing device 614 of the computing device 120.


In a third configuration, no trigger is used and the Reader 108 automatically completes the remaining authentication/transaction with no explicit action by the user. This configuration is appropriate in situations where the mere presence of a PDK 102 within range of the Reader 108 is by itself a clear indication of the person associated with the PDK 102 desires to complete a transaction. For example, a Reader 108 can be positioned inside the entrance to a doctor's office or clinic. When a patient having an associated PDK 102 walks through the entrance, the Reader 108 detects the PDK 102 within range, authenticates the user, and notifies the receptionist that the patient has arrived for his or her appointment. Thus, if no trigger is required, the process next performs 914 the requested profile authentication tests.


If a trigger is required, the Reader 108 monitors 910 its inputs (e.g., a biometric reader, key pad, etc.) and checks for the detection 912 of a trigger. If the required trigger is detected, the process continues to perform 914 one or more profile authentication test. FIGS. 10A-10D illustrate various embodiments of profile authentication tests. According to different configurations of the Reader 108, one or more of the illustrated authentication processes may be used. Further, in some embodiments, one or more of the processes may be repeated (e.g., for different types of biometric inputs).


However, if the Reader 108 determines 906 that the requested profile is received within an associated time interval, the Reader authenticates 916 the profile. This beneficially simplifies access to a computing device 120 coupled to the Reader 108 by allowing an individual to bypass profile authentication when the Reader 108 is accessed within a time interval of the initial profile authentication.



FIG. 10A illustrates a method 1000A for biometric authentication. In biometric authentication, a Reader 108 compares a biometric profile stored in the PDK 102 to the biometric input 122 acquired by the biometric reader 502. Advantageously, the biometric input 122 is not persistently stored by the Reader 108, reducing the risk of theft or fraudulent use. If the Reader 108 determine 1002 that biometric authentication is requested, the Reader 108 scans 1104 the biometric input 122 supplied by the user. In one embodiment, scanning 1004 includes computing a mathematical representation or hash of the biometric input 122 that can be directly compared to the biometric profile.


In one embodiment, scanning 1004 also includes obtaining a biometric input sample from the biometric input according to the same function used to compute the biometric profile sample stored in the PDK 102. Optionally, the Reader 108 receives 1008 a biometric profile sample from the PDK 102 and determines 1010 if the biometric profile sample matches the biometric input sample. If the biometric profile sample does not match the input sample computed from the scan, the profile is determined to be invalid 1018. If the biometric profile sample matches, the full biometric profile 1012 is received from the PDK 102 to determine 1014 if the full biometric profile 1012 matches the complete biometric input 122. If the profile 1012 matches the scan, the profile 1012 is determined to be valid 1120, otherwise the profile 1012 is invalid 1018. It is noted that in one embodiment, steps 1008 and 1010 are skipped and only a full comparison is performed. In one embodiment, the biometric profile and/or biometric profile sample is encoded and transmitted to the Reader 108 along with an encoding key and/or algorithm. Then, the Reader 108 uses the encoding key and/or algorithm to recover the biometric profile and/or biometric profile sample. In another alternative embodiment, only the encoding key and/or algorithm is transmitted by the PDK 102 and the biometric profile data is recovered from a remote database in an encoded form that can then be decoded using the key and/or algorithm.


It will be apparent to one of ordinary skill that in alternative embodiments, some of the steps in the biometric profile authentication process can be performed by the PDK 102 instead of the Reader 108 or by an external system coupled to the Reader 108. For example, in one embodiment, the biometric input 122 can be scanned 1004 using a biometric reader built into the PDK 102. Furthermore, in one embodiment, the steps of computing the mathematical representation or hash of the biometric input and/or the steps of comparing the biometric input to the biometric profile can be performed by the PDK 102, by the Reader 108, by an external system coupled to the Reader 108, or by any combination of the devices. In one embodiment, at least some of the information is transmitted back and forth between the PDK 102 and the Reader 108 throughout the authentication process. For example, the biometric input 122 can be acquired by the PDK 102, and transmitted to the Reader 108, altered by the Reader 108, and sent back to the PDK 102 for comparison. Other variations of information exchange and processing are possible without departing from the scope of the invention. The transfer of data between the PDK 102 and the Reader 108 and/or sharing of processing can provide can further contribute to ensuring the legitimacy of each device.



FIG. 10B illustrates a method 1000B for PIN authentication. If PIN authentication is requested 1024, a PIN is acquired 1026 from the user through a keypad, mouse, touch screen or other input mechanism. Optionally, the Reader 108 receives 1028 a PIN sample from the PDK 102 comprising a subset of data from the full PIN. For example, the PIN sample can comprise the first and last digits of the PIN. If the Reader 108 determines 1030 that the PIN sample does not match the input, the profile is immediately determined to be invalid 1036. If the PIN sample matches, the full PIN profile is received 1032 from the PDK 102 and compared to the input. If the Reader 108 determines 1034 that the profile matches the input, the profile is determined to be valid and is otherwise invalid 1036. It is noted that in one embodiment, steps 1028 and 1030 are skipped.



FIG. 10C illustrates a method 1000C for a picture authentication. If the Reader 108 determines 1042 that picture authentication is requested, a picture profile is received 1044 from the PDK 102 by the Reader 108 and displayed 1046 on a screen. An administrator (e.g., a clerk, security guard, etc.) is prompted 1048 to compare the displayed picture to the individual and confirms or denies if the identities match. If the administrator confirms that the identities match, the picture profile is determined to be valid 1054 and is otherwise invalid 1052. In an alternative embodiment, the process is automated and the administrator input is replaced with a process similar to that described above with reference to FIG. 10A. Here, an image of the user is captured and face recognition is performed by comparing picture profile information received from the PDK 102 to the captured image.



FIG. 10D illustrates a method 1000D for authentication with a private registry 116a, 116b or the Central Registry 114. If the Reader 108 determines that registry authentication is requested, a secure communication channel is established 1062 over the network 110 between the Reader 108 and one or more registries (e.g., the Central Registry 114, any private registry 116a, 116b, or other validation database 112). If any additional information is needed to process the registry authentication (e.g., an insurance policy number), the Reader 108 requests and receives the additional information from the PDK 102. Identification information is transmitted 1064 from the Reader 108 to the registry 114, 116a, 116b through the network interface 608. The PDK status is received 1066 from the registry to determine 1068 if the status is valid 1072 or invalid 1070. In one embodiment, the information is processed remotely at the registry 114, 116a, 116b and the registry 114, 116a, 116b returns a validation decision to the Reader 108. In another embodiment, the Reader 108 queries the private 116a, 116b or Central registry 114 for information that is returned to the Reader 108. The information is then analyzed by the Reader 108 and the authorization decision is made locally. In one embodiment, the process involves transmitting credit card (or other purchasing information) to a validation database 112 to authorize the purchase and receive the status of the card. Status information may include, for example, confirmation that the card is active and not reported lost or stolen and that sufficient funds are present to execute the purchase.



FIGS. 11A and 11B illustrate scenarios where multiple PDKs 102a-e are present near a Reader 108. This scenario is common when a Reader 108 is located in a high occupancy area such as, for example, a hospital lobby or waiting area. In FIG. 11A, the Reader 108 communicates with PDKs 102a-d within the proximity zone 1102 and does not communicate with PDKs 102e-f outside the proximity zone 1102. In one embodiment, the Reader 108 receives the unique PDK ID from a PDK 102 when it enters the proximity zone 1102 and records its time of arrival. In one embodiment, the Reader 108 further initiates a device authentication of the PDK 102 after a predefined period of time (e.g., 5 seconds) that the PDK 102 is within the proximity zone 1102. For profile authentication, the Reader 108 automatically determines which PDK 102 should be associated with an authentication test and the transaction. For example, if the Reader 108 receives a biometric input 122 from an individual, the Reader 108 automatically determines which PDK 102a-d is associated with the individual supplying the biometric input 122. In another embodiment, a different trigger is detected (e.g., a PIN input) to initiate the differentiation decision. In yet another embodiment, the differentiation decision is initiated without any trigger. It is noted that in some embodiments, where no trigger is required (such as a registry authentication), no differentiation decision is made and authentications are instead performed for each PDK 102 within the proximity zone 1102.


In one embodiment, the proximity zone 1102 is scalable, allowing modification of the area in which the Reader 108 communicates with a PDK 102. For example, the proximity zone 1102 of a Reader 108 may be modified from 1 foot to 100 feet. In one embodiment, an administrator or other designated individual modifies the proximity zone 1102 of a Reader 108. This allows the sensitivity of a Reader 108 to be modified based on different operating environment. For example, in a healthcare provider setting, the proximity zone 1102 of a Reader 108 located in a doctor's office is smaller than the proximity zone 1102 of a Reader 108 located in an examination room to reduce the number of times that the Reader 108 in the doctor's office attempts to authenticate a PDK 102.


Additionally, while FIG. 11A shows a proximity zone 1102 that is symmetrical, in other implementations, the proximity zone is directional. FIG. 11B shows a directional proximity zone 1104 where the Reader 108 interacts with PDKs 102a, 102b in a specific location. Hence, in FIG. 11B the Reader 108 communicates with PDKs 102a,b within the directional proximity zone 1104 and does not communicate with PDKs 102c-f outside the directional proximity zone 1104. In one embodiment, a Reader 108 has an initial configuration of a proximity zone 1102 that extends 360 degrees around the Reader; however, the Reader 108 may be modified from the initial configuration to focus the proximity zone into a directional proximity zone 1104. For example, a directional antenna may be coupled to the Reader 108 to generate a directional proximity zone 1104.



FIG. 12 illustrates an embodiment of an authentication method 1200 for the scenario where multiple PDKs 102 are present within a proximity zone 1102 or directional proximity zone 1104 of a Reader 108. In a PDK data accumulation phase 1202, PDK data 1230 is accumulated and buffered in the Reader 108 for any valid PDKs 102 that enter the proximity zone 1102 or the directional proximity zone 1104. In one embodiment, the accumulation phase 1202 begins for a PDK 102 after it has been within the proximity zone 1102, or directional proximity zone 1104, for a predetermined period of time. In one embodiment, the PDK data accumulation phase 1202 is similar to the steps 702-708 described above in detail with reference to FIG. 7 for each PDK 102a-d in the proximity zone 1102 or the directional proximity zone 1104.


As illustrated, the accumulated PDK data 1230 includes one or more differentiation metrics from each valid PDK 102 within range of the Reader 108. The differentiation metrics can include any information that can be used by the Reader 108 to determine which PDK 102 should be associated with the authentication and/or transaction request. According to various embodiments, differentiation metrics can include one or more of distance metrics 1232, location metrics 1234 and duration metrics 1236.


In one embodiment, a distance metric 1232 indicates the relative distance of a PDK 102 to the Reader 108. This information is useful given that a PDK 102 having the shortest distance to the Reader 108 is generally more likely to be associated with a received authentication trigger (e.g., a biometric input, a PIN input or a transaction request). The distance metrics 1232 can include, for example, bit error rates, packet error rates and/or signal strength of the PDKs 102. These communication measurements can be obtained using a number of conventional techniques that will be apparent to those of ordinary skill in the art. Generally, lower error rates and high signal strength indicate the PDK 102 is closer to the Reader 108.


Location metrics 1234 can be used to determine a location of a PDK 102 and to track movement of a PDK 102 throughout an area or locate the PDK in an area. This information can be useful in determining the intent of the PDK holder to execute a transaction. For example, a PDK holder that moves in a direct path towards a cashier and then stops in the vicinity of the cashier is likely ready to make a purchase (or may be waiting in line to make a purchase). On the other hand, if the PDK 102 moves back and forth from the vicinity of a cashier, that PDK holder is likely to be browsing and not ready to make a purchase. Examples of systems for determining location metrics are described in more detail below with reference to FIGS. 13-14.


The differentiation metrics can also include duration metrics 1236 that tracks the relative duration a PDK 102 remains within the proximity zone 1102 or within the directional proximity zone 1104. Generally, the PDK 102 with the longest time duration within the proximity zone 1102, or the directional proximity zone 1104, is most likely to be associated with the authentication request. For example, if the Reader 108 is busy processing a purchasing transaction at a cashier and another PDK 102 has a long duration within the proximity zone 1102 or the directional proximity zone 1104, it is likely that the user is waiting in line to make a purchase. In one embodiment, the Reader 108 tracks duration 1236 by starting a timer associated with a PDK 102 when the PDK 102 enters the proximity zone 1102, or the directional proximity zone 1104, and resetting the time to zero when the PDK 102 exists. As another example, the Reader 108 tracks the duration when a PDK 102 of a doctor enters the proximity zone of a patient's room. A long duration of the doctor's PDK 102 within the proximity zone can provide evidence that the doctor is spending an adequate amount of time examining the patient. On the other hand, a short duration of the doctor's PDK 102 within the proximity zone can provide evidence that the doctor just merely stopped by and did not perform any thorough examination. This information is useful in monitoring patient treatment and provider performance to help ensure quality patient care.


In some embodiments, the PDK 102 sends responses at a system-defined rate. For example, in one embodiment, the RDC 504 and PDK 102 are configured such that the RDC 504 receives a response including one or more differentiation metrics from the PDK 102 every 100 milliseconds (i.e., the system-defined rate). In some embodiments, the PDK 102 sends responses at an independently-defined rate. For example, in one embodiment, the independently-defined rate is based at least in part on the detection of movement. In one such embodiment, a PDK 102 that is sitting idle (e.g., a piece of unused equipment in a supply closet) may reduce its response rate to the RDC 504 in order to conserve power, and when movement is detected (e.g., based on changing distance metrics 1232), the PDK 102 increases its response rate (e.g., to allow near real-time tracking).


In some embodiments, different types of PDK 102 have different response rates. For example, assume a PDK 102 for equipment is of a first type and a PDK 102 for individuals such as a patient or provider is a second type, in one embodiments, the PDK 102 for equipment has a different response rate than the PDK 102 for individuals. For another example, assume different manufacturers of PDK are configured to respond at different rates, in one embodiments, the PDK 102 from a first manufacturer may (i.e., a first type of PDK) respond at a different rate than the PDK 102 of a second manufacturer (i.e., a second type of PDK).


In one embodiment, the Reader 108 can also receive and buffer profile samples 1238 prior to the start of a profile authentication instead of during the authentication process as described in FIGS. 10A-10B. In one embodiment, the Reader 108 determines which types of biometric profile samples 1238 to request based on, for example, the configuration of the Reader 108, the type of transactions performed by the Reader 108, or manual requests from a clerk, security guard, etc. In one embodiment, the PDK 102 transmits one or more of the requested sample types based on profiles available in the PDK 102 and/or user preferences. In another embodiment, the PDK 102 transmits one or more samples 1238 it has available and only samples that match the authentication types configured for the Reader 108 are buffered. For example, if a Reader 108 is configured for fingerprint authentication, a PDK 102 may transmit samples 1238 for several different fingerprint profiles (each corresponding to a different finger, for example). It will be apparent to one of ordinary skill in the art that other variations are possible to provide flexibility in both the configuration of the Reader 108 for various types of authentication and flexibility for the PDK owner to determine which types of authentication to use.


Because profile samples 1238 only comprise a subset of the profile information, in one embodiment, the samples can be safely transmitted over a public channel without needing any encryption. In another embodiment, the profile samples 1238 are transmitted with at least some level of encryption. In yet another embodiment, some of the data is transmitted over a public communication channel and additional data is transmitted over a secure communication channel. In different configurations, other types of profile information can be accumulated in advance. For example, in one embodiment, a photograph from a picture profile can be obtained by the Reader 108 during the data accumulation phase 1202. By accumulating the profile sample 1238 or other additional information in advance, the Reader 108 can complete the authentication process more quickly because it does not wait to receive the information during authentication. This efficiency becomes increasingly important as the number of PDKs 102 within the proximity zone 1102, or within the directional proximity zone 1104, at the time of the transaction becomes larger. The efficiency also becomes increasingly important as the number of transactions increases. For example, in one embodiment, the transaction is a healthcare provider logging into a computer system with patient charts, which each healthcare provider (e.g., a doctor or nurse) may have to do dozens, scores or over a hundred times a day. In such an example, even a small increase in the efficiency/speed of login for each healthcare provider using the system adds up.


The PDK accumulation phase 1202 continues until a trigger (e.g., detection of a biometric input) is detected 1204 to initiate a profile authentication process. If a biometric input is received, for example, the Reader 108 computes a mathematical representation or hash of the input that can be compared to a biometric profile and computes one or more input samples from the biometric input. It is noted that in alternative embodiments, the process can continue without any trigger. For example, in one embodiment, the transaction can be initiated when a PDK 102 reaches a predefined distance from the Reader 108 or when the PDK 102 remains within the proximity zone 1102, or within the directional proximity zone 1104, for a predetermined length of time.


The process then computes a differentiation decision 1206 to determine which PDK 102a-d should be associated with the authentication. In one embodiment, the Reader 108 computes a differentiation result for each PDK 102 using one or more of the accumulated data fields 1230. For example, in one embodiment, the differentiation result is computed as a linear combination of weighted values representing one or more of the differentiation metrics. In another embodiment, a more complex function is used. The differentiation results of each PDK 102 are compared and a PDK 102 is selected that is most likely to be associated with the transaction.


In another embodiment, for example, in a photo authentication, the differentiation decision can be made manually by a clerk, security guard, or other administrator that provides a manual input 1212. In such an embodiment, a photograph from one or more PDKs 102 within the proximity zone 1102 or within the directional proximity zone 1104 can be presented to the clerk, security guard, or other administrator on a display and he/she can select which individual to associate with the transaction. In yet another configuration, the decision is made automatically by the Reader 108 but the clerk is given the option to override the decision.


An authentication test 1208 is initiated for the selected PDK 102. The authentication test 908 can include one or more of the methods illustrated in FIGS. 10A-10D. Note that if profile samples 1238 are acquired in advance, they need not be acquired again in the authentication steps of FIGS. 10A-10B. It is additionally noted that in one embodiment, the Reader 108 compares the profile samples 1238 of the PDKs 102 to the computed input sample until a match is found before performing a full profile comparison. In one embodiment, the Reader 108 first compares samples from the selected PDK 102 until a match is found. For example, a Reader 108 may have accumulated multiple fingerprint profiles samples 1238 (e.g., corresponding to different fingers) for the selected PDK 102. The Reader 108 receives a fingerprint input from, for example, the left index finger, computes the input sample, and does a quick comparison against the accumulated samples 1238 for the selected PDK 102 to efficiently determine a matching profile. The Reader 108 then performs the full comparison using the matching profile. In an alternative embodiment, the Reader 108 performs a comparison of a first sample from each PDK 102 and if no match is found, performs comparisons of second samples from each PDK 102. It will be apparent to one of ordinary skill in the art that samples can be compared in a variety of other orders without departing from the scope of the invention.


If the authentication test 1208 indicates a valid profile, the transaction is completed 1210 for the matching PDK 102. If the authentication test 1208 determines the profile is invalid, a new differentiation decision 1206 is made to determine the next mostly likely PDK 102 to be associated with the transaction. The process repeats until a valid profile is found or all the PDKs 102 are determined to be invalid.



FIG. 13 illustrates an example system is illustrated for determining a location metric 1234 of a PDK 102 using distance metrics to triangulate the location. In one embodiment of triangulation, multiple transmitting devices (e.g., Readers 108a-c) are spaced throughout an area. In one embodiment, the Readers 108a-care coupled by a network. Each Reader 108a-c has a range 1304 and the ranges 1304 overlap. Each Reader 108a-c determines a distance D1-D3 between the Reader 108 and the PDK 102. Distance may be estimated, for example, by monitoring signal strength and/or bit error rate as previously described. Then using conventional trigonometry, an approximate location of the PDK 102 can be calculated from D1-D3. Although only three transmitters are illustrated, it will be apparent that any number of transmitters can be used to sufficiently cover a desired area. Moreover, the any number of sensors may be tied together to create an extended zone, for example, four sensors creating a “Lobby” zone. Location information can be computed at predetermined time intervals to track the movement of PDKs 102 throughout a facility. A person having ordinary skill in the art will recognize that other methods exist for determining a location metric (e.g., nearest sensor) and that one or more of these methods may be used for tracking in the same system alone or in combination. For example, triangulating provider location, using the nearest sensor method for patients, and using both nearest sensor and triangulation for locating equipment.


Another embodiment of location tracking is illustrated in FIG. 14. Here, transmitters 1402 having ranges 1404 are distributed throughout an area. The ranges 1404 can vary and can be overlapping or non-overlapping. In this embodiment, each transmitter 1402 can detect when a PDK 102 enters or exists its range boundaries 1404. By time-stamping the boundary crossings, a location vector can be determined to track the PDK's movement. For example, at a first time, t1, the PDK 102 is detected within the range of transmitter 1402a. At a second time, t2, the PDK 102 is detected within the range of transmitter 1402b. At a third time, t3, the PDK 102 is within the range of transmitter 1402c and at a fourth time, t4, the PDK 102 is within the range of transmitter 1402d. Using the location and time information, approximate motion vectors, v1, v2, v3, and v4 can be computed to track the motion of the PDK 102 without necessarily computing exact distance measurements.


In some embodiments, of location tracking one or more of a rule and precedent are applied during location tracking. For example, assume that vector v1 goes through a wall, in one embodiment, a rule that a PDK 102 cannot travel through a wall is applied and when the PDK's route is displayed on a computing device 120 the route will go through a doorway. For another example, again assume that vector v1 as drawn goes through a wall, that t1 and t2 are 5 seconds apart and that a PDK 102 can travel from the location of t1 to the location of t2 by taking one of two routes. In one embodiment, a precedent is applied in which it is determined that the PDK 102 used a first route because the second route has never been taken and/or would take longer than 5 seconds (e.g. based on travel times from previous tracks) and when the PDK's route is displayed on a computing device 120 the route will include the first route from the location of t1 to the location of t2.


A person having ordinary skill in the art will recognize that the resolution of tracking or an item's location can be modified based to suit users' needs. For example, triangulation may be more accurate (better resolution) but requires more readers 108 or transmitters 1402 to create the necessary overlapping coverage than locating/tracking based on presence in a reader's 108/transmitter's 1402 non-overlapping coverage zone.



FIG. 15 is a block diagram illustrating an embodiment of a tracking server 210. The tracking server 210 enables real-time tracking of individuals, equipment and supplies by monitoring and storing location information of individuals, equipment or supplies with associated PDKs 102. For example, the tracking server 210 allows rapid location of healthcare providers in case of an emergency, allows monitoring of patient location to ensure timely administration of medications and allows constant monitoring of equipment or supply location to minimize search time and inventory surplus requirements. Moreover, when used in time and motion studies and reports, the tracking data may reveal areas for potential efficiency gains. For example, a time and motion study may reveal that healthcare providers walk repeatedly to a faraway supply closet and by moving the supply closet, more time can be spent with patients increasing the quality of care, the number of patients a provider can examine/treat in a day or both. One embodiment of the tracking server 210 includes a location data retrieval module 1502, a location log 1504 and a determination engine 1506. In one embodiment, the location log 1504 is a database, such as a Structured Query Language (SQL) database. In some embodiments, the tracking server 210 enables tracking and auditing of equipment by monitoring and storing information regarding one or more of the equipment's location, usage, maintenance and calibration. For example, the tracking server 210 allows for the monitoring and auditing of equipment to ensure that equipment remains calibrated and well maintained and allows for the scheduling of use, maintenance and calibration at time when the equipment is not in use or alternative equipment is available. In one embodiment, the location log 1504 stores information regarding one or more of the equipment's location, usage, maintenance and calibration. In another embodiment, the tracking server 210 comprises a service log (not shown), which stores information regarding one or more of the equipment's usage, maintenance and calibration. In one embodiment, the determination engine 1506 retrieves information from the location log 1504 to predict the location of a device.


In one embodiment, multiple Readers 108 are placed at certain and known positions throughout a facility. For example, a Reader is placed above each doorway of every room and at every computing device 120. In another embodiment, Readers 108 are placed in a grid pattern throughout the facility. In one embodiment, entities within the facility carry an associated PDK 102 uniquely identifying the entity and PDKs 102 are attached to different pieces of equipment or supplies within the facility. Example embodiments of a tracking system are described in U.S. patent application Ser. No. 11/939,451 to John Giobbi, et al., entitled “Tracking System Using Personal Digital Key Groups” and filed on Nov. 13, 2007, the entire contents of which are incorporated herein by reference.


A flowchart illustrating one embodiment of a process 1600 for tracking of equipment and individuals is shown in FIG. 16A. When a PDK 102 comes within the range of a Reader 108, connection is authorized 1602 between the RDC 504 of the Reader 108 and the PDK 102. In one embodiment, the RDC 504 continually transmits beacons that are detected by the PDK 102 when it enters a proximity zone of the Reader 108. In an alternative embodiment, the communication is instead initiated by the PDK 102 and acknowledged by the Reader 108. As shown in the previous FIG. 7, device authentication is first performed and once the Reader 108 establishes if the PDK 102 is a valid device and PDK 102 establishes if the Reader 108 is valid, connection can be authorized.


Once connection is authorized 1602, the Reader 108 retrieves 1604 the PDK 102 information, such as PDK ID 312 and other information identifying the owner or entity associated with the PDK 102. In one embodiment, the reader ID 518 of the Reader 108 is sent to the PDK 102 and stored in the activity log 390 of the PDK 102. In one embodiment, the sensor reading (e.g., temperature readings) are also stored in the activity log allowing for temperature tracking instead of or in addition to location tracking. The reader and PDK information (including the activity log 390) is sent 1606 to the tracking server 210. The location data retrieval module 1502 receives 1608 the PDK information, including the PDK ID 312. The information is updated 1610 in the location log 1604 of the tracking server 210.


In one embodiment, the location log data is retrieved by the computing device 120. In such embodiments, the computing device 120 displays the locations of the individuals and equipment being tracked; therefore making it possible to locate anyone and any piece of equipment at any given moment. In some embodiments, the location log data is displayed graphically, for example, with a map of the facility and indications on the map identifying locations of tracked items and people. In other embodiments, the location log data is displayed on the computing device 120 with text describing the locations of the tracked items and people.


This process 1600 occurs whenever a PDK 102 enters the proximity zone of each Reader 108 that it passes enabling constant tracking and location of individuals carrying PDKs 102 and equipment with affixed PDKs 102. FIG. 16B is a graphical representation illustrating an example where patient, provider and equipment tracking is provided within a healthcare facility. Readers 1650 are located at various locations throughout the healthcare facility to receive PDK information. Computing devices are also equipped with readers 1652 for receiving PDK information. The Readers 1650 and 1652 receive information from the provider PDKs 1654, patient PDKs 1656 and equipment PDKs 1658 enabling the location and tracking of providers, patients and equipment anywhere throughout the healthcare facility.


In another embodiment, the determination engine 1506 uses the data stored in the location log 1504 to predict the location of a device. The determination engine 1506 uses the data collected and by the multiple Readers 108 that are placed at certain and known positions throughout a facility. In one embodiment, the determination engine 1506, via the tracking server 210, is communicatively coupled to output data to the Reader 108. In such embodiments, the determination engine 1506 outputs information to the Reader 108 modify various signals of the Reader 108 to further refine the Reader's 108 performance and functionality. For example, in one embodiment, the determination engine 1506 could use the information collected to change the signal strength of the Reader 108.



FIG. 17 is a block diagram illustrating an embodiment of an auto login server 220. The auto login server 220 allows for automated electronic signing on of providers into the healthcare computer system, therefore eliminating the constant and time-consuming login and logout of healthcare providers such as doctors, nurses, physician assistants, medical technicians, and other caregivers. A person having ordinary skill in the art will recognize that references to the healthcare system and healthcare providers in this specification are used by way of example and not by limitation. For instance, the auto login server 220 allows for automated electronic signing on of any type of user into any type of computer system. In one embodiment, providers can utilize their PDKs 102 to automatically log in to the application software system by simply approaching or entering the proximity zone of a Reader 620 of a computing device 120. In such embodiments, no manual input is necessary. The auto login server 220 includes a device authentication module 1702, a data retrieval module 1704, a biometric authentication module 1706, an access module 1708 and a credentials database 1710. In some embodiments the auto login server resides in the local services module 124. The auto login server includes input and output ports for receiving data from and sending data to one or more Readers 108. The device authentication module 1702 is coupled to the biometric authentication module 1706 and data retrieval module 1704. The data retrieval module 1704 is couple to communicate with the access module 1708, which is further configured to send access authorization to readers 620, 108 and computing device 120. The access module 1708 is coupled to the credentials database 1710 for comparing the received data with data stored in a credentials database 1710.



FIG. 18 is a flowchart illustrating one embodiment of a method 1800 for automatic login of a user. When a user carrying or wearing a PDK 102 comes within the range of a Reader 620 communicating with a computing device 120, communication is automatically established 1802 between the RDC 504 of the Reader 620 of a computing device 120. In one embodiment, the PDK 102 is incorporated into an identification badge of the user. Once communication with the PDK 102 is established, device authentication is performed 1804.


In one embodiment, the device authentication module 1702 performs 1804 device authentication. In another embodiment, the device authentication is performed by the Reader 108 as described in step 704 of FIG. 7. An example embodiment of a method for performing 1804 device authentication is illustrated in the previous FIG. 8. In one embodiment, the device authentication is performed 1804 responsive to a user accessing an application 630 for execution by the computing device 120. For example, a user selects an application from a user bar or accesses an application 730 using the operating system of the computing device 120.


Next, the device authentication module 1702 determines 1806 whether the PDK 102 is valid. If the PDK 102 is found to be invalid, connection is not authorized 1816 and the process ends without the logging in of the user.


In one embodiment, if the PDK 102 is found to be valid, the biometric authentication module 1706 determines 1806 if biometric information is available. In one embodiment, the requirement for biometric input is configurable by an administrator. For example, in one embodiment, an administrator can configure the system to not require biometric input.


If biometric information is available, the biometric authentication module 1706 performs 1810 biometric authentication. In one embodiment, a provider provides biometric information by swiping their finger on a Reader 108 of the computing device 120. In another embodiment, the provider provides biometric information by entering a PIN number. In yet another embodiment, the provider provides biometric information be swiping their finger on the biometric reader 370 of the PDK 102. If biometric information is not available (the provider has not swiped his finger or entered a PIN number), connection is not authorized 1820 and the process ends. If biometric information is available, biometric authentication is performed 1810. Example embodiments for performing authentication, such as biometric authentication, are described above in conjunction with FIGS. 10A-D.


In one embodiment, biometric authentication is performed 1810 responsive to an accessed application requesting or requiring biometric authentication. For example, responsive to a user accessing an application from an application menu of the computing device 120, the computing device 120 determines whether a biometric check is needed by the accessed application. If a biometric check is needed by the accessed application, the computing device 120 communicates with the Reader 108 to perform 1818 biometric authentication. In one embodiment, the computing device 120 or the application server 240 includes a database specifying whether or not an application performs a biometric check.


Once biometric authentication is performed 1810, or if biometric authentication is not needed, the data retrieval module 1704 of the registration server 205 retrieves 1812 information from the PDK 102 of the user and the access module 1708 allows 1814 the user to access one or more applications. For example, the user is allowed 1814 to access one or more applications from the application server 240. In some embodiments where biometric authentication is not required, the access module 1708 compares the received data with data stored in the credentials database 1710 to allow or deny access. In one embodiment, once biometric authentication is completed, or is not required, the user is not only allowed to access one or more applications, but one or more applications are automatically launched.


In one embodiment, the data retrieval module 1704 identifies a service block of a registry profile stored by the PDK 102 to the computing device 120, which identifies the service block to the Reader 108, which retrieves 1812 data from the identified service block. For example, the data retrieval module 1704 identifies a registry identifier to specify a service block and the Reader 108 retrieves 1812 a record identifier and a key from the service block. The Reader 108 communicates the retrieved 1812 record identifier and the key and a PDK ID to the application server 240 in addition to a request to launch the accessed application.


In one embodiment, the accessed application 630 of the computing device 120 communicates the data retrieved from the PDK 102 to the application server 240, which communicates login credentials associated with the application 630 to the computing device 120. The computing device 120 uses the login credential information access the application 630. For example, the application 630 communicates a PDK ID, a record identifier and a key retrieved form the PDK 102 to the application server 240, which identifies a login and password from the PDK ID, the record identifier and the key. The login and password are communicated from the application server 240 to the computing device 120, which uses the login and password to launch the application 630. In another embodiment, the application 630 of the computing device 120 retrieves the login credential information associated with the data retrieved form the PDK 102 from the credentials database 320 to allow 1814 access to one or more applications. Allowing 1814 access to one or more applications is further described below in conjunction with FIG. 19.


In some embodiments, provider identifying information is stored in the PDK 102. As long as connection is established (1816—Yes) (the provider is in the proximity zone of the reader 620 of the computing device 120), access is allowed 1814. If the provider steps outside the proximity zone of the reader 620, connection is no longer established (1816—No) and the provider is automatically logged out 1818 of the application server 240. In one embodiment, the provider is logged out 1818 after a brief delay, e.g., 5 seconds after the connection is no longer established (1816—No). Those skilled in the art will recognize that depending on the level of authentication desired, the need for steps 1808 and 1810 may be omitted.


In some embodiments, various rules are applied. In one embodiment, one or more user-specific criteria (e.g. biometric input, a password, etc.) is required for users who have not logged in for an extended period of time. For example, assume the user has not logged in for many hours, in one embodiment, it is assumed that the user has left for the day and the user will have to provide user-specified criteria to log in when the user returns. In one embodiment, the extended period of time is eight hours. In another embodiment, the extended period of time is twenty four hours. It will be recognized that the preceding are merely examples of extended periods of time and that other examples and embodiments exist.


In one embodiment, the user, after providing a user-specific criteria, can subsequently log in without providing the user-specified to log in for a specified time interval. For example, assume the user provides a biometric input and logs in at the beginning of the user's shift, in one embodiment, the user can subsequently log in without again providing the biometric input for the duration of the user's shift (e.g. 8 hours). It will be recognized that the preceding is merely an example of a time interval and that other examples exist.


In some embodiments, one or more of the extended period of time and the specified time interval can be user defined or customizable, for example, by the user and/or an administrator. In some embodiments, one or more of the extended period of time and the specified time interval can be based at least in part on the workstation. For example, the user may be able to subsequently log into a private workstation for 8 hours without being required to provide another biometric input; however, the user is only able to subsequently log into a public workstation for 1 hour without being required to provide another biometric input. It will be recognized that the preceding is merely one example of basing one or more of the extended period of time and the specified time interval at least in part on the workstation.


In one embodiment, a secure screen saver is utilized in place of a full login/logout procedure. In another embodiment, the system allows for multiple users to be simultaneously logged in to a single workstation. In one embodiment, priority rules and/or user hierarchies are established enabling a higher-level user to override or takeover a lower-level user's session or workstation with or without (depending on the embodiment) the lower-level user's permission.



FIG. 19 is a flowchart of one embodiment of a method 1814 for automatically allowing access to one or more applications. Initially, it is determined 1901 whether the computing device 120 is shared or private. A shared computing device 120 is able to be automatically accessed by users associated with a plurality of PDK IDs. A private computing device 120 is able to be automatically accessed by a user associated with a specific PDK ID. For example, a shared computing device 120 is included in a location where it is accessible by multiple users, such as in a clinic room or examination room in a healthcare facility for use by different healthcare providers, while a private computing device 120 is included in a location where its accessible by a specific user, such as in a doctor's office of a healthcare facility for use by a specific doctor. In one embodiment, data included in the computing device 120 indicates whether the computing device 120 is shared or public.


In an alternative embodiment, rather than determine 1901 whether the computing device 120 is shared or private, the computing device 120 determines whether a user associated with the PDK 102 is a shared user or a private user. When a PDK 102 associated with a shared user communicates with a Reader 620, the computing device 120 coupled to the Reader 620 displays 1902 the user name of the user associated with the PDK 102, as further described below. Thus, if multiple PDKs 102 associated with shared users are within the proximity zone of the Reader 620, the computing device 120 communicating with the Reader 620 displays user names associated with the different shared users, and an application is not launched until one of the displayed user names is selected, as further described below. In one embodiment, if only one PDK 102 is present within the proximity zone of the reader 620, the user's name is still displayed and an application is not launched until the user name associated that PDK 102 is selected. In one embodiment, the user can select ad hoc one or more applications in addition to the user's user name, and the one or more ad hoc selected applications will launch instead of or in addition to (depending on the embodiment) the one or more applications associated with the user for auto launch. If a PDK 102 is associated with a private user, when the PDK 102 is within the proximity zone of the Reader 620, the private user is logged into 1906 the application server 240 without displaying one or more user names. Thus, when a PDK 102 associated with a private user is within the proximity zone of a Reader 620, the private user is logged into 1906 the application server 240, as further described below.


If the computing device 120 is shared, after biometric authentication is performed 1810 and the data retrieval module 1704 of the registration server 205 retrieves 1812 information from the PDK 102 of the user, the computing device 120 displays 1902 a user name associated with the information from the PDK 102. In one embodiment, if multiple PDKs 102 are within the proximity zone of the Reader 620, and the computing device 120 is shared, the computing device 120 displays 1902 user names associated with each of the PDKs 102 within the proximity zone of the Reader 620.


The computing device 120 receives 1904 an input accessing the displayed user name. If multiple user names are displayed 1902, the computing device 120 receives 1904 an input accessing one of the displayed user names. In one alternative embodiment, the differentiation metrics discussed above are used to determine which PDK and associated user to access or select, e.g., the user associated with the PDK 102 closest to the computing device 120. It should be noted that a person having ordinary skill will recognize that the order of the preceding steps may be altered, e.g., displaying user names after device authentication but prior to biometric authentication, or requiring a user name to be selected before performing biometric authentication. The computing device 120 or the Reader 604 then logs into 1906 the application server 240, or to the application 630, using credentials associated with the accessed user name. Using the credentials associated with the accessed user name, the computing device 120 automatically launches 1908 one or more applications associated with the accessed user name.


For example, the application server 240 associates one or more applications with the accessed user name, and responsive to the computing device 120 receiving 1904 an access to the user name, the application server 240 communicates data to the computing device 120 to launch 1908 the one or more applications associated with the accessed user name. In one embodiment, the applications associated with the user name are stored in the application server 240 as a scenario and a user specifies a default scenario to identify applications that are automatically launched 1908 when a user is automatically logged into a computing device 120 using data stored on a PDK 102. In one embodiment, the user specifies the one or more applications associated with the accessed user name or default scenario (depending upon the embodiment). In another embodiment, the one or more applications associated with the accessed user name or default scenario (depending upon the embodiment) are specified by an administrator upon enrollment of the PDK either explicitly or implicitly, e.g., associating the PDK's 102 user with a group implicitly assigns the group's default scenario to the user. In another embodiment, the one or more applications associated with the accessed user name or default scenario (depending upon the embodiment) is initially specified by the administrator, but may be subsequently changed/personalized by the user associated with the PDK. In some embodiments, an administrator determines what applications a given user and/or computing device 120 may access and the user may change the one or more application associated with the accessed user name or default scenario (depending upon the embodiment) subject to the determination, or permissions granted, by the administrator. For example, the administrator uses a third party application (i.e., an application that is inaccessible to the user and not part of the computing device's operating system) to provide permission for the user to access one or more applications and associate the user name with his/her user name or create a default scenario.


In some embodiments, the one or more applications that are accessible and/or automatically launched may be based at least in part on the computing device 120 being accessed. Such embodiments beneficially provide greater customization and may improve security. For example, in some embodiments, for security reasons certain applications may be prohibited from launching on particular computing devices 120 such as public computing devices. For another example, the user may want a first set of applications to launch in the user's office and a second set of applications to launch at a workstation. It will be recognized that the preceding are merely examples of the one or more applications that are accessible and/or automatically launched may be based at least in part on the computing device 120 being accessed and that other examples exist.


In one embodiment, the user can select one or more applications to auto launch upon login ad hoc. For example, a shared user approaches a computing device 120 selects the user's username and one or more applications from a runtime menu (not shown). Without further input the user is automatically signed in and the one or more applications selected from the runtime menu are automatically launched.


The user's self selection of user name has the benefit of allowing for quick user switching while ensuring that each user logs into his or her account for audit purposes. For example, in one embodiment, a first user after utilizing the computing device 120 logs off either manually or by leaving the proximity zone of the computing device's 120 Reader 108, and the next user can simply login by clicking on his/her user name automatically launching one or more applications.


If the computing device 120 is private, after biometric authentication is performed 1810 and the data retrieval module 1704 of the registration server 205 retrieves 1812 information from the PDK 102 of the user, the computing device 120 or the Reader 620 then logs into 1906 the application server 240, or to the application 630, using credentials associated with the accessed user name. Using the credentials associated with the accessed user name, the computing device 120 launches 1908 one or more applications associated with the accessed user name. Hence, a private computing device 120 automatically launches 1908 one or more applications when the PDK 102 associated with a user authorized to use the private computing device 120. For example, when the PDK 102 associated with a doctor enters the proximity zone of the Reader 620 associated with a computing device 120 in the doctor's office, the computing device 120 automatically launches one or more applications associated with the doctor.


In addition to automatically launching one or more applications when a PDK 102 associated with a user is within a proximity zone of a reader coupled to a computing device 120, the auto login server 220 and/or the application server 240 allow a user to customize the one or more applications launched by the computing device 120. In some embodiments, the auto login server and/or the application server 240 also modify the one or more launched application responsive to user interaction with previously launched applications.



FIG. 20 illustrates one embodiment of a method 2000 for identifying one or more applications automatically launched for a user when the user is proximate to a Reader 620. Initially, the auto login server 220 determines whether one or more default applications are associated with a user identified from a PDK 102. A default application is automatically launched when data from a PDK 102 authenticates a user to access a computing device 120. In one embodiment, the auto login server 220 determines 2002 whether one or more default applications are associated with a user and logs in 2004 to the application server 240 using login credentials identified from the data received from the PDK 102. Alternatively, the application server 240 determines 2004 whether one or more default applications are associated with the user.


If one or more default applications are associated with a user, the application server 240 launches 2006 the one or more default applications by communicating data associated with the one or more default applications to a computing device 120 coupled to the Reader 620 from which the auto login server 220 or the application server 240 received data from the PDK 102. In one embodiment, the application server 240 applies application-specific preferences when launching 2006 a default application. For example, the application server 240 associates an application location preference with a user, so that when a default application is launched 2006 the application location preference identifies a specific location within the default application that is initially accessed. For example, the application server 240 identifies a specific text entry region of an application and when the application is launched the specified text entry region is accessed, allowing a user to begin entering text data in the specified text entry region without first selecting the text entry region. While described above in conjunction with default applications, in an embodiment the user's application specific preferences are also applied when a user manually launches an application, allowing the application server 240 to provide increased user-customization to simplify application use. In one embodiment, the user can specify one or more application-specific preferences. In another embodiment, one or more application-specific preferences are specified by an administrator upon enrollment of the PDK either explicitly or implicitly, e.g., by associating the PDK's 102 user with a group having default application-specific preferences. In another embodiment, one or more application-specific preferences are initially specified by the administrator, but may be subsequently changed/personalized by the user associated with the PDK.


After a default application is launched 2006, a user may manually close 2012 the default application by interacting with the default application using the computing device 120. When a user manually closes 2012 a default application, the computing device 120 communicates data to the auto login server 220 and/or the application server indicating that the default application has been manually closed. The auto login server 220 or the application server 240 stores 2014 data indicating that a default application has been manually closed. In one embodiment, when a user logs out of the computing device 120 and does not exit the proximity zone of the Reader 620 coupled to the computing device 120 after manually closing the default application, the manually closed default application is not automatically launched 2006 when the user again logs into the computing device 120. For example, if a user logs off of the computing device 120 after manually closing a first default application and does not exit the proximity zone of the Reader 620, when the user again logs in to the computing device 120, based on the stored data, the auto login server 220 or the application server 240 does not automatically launch the first default application. However, once the user leaves the proximity zone of the Reader 620 after manually closing the first default application, once the user re-enters the proximity zone of the Reader 620 and logs into the computing device 120, the auto login server 220 or the application server 240 again automatically launches 2004 the first default application.


If a user manually closes each default application associated with the user, the application server 240 communicates data to the computing device 120 indicating that no applications are executing, causing the computing device 120 to initiate 2010 an idle state where the user is logged into the computing device 120 and to the application server 240, allowing the user to manually launch one or more applications from the computing device 120.


However, if no default applications are associated with a user, the application server 240 communicates with the computing device 120 coupled to the Reader 620 from which the auto login server 220 or the application server 240 received data from the PDK 102 to initiate 2010 an idle state. In one embodiment, the application server 240 communicates data to the computing device 120 indicating that no applications are executing, causing the computing device 120 to initiate 2010 the idle state.


The Reader 620 and PDK 102 may also be used to lock a computing device 120 coupled to the Reader 620 in addition to limiting use of the computing device 120. For example, the Reader 620 and PDK 102 may be used to limit execution of certain applications using the computing device 120 while allowing users to use other applications locally stored on the computing device 120. For example, the PDK 102 and Reader 620 are used to limit the users permitted to execute a set of healthcare applications, such as a patient record editor, while additional users may freely access a web browser included on the computing device 120. However, in some embodiments, it is desirable to further limit use of the computing device 120 so that users are unable to access applications using the computing device 120 unless a valid PDK 102 associated with the user is in the proximity zone of a Reader 620 coupled to the computing device 120.



FIG. 21 describes one embodiment of a method for locking a computing device 120 using a Reader 620 coupled to the computing device 120 and a PDK 102. In one embodiment, there is no time-out function, i.e., the computing device 120 is not locked or the user logged off after a predetermined amount of time without user input, and the computing device 120 is only locked or the user is logged off responsive to a PDK leaving the proximity zone associated with a Reader 620 of the computing device 120. In one embodiment, responsive to a PDK 120 leaving the proximity zone associated with a Reader 620, the Reader 620 communicates data to the computing device 120 and to the application server 240 to close 2104 applications currently running on the computing device 120. In one such embodiment, the data communicated from the Reader 620 to the application server 240 logs the user associated with the PDK 102 out of the application server 240. By closing 2104 applications executed by the application server 240 and by the computing device 120 when a PDK 102 leaves the proximity zone of the Reader 620, the security of the computing device 120 is increased. In another embodiment, responsive to the PDK 120 leaving the proximity zone, the applications are not closed, but the session is saved and hidden. By not closing the applications when the PDK 102 leaves the proximity zone of the Reader 620, the user can later return to and resume using the computing device 120 without losing any data or state information.


Responsive to data from the Reader 620 indicating the PDK 102 has left the proximity zone of the Reader 620, after closing 2104 open applications, the computing device 120 locks 2106 its display device and initiates an access tracking process. In one embodiment, when the display device 618 is locked 2104, a predefined image is displayed on the display device 618, such as a logo or other image associated with the location where the computing device 120 is located. Alternatively, when the display device 618 is locked 2104, the display device 2104 does not display an image or is a blank screen. The access tracking process is computer-readable data stored in the storage device 608 or the memory 606 of the computing device 120 that, when executed by the processor 602, monitors the keyboard 610, the pointing device 614 or other input/output devices of the computing device 120 for inputs. In one embodiment, the access tracking process unlocks the display device 618 responsive to identifying an input received by an input/output device 120. However, until the access tracking process identifies an input received by an input/output device 120, the display 618 is locked 2104, as further described above. In an alternative embodiment, the access tracking process unlocks the display device 618 responsive to a PDK 102 associated with a user being detected in the proximity zone of the Reader 108.


In one embodiment, the computing device 120 receives 2108 one or more advertisements and displays 2110 the one or more advertisements when the display device 618 is locked rather than displaying a fixed image or blanking the display device 618. For example, the computing device 120 includes one or more advertisements in its storage device 608 and displays 2110 the one or more advertisements when the display device 618 is locked. In one embodiment, the computing device 120 alternates the advertisements displayed 2110 at different time intervals, allowing different advertisements to be displayed 2110 while the display device 618 is locked. In an alternative embodiment, the computing device 120 receives 2108 the one or more advertisements from a third party site 140 or from the application server 240 and displays 2110 one or more of the received advertisements while the display device 618 is locked 2106. In one embodiment, the application server 240 or the third party site 140 receives data from the computing device 120 and modifies the advertisements received 2108 by the computing device 120 responsive to the data received from the computing device 120. For example, the third party site 140 or the application server 240 receives data from the computing device 120 associated with a user or patient whose information has been recently accessed by the computing device 120. The computing device 120 then receives 2108 advertisements from third party site 140 or the application server 240 associated with the user or patient information. This allows the computing device 120 to display 2110 advertisements relevant to the recently accessed user or patient when the display device 618 is locked.



FIG. 22 is a graphical representation of one embodiment of automatic login of users. In this illustration, the user is a healthcare provider 2252 with a unique identifying PDK. When the healthcare provider 2252 having its associated PDK enters a patient's room and walks up to a computing device 2254, the reader of the computing device 2154 retrieves information from the provider's 2252 PDK and automatically logs the provider 2252 into the software system.


If PDKs 2256, 2258 are also used to identify the patient and equipment in the patient's room, the reader of the computing device 2254 also retrieves information from those PDKs 2256, 2258. In one embodiment, the computing device displays user names associated with the PDKs 2256, 2258 as well as a user name associated with the healthcare provider 2252 and the healthcare provider 2252 selects the appropriate user name to log in to the computing device. One or more default applications are then launched by the computing device for access by the healthcare provider 2252.



FIG. 23 is a block diagram illustrating an embodiment of a portal server 230. The portal 230 provides a consistent interface to the third party site 140. Such services may include receiving advertisement data, accessing a patient's virtual database records or insurance information or sending prescription requests to remote pharmacies. The portal server 230 includes a remote services communication module 2302 and a remote services identifier module 2304.



FIG. 24 is a flowchart illustrating one embodiment of a method 2400 for communicating with remote services provided by a third party site 140. The remote services communication module 2302 receives 2402 a request from a computing device 120 to access one or more services, or data, provide by the third party site 140. The remote services identifier module 2304 identifies 2404 which remote service to contact. For example, if the request includes insurance information as well as payment information, the remote services identifier module 2304 determines that the request from the computing device 120 needs to be communicated to a particular third party site 140.


A determination is then made to determine whether the requested remote service or data is available 2406. If the remote service is not available (2406—No), then a connection to the third party site 140 is not established. In some embodiments, an error message is sent to the computing device 120 with a notification of the unavailability of the requested remote service. If the remote service is available (2406—Yes), communication with an appropriate third party site 140 is established.



FIG. 25 is a flow chart of one embodiment of a method 2500 initially storing data on a PDK 102 during an initialization or registration process. In the example of FIG. 25, a PDK 102 is initialized using a computing device 120. Additionally, the initial configuration and data storage of the PDK 102 is witnessed and authenticated by a specialized trusted Notary. In one embodiment, the Notary is associated with a Notary PDK. For example, the computing device 120 includes data identifying PDK IDs associated with one or more notaries.


In one embodiment, the computing device 120 initially identifies 2502 one or more Notaries to witness PDK 102 initialization. For example, a user associated with a master PDK accesses the computing device 120 and identifies one or more PDK identifiers associated with one or more Notaries. Only a user associated with the master PDK 102 is permitted to identify 2102 PDK IDs associated with one or more Notaries. For example, a user associated with a Master PDK 102 identifies one or more PDK IDs associated with Notaries, allowing the computing device 120 to locate Notaries by comparing PDK IDs from a Reader 620 to the Notary PDK IDs identified by the Master PDK.


After a Notary is identified 2502, the computing device 120 establishes 2504 communication with the PDK 102 to be initialized and establishes 2504 communication with a PDK 102 associated with a Notary, as further described above. The computing device 102 receives information from the PDK 102 to be initialized to determine if the PDK 102 to be initialized is authorized for initialization and also receives information from the PDK 102 associated with the Notary to determine if the Notary is authorized to perform the initialization. If both the PDK 102 to be initialized and the PDK 102 associated with the Notary are authorized to perform the initialization, the computing device 120 receives 2508 biometric data from a user associated with the PDK 102 to be initialized. The Notary witnesses the receipt 2508 of biometric data by the computing device 120, either in person or remotely, to ensure that the received biometric data is trustworthy. The computing device 120 then stores 2510 the received biometric data. In one embodiment, the computing device 120 communicates the biometric data to the PDK 102 to be initialized for storage and also locally stores 2510 the biometric data. In another embodiment, the biometric data is stored exclusively on the PDK 102. In yet another embodiment, the computing device 120 communicates the received biometric data to a central registry 114 or a private registry 116 for storage along with the ID of the PDK 102 to be initialized. For example, the central registry 114 or a private registry 116 includes a PDK ID of the PDK 102 to be initialized, biometric data associated with the PDK ID of the PDK 102 to be initialized and other user data associated with the PDK ID of the PDK 102 to be initialized.



FIG. 26 shows an example user interface 2600 for configuring user information associated with a PDK 102. In one embodiment, the user interface 2600 is displayed by a computing device 120 that is used to initialize a PDK 102. The user interface 2600 includes a user configuration region having a user identifier editor 2602, a user type editor 2604 and a PDK ID editor 2606. Interacting with the user identifier editor 2602, the user type editor 2604 and the PDK ID editor 2606 allows a user, such as an administrator, to specify a user identifier associated with a PDK ID and to associate a user type with the user name and with the associated PDK ID. In one embodiment, the user type editor 2604 allows a user to select from a predefined listing of user types. For example, the user type editor 2604 allows a user to specify whether a user identifier is associated with a general user, with an administrator or with a Notary. Depending on the user type, the functionality of a user is modified. For example, a user identifier associated with an administrator is able to modify execution of different applications or customize application execution for other users while a user identifier associated with a Notary is authorized to authenticate the accuracy of biometric data received by the computing device 120.


Additionally, the user interface 2600 includes a user data summary 2610 that displays data associated with a user identifier, such as contact information for the user, a job title for the user and a listing of groups to which the user belongs. In one embodiment, a user accesses the user data summary 2610 to identify one or more groups to which the user belongs. Depending upon the embodiment, a user or asset's group(s) can be automatically or manually assigned. In one embodiment, a user or asset's group membership determines one or more of the asset or user's general use processes, typical setup and search processes, default alert conditions, etc. Grouping dramatically simplifies and speeds-up the setup procedure for a user or asset's PDK. In one embodiment, the groups are part of established priority rules and user hierarchies, which can permit or exclude member access to particular workstations or applications. For example, not allowing a billing clerk to login at computing device 120 in an exam room. In one embodiment, a user's group membership determines a default scenario or one or more applications that auto launch. For example, a member of a “nurse” group and a member of a “doctor” group may have a different application auto launch. In one embodiment, one or more application-specific preferences are assigned based on group membership. For example, a “pharmacist” group member may automatically be taken to a current medications section of a patient's medical record, while a “nurse” group member may be automatically taken to a section to enter the patient's current vital signs. A biometric data summary 2608 is also displayed to identify the type of biometric data associated with a user and allowing a Notary to modify the biometric data by interacting with the biometric data summary. For example, a Notary may access the biometric data summary 2608 to obtain a different type of biometric data associated with the user.



FIG. 27 shows an example user interface 2700 for configuring asset information associated with a PDK 102. While FIG. 26 describes configuration of a user, such as an individual, associated with a PDK 102, FIG. 27 describes configuration of information associated with an asset, such as equipment or supplies, associated with a PDK 102. In one embodiment, the user interface 2700 is displayed by a computing device 120 that is used to initialize a PDK 102. The user interface 2700 includes an asset configuration region having an asset identifier editor 2702, an asset type editor 2704 and a PDK ID editor 2706. Interacting with the asset identifier editor 2702, the asset type editor 2704 and the PDK ID editor 2706 allows a user, such as an administrator, to specify a user identifier associated with a PDK ID and to associate a user type with the user name and with the associated PDK ID. In one embodiment, the asset type editor 2704 allows a user to select from a predefined listing of asset types. For example, the asset type editor 2704 allows a user to specify whether an asset identifier is associated with a general asset, with an administrator or with a Notary. Depending on the asset type, the functionality of an asset is modified, as described above in conjunction with FIG. 26.


Additionally, the user interface 2700 includes an asset data summary 2708 that displays data associated with an asset identifier, such as an asset name, an asset description, an asset location, an asset category, an asset service data or other data describing attributes of the asset. In one embodiment, a user accesses the asset data summary 2708 to identify one or more groups to which the asset belongs.


In addition to interacting with a user data summary 2610 or an asset data summary 2708 to associate users or assets with a group, one or more user interfaces may be used to automatically or manually associate user identifiers or asset identifiers with one or more groups. FIG. 28 illustrates an example user interface 2800 allowing a user to manually identify members, such as users and/or assets, included in a group. The user interface 2800 includes a group description 2802 allowing a user to identify a group type, specify a group name and to modify the group name or group type.


A member selection region 2804 identifies users and/or assets included in a central registry 114 and/or a private registry 116 using a user listing 2806 and identifies users and/or assets included in the group identified by the group description 2802 using a member listing 2808. In one embodiment, a user selects a user identifier, or an asset identifier, from the user listing 2806 and accesses a group modification region 2810, causing the selected user identifier or asset identifier to be included in the group identified by the group description 2802. Once the group modification region 2810 is accessed, the selected group identifier, or asset identifier, is displayed in the member listing 2808 rather than in the user listing 2806. Similarly, a user selects a user identifier, or an asset identifier, from the member listing 2808 and accesses a group modification region 2810 to remove the selected user identifier, or asset identifier, from the group identified by the group description 2802.



FIG. 29 illustrates an example user interface 2900 allowing a user to automatically include users and/or assets in a group based on one or more criteria. The user interface 2900 includes a group description 2802 allowing a user to identify a group type, specify a group name and to modify the group name or group type.


A rule specification region 2904 receives input identifying one or more rules for identifying users and/or assets for inclusion in a group. For example, the rule specification region 2904 receives rules for including a user or asset in the group identified by the group description 2802. In one embodiment, the rule specification region 2904 receives input identifying values for one or more fields associated with a user, or an asset, and a user or asset including fields matching the values identified by the rules is automatically associated with the group identified in the group description 2802. In the example shown by FIG. 29, the rule specification region 2904 allows a user to specify combinations of fields and values associated with the fields to customize the users or assets included in the group. For example, a rule may include logical operators, such as “AND” or “OR,” to describe combinations of values and/or fields.



FIG. 30 is an example of a user interface 3000 for tracking a user or asset associated with a PDK 102 from a computing device 120. The user interface 3000 receives input from a user to identify a user or asset to be tracked by the tracking server 210. In the example of FIG. 30, the user interface 3000 includes a quick search interface 3002 and an advanced search interface 3004 as well as a result listing 3006.


A person having ordinary skill will recognize that the search options for the quick search 3002 and advanced search 3004 interfaces can range from pre-defined named criteria selection, to common filters related to the tracked item type, to detailed multi-level equation-based tracked item value field specifications.


The quick search interface 3002 receives input from a user for performing simple searches based on a limited amount of data associated with a user or an asset. For example, the quick search interface 3002 receives input identifying a name, a title, a description or a location of a user or an asset and identifies the user or asset matching the received input. The quick search interface 3002 also allows specification of a group identifier to retrieve assets or users included in the specified group.


The advanced search interface 3004 receives input for performing advanced searches based on multiple data associated with a user or an asset or based on combinations of data associated with a user or an asset. In one embodiment, the advanced search interface 3004 receives input identifying values for one or more fields associated with a user or an asset that are used to identify one or more users or assets including fields having values matching those identified by the values, or combination of values, received by the advanced search interface 3004. In the example shown by FIG. 30, the advanced search interface 3004 allows a user to specify combinations of fields and values associated with the fields to identify assets or values. For example, the advanced search interface 2004 receives input identifying values for multiple fields and logical operators describing a number of values for different fields. For example, the advanced search interface 3004 allows values for fields to be combined using logical operators, such as “AND” or “OR,” to describe combinations of values and/or fields.


The result listing 3006 displays data associated with users or assets that match the search criteria received by the quick search interface 3002 or the advanced search interface 3004. In one embodiment, the results listing 3006 dynamic, i.e., the results are dynamically modified and displayed as a user inputs or modifies search criteria enabling the user to review and accept or continue entry of criteria. For example, in such an embodiment, if the user is searching for a heart monitor on a specific floor of a hospital, the user inputs or selects “heart monitor” in a name or description field causing all heart monitors in the system to be displayed in the results listing 3006. The user then scrolls through the floor plan options in a floor plan drop-down menu. As the user mouses-over each floor plan the heart rate monitors located on the moused-over floor plan are automatically displayed in the result listing 3006 without the user selecting the floor plan. For example, the result listing 3006 displays a name, a title, a description, a floor plan and a location associated with different assets or users matching the search criteria. In one embodiment, the result listing 3006 receives input selecting one or more of the search results and a tracking input 3008 causes the tracking server 210 to monitor the location of the assets or users selected via the result listing 3006. In one embodiment, a first input received by the tracking input 3008 causes the tracking server 210 to track the selected assets or users while a second input received by the tracking input 3010 causes the tracking server 210 to track each of the assets or users identified by the result listing 3006. In one embodiment, a third input 3012 causes the tracking server to generate a report and a fourth input (not shown) causes the tracking server to generate an alarm regarding one or more of the users or assets in the result listing 3006. The search results and/or subsequent locations, tracking, or reports can be displayed in any number of forms including, but not limited to textually, graphically or in time and motion study reports. Types of reports other than motion reports may be generated, for example, an audit report may be generated in order to monitor and document one or more of the usage, maintenance and calibration of equipment. Such reports may subsequently be used by a user or by the tracking server to schedule one or more of future maintenance and future calibration when a piece of equipment is not typically in use or when an alternative piece of equipment is typically available.


In some embodiments, the user interface may be used to audit multiple items in a geographic area, sort the items based on one or more criteria and cause the items that meet a condition to produce an audio and/or visual indication. For example, in one embodiment, the floor plan section of 3002 is used to select a geographic area. The results are displayed in the result listing 3006 where the results may be sorted and displayed based on a field including calibration dates or usage metrics. The items that are out of calibration or due for servicing based on usage metrics are sent a signal that causes the items to create a visual and/or audible alert. Depending on the embodiments, the signal may be automatic (e.g., as part of an alert condition) or manual (e.g., sent based on user input from a user auditing the maintenance of the items). In some embodiments, the items that are out of calibration are sent a signal that causes the items to create a visual and/or audible alert (e.g., flashing and/or beeping) when the item is proximate to one or more similar items.



FIG. 31 is an example of a user interface 3100 for identifying the location of a tracked user or asset associated with a PDK 102 from a computing device 120. The user interface 3100 displays data from the tracking server 210 indicating the location of one or more assets or users tracked by the tracking server 210. In the example of FIG. 30, the user interface 3100 includes a tracked item listing 3102, a navigation interface 3104, an item location selector 3106 and a primary item selector 3108.


The tracked item listing 3102 displays an item identifier associated with users or assets tracked by the tracking server 210. For example, the tracked item listing 3102 displays a user name or asset name associated with the tracked items. The tracked items list 3102 can include selected items from a single or most recent search result or can accumulate items from a plurality of search results. In one embodiment, the tracked item listing 3102 receives input selecting a user or asset and a subsequent input received by the item location selector 3106 or the primary item selector 3108 modifies the user interface 310. Items included in the tracked item listing 3102 may be manually identified by user input or may be automatically included based on one or more criteria of a user or an asset.


After selecting a user or asset from the tracked item listing 3102, an input received by the item location selector 3106 causes the user interface 3100 to visually distinguish the location of the selected item in the navigation interface 3104. For example, the navigation interface 3104 visually distinguishes the selected item from other tracked items responsive to the item location selector 3106 thus making the item easier to find on a crowded display. In the example of FIG. 31, the navigation interface 3104 modifies the color used to display the selected item and displays rings around the selected item responsive to the item location selector 3106 receiving an input. In one embodiment, tracking is in or near real-time or periodically updated (e.g., every few minutes). In one embodiment, historic tracking is possible, i.e., showing the item's change in location and time intervals of location change or being able to playback the items route over a time interval. In one embodiment, the historic tracking is utilized for time and motion reports and/or study, which includes one or more textual reports for any combination of tracked items and site map tracking zones and time periods including relative time periods (e.g., yesterday, last night, etc.) showing various formats of tracking time and location data. In one embodiment, the historic tracking data capable of being output for external playback or recording.


In some embodiments, the system 100 enables the item(s) on the tracked item listing 3102 to produce one or more of a visual and audio alert at the item(s). For example, assume an item is required for a procedure and is placed on a track items list 3102, in one embodiment, one or more of a visual device and an audio device are either integrated into the PDK 102 or connected (e.g. via the programmer I/O 340) to the PDK 102. In one such embodiment, the item(s) may provide visual or audio instructions to move the equipment to the location of the procedure. Such embodiments may beneficially expedite the process of locating and/or collecting items.


After selecting a user or asset from the tracked item listing 3102, an input received by the primary item selector 3108 causes the user interface 3100 to make the selected item the primary item so that the navigation interface 3104 is modified to keep the selected item visible. For example, the navigation interface 3104 scrolls as the primary item moves (even between floor plans) to keep the primary item visible in the navigation interface 3104. Additionally, the navigation interface 3104 may visually differentiate the primary item from other tracked items by changing the color used to display the primary item or otherwise modifying the presentation of the primary item relative to other tracked items. In one embodiment, other items near the primary item are displayed. This may be important for reducing response times. For example, a heart monitor detects heart failure and alert is sent to the nearest provider. In one embodiment, the user may select a tracked item using a pointing device 614 to display information regarding the item, e.g., the item's ID, tracking data, reference data, calibration and service history, etc.


In some embodiments, selecting an item as the primary item causes one or more of a visual and audio alert at the item itself. For example, assume an item has been selected as a primary item, in one embodiment, one or more of a visual device and an audio device are either integrated into the PDK 102 or connected (e.g. via the programmer I/O 340) to the PDK 102. In one such embodiment, the item will begin to audibly beep or visually flash. In another such embodiment, the item begins to audibly beep and/or flash when the item is in proximity to other similar items. Such embodiments may beneficially expedite the process of locating the primary item. For example, it may be easier to locate and/or track wandering Alzheimer's patient (i.e., an example of a primary item) in a crowded area if the PDK 102 associated with the patient is beeping.


The navigation interface 3104 displays the location of the items identified in the tracked item listing 3102 in a graphical representation of the environment including the tracked items. For example, the navigation interface 3104 displays a floor plan of an environment including the tracked items with the location of the tracked items overlaid on the floor plan. In one embodiment, the navigation interface 3104 includes navigation controls allowing a user to zoom in or out of the graphical representation of the environment including the tracked items or to pan across the graphical representation of the environment including the tracked items. In one embodiment, the navigation interface 3104 displays the current location (not shown) of the user and/or the computing device 120 the user is using to track the items from in addition to the one or more items the user desires to track. In one such embodiment, the navigation interface 3104 includes an auto navigate function which will automatically pan or zoom to the user's location or the tracked item's location. In one embodiment, the navigation interface 3104 will also display a route the user can take to reach the tracked item. The navigation interface 3104 may also include a selector allowing modification of the graphical representation of the environment including the tracked items. For example, the navigation interface 3104 allows modification of the floor plan on which the positions of the tracked items are overlaid.


In one embodiment, the navigation interface 3104 also displays one or more alert notifications 3110 associated with tracked items. An alert notification 3110 is displayed responsive to a tracked item meeting one or more criteria. The one or more criteria can include a particular PDK 102 or event being detected (e.g., psychiatric patient leaves the psychiatric ward or enters a restricted zone, a minimum or maximum number of qualified PDKs entering or leaving a zone, or paired PDKs 102 being separated) or not being detected (e.g., a doctor not making rounds) including sudden or unexpected detection or loss of detection (e.g., loss of signal without low battery warning), which may indicate PDK 102 or system malfunction (e.g., a broken PDK) or tampering (e.g., a person hiding the signal by covering the PDK with metal or otherwise disabling the device, one or more sensor readings (e.g., temperature proximate to an asset enters or exits a user specified range or a low battery is detected) or at a predetermined time (e.g., when an asset must be serviced, calibrated or decommissioned). The alert notification 3110 visually differentiates the item meeting the criteria from other tracked items. In one embodiment, the alert notification 3110 displays a text message describing the alert. In one embodiment, one or more alerts may be temporarily disabled for a brief period of time by selecting a “reset in process” status. In one embodiment, one or more of the type of alert, frequency of alert, response time to alert and user responding to an alert are logged and available for review and analysis. A user interface, such as the one described below in conjunction with FIG. 32, allows customization of the criteria that cause display of an alert notification 3110.


In some embodiments, an alert causes one or more of a visual and audio alert at the item itself. For example, assume an item has met alert criteria, in one embodiment, one or more of a visual device and an audio device are either integrated into the PDK 102 or connected (e.g. via the programmer I/O 340) to the PDK 102. In one such embodiment, the item (e.g., a piece of equipment) begins to audibly beep and/or flash its display when alert criteria are met (e.g., the equipment is due to be recalibrated). In another such embodiment, the item begins to audibly beep and/or flash when the item is in proximity to other similar items. Such embodiments may beneficially expedite the process of locating the item associated with the alert. For example, it may be easier to locate the equipment that needs recalibration in a closet full of similar equipment if the equipment flashes and beeps when it needs recalibration. For another example, it may be easier to identify the patient who is due to receive his/her medication if the patient is beeping.



FIG. 32 is an example of a user interface 3200 for specifying generation of an alert for an asset or user tracked by the tracking server 210. The user interface 3200 includes a current alert listing 3202 and an alert editor 3204. In one embodiment, data received by the user interface 3200 is communicated to the alert server 250, which generates alerts responsive to the received data. The current alert listing 3202 identifies alerts which are applied by the alert server 250 to data received from the tracking server 210 and/or from one or more PDKs 102. For example, the current alert listing 3202 displays an alert identifier and a description of the alerts currently being monitored by the alert server 250. The alerts in the current alert listing 3202 may be monitored simultaneously, randomly or in a preconfigured priority order. The current alert listing 3202 also receives input stopping the alert server 250 from applying an alert to received data. Also, the current alert listing 3202 receives input for creating a new alert for application by the alert server 250.


The alert editor 3204 receives input for specifying a new alert or for modifying attributes of an existing alert. For example, the alert editor 3204 receives data identifying the source of data for which the alert server 250 applies the alert, such as from the tracking server 210, from a PDK 102 or from a Reader 108 or other sensor. The alert editor 3204 also receives data specifying the criteria causing an alert to be generated. For example, the alert editor 3204 receives data specifying a temperature range so that an alert is generated when the alert server 250 receives data from a source indicating the temperature is within the specified range.


The alert editor 3204 also receives data specifying how the alert server 250 notifies a user that an alert is generated. In one embodiment, the alert editor 3204 receives data identifying one or more communication protocols and contact information used to communicate an alert notification to a user. For example, the alert editor 3204 receives a user telephone number and e-mail address associated with a user, allowing the user to receive notification of an alert via a telephone call, a text message and/or an e-mail. In one embodiment, the alert editor 3204 associates a priority level to be associated with different communication protocols to allow a user to specify how the user is notified when an alert is generated. For example, the alert editor 3204 associates a first communication protocol with a first priority level and if the tracking server 210 does not receive a response within a specified time interval after notifying a user of an alert, a second communication protocol having a second priority level is used to again notify the user of the alert.



FIG. 33 is an example of a user interface 3300 for describing reports generated by data received from the tracking server 210 describing movement of assets or users. The user interface 3300 includes a current report listing 3302 and a report editor 3304. The current report listing 3302 identifies reports which are generated by the tracking server 210 based on data received from PDKs 102 or other sources. For example, the current report listing 3302 displays a report identifier and a description of the reports being generated by the tracking server 210. The current report listing 3302 also receives input stopping the generation of a report by the tracking server 210 from received data. Also, the current report listing 3302 receives input for creating a new report for generation by the tracking server 210 or for editing a report generated by the tracking server 210.


The report editor 3304 receives input for specifying a new report for generation or for modifying a currently generated report. For example, the report editor 3304 receives data identifying a type of report, a PDK 102 from which data for the report is received, one or more locations from which data included in the report is received, a time interval associated with the report and a description of data included in the generated report. For example, the report editor 3304 receives data indicating that the report includes the number of PDKs 102 visiting a location, the total number of locations visited by a PDK 102, the length of time a PDK 102 was in a location or other suitable data. In one embodiment, the report editor 3304 also receives data describing how the content included in the report is presented.


The foregoing description of the embodiments of the present embodiment of invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the present embodiment of invention to the precise form disclosed. Many modifications and variations are possible in light of the above teaching. It is intended that the scope of the present embodiment of invention be limited not by this detailed description, but rather by the claims of this application. As will be understood by those familiar with the art, the present embodiment of invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. Likewise, the particular naming and division of the modules, routines, features, attributes, methodologies and other aspects are not mandatory or significant, and the mechanisms that implement the present embodiment of invention or its features may have different names, divisions and/or formats. Furthermore, as will be apparent to one of ordinary skill in the relevant art, the modules, routines, features, attributes, methodologies and other aspects of the present embodiment of invention can be implemented as software, hardware, firmware or any combination of the three. Also, wherever a component, an example of which is a module, of the present embodiment of invention is implemented as software, the component can be implemented as a standalone program, as part of a larger program, as a plurality of separate programs, as a statically or dynamically linked library, as a kernel loadable module, as a device driver, and/or in every and any other way known now or in the future to those of ordinary skill in the art of computer programming. Additionally, the present embodiment of invention is in no way limited to implementation in any specific programming language, or for any specific operating system or environment. Accordingly, the disclosure of the present embodiment of invention is intended to be illustrative, but not limiting, of the scope of the present embodiment of invention, which is set forth in the following claims.

Claims
  • 1. A method comprising: detecting whether a first user device is within a proximity zone of a second user device;responsive to detecting that the first user device is within the proximity zone of the second user device, receiving, by the second user device, a biometric profile of an authorized user for authentication and an authentication interval associated with the biometric profile from the first user device;determining whether a time from when the biometric profile was last authenticated by the second user device is within the authentication interval; andresponsive to determining that the time from when the biometric profile was last authenticated by the second user device is within the authentication interval, automatically unlocking the second user device for access by bypassing another authentication of the biometric profile against biometric information of a user accessing the second user device.
  • 2. The method of claim 1, further comprising: responsive to detecting that the first user device is within the proximity zone of the second user device, transmitting, by the second user device, an authentication request to the first user device.
  • 3. The method of claim 1, further comprising: responsive to determining that the time from when the biometric profile was last authenticated is not within the authentication interval, acquiring biometric information of a user accessing the second user device;comparing the biometric information against the biometric profile to determine whether authentication is successful; andautomatically unlocking the second user device for access based on the authentication being successful.
  • 4. The method of claim 3, wherein acquiring the biometric information of the user includes scanning the biometric information of the user using a biometric scanner.
  • 5. The method of claim 1, wherein receiving the biometric profile for authentication includes receiving the biometric profile from a secure memory of the first user device, the secure memory storing the biometric profile of the authorized user.
  • 6. The method of claim 1, wherein the authentication interval is associated with the biometric profile.
  • 7. The method of claim 1, wherein the authentication interval is associated with the second user device.
  • 8. The method of claim 1, wherein the second user device is one of a public workstation and a private workstation.
  • 9. The method of claim 4, wherein the biometric scanner is located at the first user device.
  • 10. The method of claim 4, wherein the biometric scanner is located at the second user device.
  • 11. The method of claim 4, wherein the biometric scanner is one from a group of a fingerprint scanner, a retinal scanner, an iris scanner, a facial scanner, a palm scanner, a signature analyzer, and a voice analyzer.
  • 12. A system comprising: one or more processors;a memory including instructions that, when executed by the one or more processors, cause the system to: detect whether a first user device is within a proximity zone of a second user device;responsive to detecting that the first user device is within the proximity zone of the second user device, receive, by the second user device, a biometric profile of an authorized user for authentication and an authentication interval associated with the biometric profile from the first user device;determine whether a time from when the biometric profile was last authenticated by the second user device is within the authentication interval; andresponsive to determining that the time from when the biometric profile was last authenticated by the second user device is within the authentication interval, automatically unlock the second user device for access by bypassing another authentication of the biometric profile against biometric information of a user accessing the second user device.
  • 13. The system of claim 12, wherein the instructions, when executed by the one or more processors, further cause the system to: responsive to detecting that the first user device is within the proximity zone of the second user device, transmit, by the second user device, an authentication request to the first user device.
  • 14. The system of claim 12, wherein the instructions, when executed by the one or more processors, further cause the system to: responsive to determining that the time from when the biometric profile was last authenticated is not within the authentication interval, acquire biometric information of a user accessing the second user device;compare the biometric information against the biometric profile for authentication to determine whether authentication is successful; andautomatically unlock the second user device for access based on the authentication being successful.
  • 15. The system of claim 14, wherein to acquire the biometric information, the instructions, when executed by the one or more processors, further cause the system to scan the biometric information of the user using a biometric scanner.
  • 16. The system of claim 12, wherein to receive the biometric profile for authentication, the instructions, when executed by the one or more processors, further cause the system to receive the biometric profile from a secure memory of the first user device, the secure memory storing the biometric profile of the authorized user.
  • 17. The system of claim 12, wherein the authentication interval is associated with one or more of the biometric profile and the second user device.
  • 18. The system of claim 12, wherein the second user device is one of a public workstation and a private workstation.
  • 19. The system of claim 15, wherein the biometric scanner is located at one or more of the first user device and the second user device.
  • 20. The system of claim 15, wherein the biometric scanner is one from a group of a fingerprint scanner, a retinal scanner, an iris scanner, a facial scanner, a palm scanner, a signature analyzer, and a voice analyzer.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of and claims priority to U.S. application Ser. No. 16/247,111, filed Jan. 14, 2019, titled “Proximity-Based System for Object Tracking and Automatic Application Initialization,” which is a continuation of and claims priority to U.S. application Ser. No. 14/981,607, filed Dec. 28, 2015, titled “Proximity-Based System for Object Tracking and Automatic Application Initialization,” which claims the benefit, under 35 U.S.C. § 120, of U.S. patent application Ser. No. 13/401,702, filed Feb. 21, 2012, titled “Proximity-Based System for Object Tracking and Automatic Application Initialization,” which claims the benefit, under 35 U.S.C. § 119(e), of U.S. Provisional Application No. 61/445,035, filed Feb. 21, 2011, titled “ProxAccess and ProxNet Design and Implementation,” the entire contents of all of which are incorporated herein by reference. Applicants hereby notify the USPTO that the claims of the present application are different from those of the aforementioned related applications. Therefore, Applicant rescinds any disclaimer of claim scope made in the parent application or any other predecessor application in relation to the present application. The Examiner is therefore advised that any such disclaimer and the cited reference that it was made to avoid may need to be revisited at this time. Furthermore, the Examiner is also reminded that any disclaimer made in the present application should not be read into or against the parent application, the grandparent application or any other related application.

US Referenced Citations (1193)
Number Name Date Kind
3665313 Trent May 1972 A
3739329 Lester Jun 1973 A
3761883 Alvarez et al. Sep 1973 A
3906166 Cooper et al. Sep 1975 A
4101873 Anderson et al. Jul 1978 A
4430705 Cannavino et al. Feb 1984 A
4476469 Lander Oct 1984 A
4598272 Cox Jul 1986 A
4661821 Smith Apr 1987 A
4759060 Hayashi et al. Jul 1988 A
4814742 Morita et al. Mar 1989 A
4871997 Adriaenssens et al. Oct 1989 A
4993068 Piosenka et al. Feb 1991 A
5043702 Kuo Aug 1991 A
5052049 Andros et al. Sep 1991 A
5187352 Blair et al. Feb 1993 A
5224164 Elsner Jun 1993 A
5296641 Stelzel Mar 1994 A
5307349 Shloss et al. Apr 1994 A
5317572 Satoh May 1994 A
5325285 Araki Jun 1994 A
5392287 Tiedemann et al. Feb 1995 A
5392433 Hammersley et al. Feb 1995 A
5410588 Ito Apr 1995 A
5416780 Patel May 1995 A
5422632 Bucholtz et al. Jun 1995 A
5428684 Akiyama et al. Jun 1995 A
5450489 Ostrover et al. Sep 1995 A
5473690 Grimonprez et al. Dec 1995 A
5481265 Russell Jan 1996 A
5506863 Meidan et al. Apr 1996 A
5517502 Bestler et al. May 1996 A
5541583 Mandelbaum Jul 1996 A
5544321 Theimer et al. Aug 1996 A
5552776 Wade et al. Sep 1996 A
5563947 Kikinis Oct 1996 A
5589838 McEwan Dec 1996 A
5594227 Deo Jan 1997 A
5598474 Johnson Jan 1997 A
5611050 Theimer et al. Mar 1997 A
5615277 Hoffman Mar 1997 A
5619251 Kuroiwa et al. Apr 1997 A
5623552 Lane Apr 1997 A
5629980 Stefik et al. May 1997 A
5644354 Thompson et al. Jul 1997 A
5666412 Handelman et al. Sep 1997 A
5689529 Johnson Nov 1997 A
5692049 Johnson et al. Nov 1997 A
5719387 Fujioka Feb 1998 A
5729237 Webb Mar 1998 A
5760705 Glessner et al. Jun 1998 A
5760744 Sauer Jun 1998 A
5773954 Vanhorn Jun 1998 A
5784464 Akiyama et al. Jul 1998 A
5799085 Shona Aug 1998 A
5821854 Dorinski et al. Oct 1998 A
5825876 Peterson, Jr. Oct 1998 A
5835595 Fraser et al. Nov 1998 A
5838306 O'Connor et al. Nov 1998 A
5854891 Postlewaite et al. Dec 1998 A
5857020 Peterson, Jr. Jan 1999 A
5886634 Muhme Mar 1999 A
5892825 Mages et al. Apr 1999 A
5892900 Ginter et al. Apr 1999 A
5894551 Huggins et al. Apr 1999 A
5898880 Ryu Apr 1999 A
5910776 Black Jun 1999 A
5917913 Wang Jun 1999 A
5923757 Hocker et al. Jul 1999 A
5928327 Wang et al. Jul 1999 A
5942985 Chin Aug 1999 A
5991399 Graunke et al. Nov 1999 A
5991749 Morrill, Jr. Nov 1999 A
6016476 Maes et al. Jan 2000 A
6018739 McCoy et al. Jan 2000 A
6025780 Bowers et al. Feb 2000 A
6035038 Campinos et al. Mar 2000 A
6035329 Mages et al. Mar 2000 A
6038334 Hamid Mar 2000 A
6038549 Davis et al. Mar 2000 A
6038666 Hsu et al. Mar 2000 A
6040786 Fujioka Mar 2000 A
6041410 Hsu et al. Mar 2000 A
6042006 Van Tilburg et al. Mar 2000 A
6045039 Stinson et al. Apr 2000 A
6055314 Spies et al. Apr 2000 A
6068184 Barnett May 2000 A
6069647 Sullivan et al. May 2000 A
6070796 Sirbu Jun 2000 A
6076164 Tanaka et al. Jun 2000 A
6088450 Davis et al. Jul 2000 A
6088730 Kato et al. Jul 2000 A
6104290 Naguleswaran Aug 2000 A
6104334 Allport Aug 2000 A
6110041 Walker et al. Aug 2000 A
6121544 Petsinger Sep 2000 A
6134283 Sands et al. Oct 2000 A
6137480 Shintani Oct 2000 A
6138010 Rabe et al. Oct 2000 A
6148142 Anderson Nov 2000 A
6148210 Elwin et al. Nov 2000 A
6161179 Seidel Dec 2000 A
6175921 Rosen Jan 2001 B1
6177887 Jerome Jan 2001 B1
6185316 Buffam Feb 2001 B1
6189105 Lopes Feb 2001 B1
6209089 Selitrennikoff et al. Mar 2001 B1
6219109 Raynesford et al. Apr 2001 B1
6219439 Burger Apr 2001 B1
6219553 Panasik Apr 2001 B1
6237848 Everett May 2001 B1
6240076 Kanerva et al. May 2001 B1
6247130 Fritsch Jun 2001 B1
6249869 Drupsteen et al. Jun 2001 B1
6256737 Bianco et al. Jul 2001 B1
6266415 Campinos et al. Jul 2001 B1
6270011 Gottfried Aug 2001 B1
6279111 Jensenworth et al. Aug 2001 B1
6279146 Evans et al. Aug 2001 B1
6295057 Rosin et al. Sep 2001 B1
6307471 Xydis Oct 2001 B1
6325285 Baratelli Dec 2001 B1
6336121 Lyson et al. Jan 2002 B1
6336142 Kato et al. Jan 2002 B1
6343280 Clark Jan 2002 B2
6345347 Biran Feb 2002 B1
6363485 Adams et al. Mar 2002 B1
6367019 Ansell et al. Apr 2002 B1
6369693 Gibson Apr 2002 B1
6370376 Sheath Apr 2002 B1
6381029 Tipirneni Apr 2002 B1
6381747 Wonfor et al. Apr 2002 B1
6385596 Wiser et al. May 2002 B1
6392664 White et al. May 2002 B1
6397387 Rosin et al. May 2002 B1
6401059 Shen et al. Jun 2002 B1
6411307 Rosin et al. Jun 2002 B1
6424249 Houvener Jul 2002 B1
6424715 Saito Jul 2002 B1
6425084 Rallis et al. Jul 2002 B1
6434403 Ausems et al. Aug 2002 B1
6434535 Kupka et al. Aug 2002 B1
6446004 Cao et al. Sep 2002 B1
6446130 Grapes Sep 2002 B1
6456958 Xydis Sep 2002 B1
6463534 Geiger et al. Oct 2002 B1
6480101 Kelly et al. Nov 2002 B1
6480188 Horsley Nov 2002 B1
6484182 Dunphy et al. Nov 2002 B1
6484260 Scott et al. Nov 2002 B1
6484946 Matsumoto et al. Nov 2002 B2
6487663 Jaisimha et al. Nov 2002 B1
6490443 Freeny, Jr. Dec 2002 B1
6510350 Steen et al. Jan 2003 B1
6522253 Saltus Feb 2003 B1
6523113 Wehrenberg Feb 2003 B1
6529949 Getsin et al. Mar 2003 B1
6546418 Schena et al. Apr 2003 B2
6550011 Sims, III Apr 2003 B1
6563465 Frecska May 2003 B2
6563805 Ma et al. May 2003 B1
6564380 Murphy May 2003 B1
6577238 Whitesmith et al. Jun 2003 B1
6593887 Luk et al. Jul 2003 B2
6597680 Lindskog et al. Jul 2003 B1
6607136 Atsmon et al. Aug 2003 B1
6621528 Kessler et al. Sep 2003 B1
6624752 Klitsgaard et al. Sep 2003 B2
6628302 White et al. Sep 2003 B2
6632992 Hasegawa Oct 2003 B2
6633981 Davis Oct 2003 B1
6645077 Rowe Nov 2003 B2
6647417 Hunter et al. Nov 2003 B1
6657538 Ritter Dec 2003 B1
6658566 Hazard Dec 2003 B1
6667684 Waggamon et al. Dec 2003 B1
6669096 Saphar et al. Dec 2003 B1
6671808 Abbott et al. Dec 2003 B1
6683954 Searle Jan 2004 B1
6697944 Jones et al. Feb 2004 B1
6709333 Bradford et al. Mar 2004 B1
6711464 Yap et al. Mar 2004 B1
6714168 Berenbaum Mar 2004 B2
6715246 Frecska et al. Apr 2004 B1
6728397 McNeal Apr 2004 B2
6737955 Ghabra et al. May 2004 B2
6758394 Maskatiya et al. Jul 2004 B2
6771969 Chinoy et al. Aug 2004 B1
6775655 Peinado et al. Aug 2004 B1
6785474 Hirt et al. Aug 2004 B2
6788640 Celeste Sep 2004 B2
6788924 Knutson et al. Sep 2004 B1
6795425 Raith Sep 2004 B1
6804825 White et al. Oct 2004 B1
6806887 Chernock et al. Oct 2004 B2
6819219 Bolle et al. Nov 2004 B1
6839542 Sibecas et al. Jan 2005 B2
6850147 Prokoski et al. Feb 2005 B2
6853988 Dickinson et al. Feb 2005 B1
6859812 Poynor Feb 2005 B1
6861980 Rowitch et al. Mar 2005 B1
6871063 Schiffer Mar 2005 B1
6873975 Hatakeyama et al. Mar 2005 B1
6879567 Callaway et al. Apr 2005 B2
6879966 Lapsley et al. Apr 2005 B1
6886741 Salveson May 2005 B1
6889067 Willey May 2005 B2
6891822 Gubbi et al. May 2005 B1
6892307 Wood et al. May 2005 B1
6930643 Byrne et al. Aug 2005 B2
6947003 Huor Sep 2005 B2
6950941 Lee et al. Sep 2005 B1
6957086 Bahl et al. Oct 2005 B2
6961858 Fransdonk Nov 2005 B2
6963270 Gallagher et al. Nov 2005 B1
6963971 Bush et al. Nov 2005 B1
6973576 Giobbi Dec 2005 B2
6975202 Rodriguez et al. Dec 2005 B1
6980087 Zukowski Dec 2005 B2
6983882 Cassone Jan 2006 B2
6999032 Pakray et al. Feb 2006 B2
7012503 Nielsen Mar 2006 B2
7020635 Hamilton et al. Mar 2006 B2
7031945 Donner Apr 2006 B1
7049963 Waterhouse et al. May 2006 B2
7055171 Martin et al. May 2006 B1
7058806 Smeets et al. Jun 2006 B2
7061380 Orlando et al. Jun 2006 B1
7068623 Barany et al. Jun 2006 B1
7072900 Sweitzer et al. Jul 2006 B2
7079079 Jo et al. Jul 2006 B2
7080049 Truitt et al. Jul 2006 B2
7082415 Robinson et al. Jul 2006 B1
7090126 Kelly et al. Aug 2006 B2
7090128 Farley et al. Aug 2006 B2
7100053 Brown et al. Aug 2006 B1
7107455 Merkin Sep 2006 B1
7107462 Fransdonk Sep 2006 B2
7111789 Rajasekaran et al. Sep 2006 B2
7112138 Hedrick et al. Sep 2006 B2
7119659 Bonalle et al. Oct 2006 B2
7123149 Nowak et al. Oct 2006 B2
7130668 Chang et al. Oct 2006 B2
7131139 Meier Oct 2006 B1
7137008 Hamid et al. Nov 2006 B1
7137012 Kamibayashi et al. Nov 2006 B1
7139914 Arnouse Nov 2006 B2
7150045 Koelle et al. Dec 2006 B2
7155416 Shatford Dec 2006 B2
7159114 Zajkowski et al. Jan 2007 B1
7159765 Frerking Jan 2007 B2
7167987 Angelo Jan 2007 B2
7168089 Nguyen et al. Jan 2007 B2
7176797 Zai et al. Feb 2007 B2
7185363 Narin et al. Feb 2007 B1
7188110 Ludtke et al. Mar 2007 B1
7191466 Hamid et al. Mar 2007 B1
7194438 Sovio et al. Mar 2007 B2
7209955 Major et al. Apr 2007 B1
7218944 Cromer et al. May 2007 B2
7225161 Lam et al. May 2007 B2
7230908 Vanderaar et al. Jun 2007 B2
7231068 Tibor Jun 2007 B2
7231451 Law et al. Jun 2007 B2
7239226 Berardi et al. Jul 2007 B2
7239241 Claudatos et al. Jul 2007 B2
7242923 Perera et al. Jul 2007 B2
7245221 Claudatos et al. Jul 2007 B2
7249177 Miller Jul 2007 B1
7272723 Abbott et al. Sep 2007 B1
7277737 Vollmer et al. Oct 2007 B1
7278025 Saito et al. Oct 2007 B2
7283650 Sharma et al. Oct 2007 B1
7295106 Jackson et al. Nov 2007 B1
7295119 Rappaport et al. Nov 2007 B2
7305560 Giobbi Dec 2007 B2
7310042 Seifert Dec 2007 B2
7314164 Bonalle et al. Jan 2008 B2
7317799 Hammersmith et al. Jan 2008 B2
7319395 Puzio et al. Jan 2008 B2
7330108 Thomas Feb 2008 B2
7333002 Bixler et al. Feb 2008 B2
7333615 Jarboe et al. Feb 2008 B1
7336181 Nowak et al. Feb 2008 B2
7336182 Baranowski et al. Feb 2008 B1
7337326 Palmer et al. Feb 2008 B2
7341181 Bonalle et al. Mar 2008 B2
7342503 Light et al. Mar 2008 B1
7349557 Tibor Mar 2008 B2
7356393 Schlatre et al. Apr 2008 B1
7356706 Scheurich Apr 2008 B2
7361919 Setlak Apr 2008 B2
7363494 Brainard et al. Apr 2008 B2
7370366 Lacan et al. May 2008 B2
7378939 Sengupta et al. May 2008 B2
7380202 Lindhorst et al. May 2008 B1
7382799 Young et al. Jun 2008 B1
7387235 Gilbert et al. Jun 2008 B2
7401731 Pletz et al. Jul 2008 B1
7404088 Giobbi Jul 2008 B2
7408799 Kang Aug 2008 B1
7424134 Chou Sep 2008 B2
7437330 Robinson et al. Oct 2008 B1
7447911 Chou et al. Nov 2008 B2
7448087 Ohmori et al. Nov 2008 B2
7458510 Zhou Dec 2008 B1
7460836 Smith et al. Dec 2008 B2
7461444 Deaett et al. Dec 2008 B2
7464053 Pylant Dec 2008 B1
7464059 Robinson et al. Dec 2008 B1
7466232 Neuwirth Dec 2008 B2
7472280 Giobbi Dec 2008 B2
7477285 Johnson Jan 2009 B1
7512806 Lemke Mar 2009 B2
7525413 Jung et al. Apr 2009 B2
7529944 Hamid May 2009 B2
7533809 Robinson et al. May 2009 B1
7545312 Kiang et al. Jun 2009 B2
7565329 Lapsley et al. Jul 2009 B2
7573382 Choubey et al. Aug 2009 B2
7573841 Lee et al. Aug 2009 B2
7574734 Fedronic et al. Aug 2009 B2
7578442 Knowles et al. Aug 2009 B2
7583238 Cassen et al. Sep 2009 B2
7583643 Smith et al. Sep 2009 B2
7587502 Crawford et al. Sep 2009 B2
7587611 Johnson et al. Sep 2009 B2
7594611 Arrington, III Sep 2009 B1
7595765 Hirsch et al. Sep 2009 B1
7603564 Adachi Oct 2009 B2
7606733 Shmueli et al. Oct 2009 B2
7617523 Das et al. Nov 2009 B2
7620184 Marque Pucheu Nov 2009 B2
7624073 Robinson et al. Nov 2009 B1
7624417 Dua Nov 2009 B2
7640273 Wallmeier et al. Dec 2009 B2
7644043 Minowa Jan 2010 B2
7644443 Matsuyama et al. Jan 2010 B2
7646307 Plocher et al. Jan 2010 B2
7652892 Shiu et al. Jan 2010 B2
7653883 Hotelling et al. Jan 2010 B2
7676380 Graves et al. Mar 2010 B2
7689005 Wang et al. Mar 2010 B2
7701858 Werb et al. Apr 2010 B2
7706896 Music et al. Apr 2010 B2
7711152 Davida et al. May 2010 B1
7711586 Aggarwal et al. May 2010 B2
7715593 Adams et al. May 2010 B1
7724713 Del Prado Pavon et al. May 2010 B2
7724717 Porras et al. May 2010 B2
7724720 Korpela et al. May 2010 B2
7764236 Hill et al. Jul 2010 B2
7765164 Robinson et al. Jul 2010 B1
7765181 Thomas et al. Jul 2010 B2
7768960 Barratt Aug 2010 B1
7773754 Buer et al. Aug 2010 B2
7774613 Lemke Aug 2010 B2
7780082 Handa et al. Aug 2010 B2
7796551 Machiraju et al. Sep 2010 B1
7813822 Hoffberg Oct 2010 B1
7865448 Pizarro Jan 2011 B2
7865937 White et al. Jan 2011 B1
7883003 Giobbi et al. Feb 2011 B2
7883417 Bruzzese et al. Feb 2011 B2
7904718 Giobbi et al. Mar 2011 B2
7943868 Anders et al. May 2011 B2
7957536 Nolte Jun 2011 B2
7961078 Reynolds et al. Jun 2011 B1
7984064 Fusari Jul 2011 B2
7996514 Baumert et al. Aug 2011 B2
8026821 Reeder et al. Sep 2011 B2
8036152 Brown et al. Oct 2011 B2
8049594 Baranowski Nov 2011 B1
8077041 Stern et al. Dec 2011 B2
8081215 Kuo et al. Dec 2011 B2
8082160 Collins et al. Dec 2011 B2
8089354 Perkins Jan 2012 B2
8112066 Ben Ayed Feb 2012 B2
8117125 Kawan et al. Feb 2012 B1
8125624 Jones et al. Feb 2012 B2
8135624 Ramalingam et al. Mar 2012 B1
8171528 Brown May 2012 B1
8193923 Rork et al. Jun 2012 B2
8200980 Robinson et al. Jun 2012 B1
8215552 Rambadt Jul 2012 B1
8219129 Brown et al. Jul 2012 B2
8248263 Shervey et al. Aug 2012 B2
8258942 Lanzone et al. Sep 2012 B1
8294554 Shoarinejad et al. Oct 2012 B2
8296573 Bolle et al. Oct 2012 B2
8307414 Zerfos et al. Nov 2012 B2
8325011 Butler et al. Dec 2012 B2
8327151 Awatsu et al. Dec 2012 B2
8340672 Brown et al. Dec 2012 B2
8352730 Giobbi Jan 2013 B2
8373562 Heinze et al. Feb 2013 B1
8387124 Smetters et al. Feb 2013 B2
8390456 Puleston et al. Mar 2013 B2
8395484 Fullerton Mar 2013 B2
8410906 Dacus et al. Apr 2013 B1
8412949 Giobbi et al. Apr 2013 B2
8421606 Collins et al. Apr 2013 B2
8424079 Adams et al. Apr 2013 B2
8432262 Talty et al. Apr 2013 B2
8433919 Giobbi et al. Apr 2013 B2
8448858 Kundu et al. May 2013 B1
8457672 Brown et al. Jun 2013 B2
8467969 Nielsen et al. Jun 2013 B2
8473748 Sampas Jun 2013 B2
8484696 Gatto et al. Jul 2013 B2
8494576 Bye et al. Jul 2013 B1
8508336 Giobbi et al. Aug 2013 B2
8511555 Babcock et al. Aug 2013 B2
8519823 Rinkes Aug 2013 B2
8522019 Michaelis Aug 2013 B2
8558699 Butler et al. Oct 2013 B2
8572391 Golan et al. Oct 2013 B2
8577091 Ivanov et al. Nov 2013 B2
8600674 Barbeau et al. Dec 2013 B1
8646042 Brown Feb 2014 B1
8659427 Brown et al. Feb 2014 B2
8678273 McNeal Mar 2014 B2
8717346 Claessen May 2014 B2
8738925 Park et al. May 2014 B1
8799574 Corda Aug 2014 B2
8838993 Giobbi et al. Sep 2014 B2
8856539 Weiss Oct 2014 B2
8857716 Giobbi et al. Oct 2014 B1
8886954 Giobbi Nov 2014 B1
8907861 Hirt Dec 2014 B2
8914477 Gammon Dec 2014 B2
8918854 Giobbi Dec 2014 B1
8931698 Ishikawa et al. Jan 2015 B2
8979646 Moser et al. Mar 2015 B2
9020854 Giobbi Apr 2015 B2
9037140 Brown May 2015 B1
9042819 Dua May 2015 B2
9049188 Brown Jun 2015 B1
9113464 Brown et al. Aug 2015 B2
9165233 Testanero Oct 2015 B2
9189788 Robinson Nov 2015 B1
9230399 Yacenda Jan 2016 B2
9235700 Brown Jan 2016 B1
9251326 Giobbi et al. Feb 2016 B2
9251332 Giobbi Feb 2016 B2
9265043 Brown et al. Feb 2016 B2
9265450 Giobbi Feb 2016 B1
9269221 Gobbi Feb 2016 B2
9276914 Woodward et al. Mar 2016 B2
9298905 Giobbi Mar 2016 B1
9305312 Kountotsis et al. Apr 2016 B2
9322974 Giobbi Apr 2016 B1
9405898 Giobbi Aug 2016 B2
9418205 Giobbi Aug 2016 B2
9430624 Mortensen et al. Aug 2016 B1
9450956 Giobbi Sep 2016 B1
9542542 Giobbi Jan 2017 B2
9613483 Giobbi Apr 2017 B2
9679289 Brown Jun 2017 B1
9728080 Giobbi et al. Aug 2017 B1
9807091 Giobbi Oct 2017 B2
9830504 Masood et al. Nov 2017 B2
9892250 Giobbi Feb 2018 B2
9898662 Tsuda et al. Feb 2018 B2
9904816 Giobbi et al. Feb 2018 B1
9990628 Giobbi Jun 2018 B2
10026253 Giobbi Jul 2018 B2
10073960 Brown Sep 2018 B1
10110385 Rush et al. Oct 2018 B1
10171460 Giobbi Jan 2019 B2
10217339 Giobbi Feb 2019 B1
10229294 Giobbi et al. Mar 2019 B1
10313336 Giobbi Jun 2019 B2
10334541 Brown Jun 2019 B1
10362483 Frusina Jul 2019 B2
10374795 Giobbi et al. Aug 2019 B1
10383112 Brown et al. Aug 2019 B2
10403128 Giobbi et al. Sep 2019 B2
10437976 Giobbi Oct 2019 B2
10455533 Brown Oct 2019 B2
10469456 Giobbi Nov 2019 B1
10567965 Boettcher et al. Feb 2020 B2
10698989 Giobbi Jun 2020 B2
10764044 Giobbi et al. Sep 2020 B1
10769939 Brown et al. Sep 2020 B2
10817964 Guillama et al. Oct 2020 B2
10909229 Giobbi Feb 2021 B2
10943471 Giobbi et al. Mar 2021 B1
11086979 Giobbi Aug 2021 B1
11212797 Brown et al. Dec 2021 B2
11219022 Brown et al. Jan 2022 B2
11562644 Brown et al. Jan 2023 B2
20010000535 Lapsley et al. Apr 2001 A1
20010021950 Hawley et al. Sep 2001 A1
20010024428 Onouchi Sep 2001 A1
20010026619 Howard et al. Oct 2001 A1
20010027121 Boesen Oct 2001 A1
20010027439 Holtzman et al. Oct 2001 A1
20010044337 Rowe et al. Nov 2001 A1
20020004783 Paltenghe et al. Jan 2002 A1
20020007456 Peinado et al. Jan 2002 A1
20020010679 Felsher Jan 2002 A1
20020013772 Peinado Jan 2002 A1
20020014954 Fitzgibbon et al. Feb 2002 A1
20020015008 Kishida et al. Feb 2002 A1
20020015494 Nagai et al. Feb 2002 A1
20020019811 Lapsley et al. Feb 2002 A1
20020022455 Salokannel et al. Feb 2002 A1
20020023032 Pearson et al. Feb 2002 A1
20020023217 Wheeler et al. Feb 2002 A1
20020026424 Akashi Feb 2002 A1
20020037732 Gous et al. Mar 2002 A1
20020052193 Chetty May 2002 A1
20020055908 Di Giorgio et al. May 2002 A1
20020056043 Glass May 2002 A1
20020059114 Cockrill et al. May 2002 A1
20020062249 Iannacci May 2002 A1
20020065778 Bouet et al. May 2002 A1
20020068605 Stanley Jun 2002 A1
20020069364 Dosch Jun 2002 A1
20020071559 Christensen et al. Jun 2002 A1
20020073042 Maritzen et al. Jun 2002 A1
20020076051 Nii Jun 2002 A1
20020080969 Giobbi Jun 2002 A1
20020083178 Brothers Jun 2002 A1
20020083318 Larose Jun 2002 A1
20020086690 Takahashi et al. Jul 2002 A1
20020089890 Fibranz et al. Jul 2002 A1
20020091646 Lake et al. Jul 2002 A1
20020095586 Doyle et al. Jul 2002 A1
20020095587 Doyle et al. Jul 2002 A1
20020097876 Harrison Jul 2002 A1
20020098888 Rowe et al. Jul 2002 A1
20020100798 Farrugia et al. Aug 2002 A1
20020103027 Rowe et al. Aug 2002 A1
20020103881 Granade et al. Aug 2002 A1
20020104006 Boate Aug 2002 A1
20020104019 Chatani et al. Aug 2002 A1
20020105918 Yamada et al. Aug 2002 A1
20020108049 Xu et al. Aug 2002 A1
20020109580 Shreve et al. Aug 2002 A1
20020111919 Weller et al. Aug 2002 A1
20020112183 Baird et al. Aug 2002 A1
20020116615 Nguyen et al. Aug 2002 A1
20020124251 Hunter et al. Sep 2002 A1
20020128017 Virtanen Sep 2002 A1
20020128057 Walker et al. Sep 2002 A1
20020129262 Kutaragi et al. Sep 2002 A1
20020138438 Bardwell Sep 2002 A1
20020138445 Laage et al. Sep 2002 A1
20020138767 Hamid et al. Sep 2002 A1
20020140542 Prokoski et al. Oct 2002 A1
20020141586 Margalit et al. Oct 2002 A1
20020143623 Dayley Oct 2002 A1
20020143655 Elston et al. Oct 2002 A1
20020144116 Giobbi Oct 2002 A1
20020144117 Faigle Oct 2002 A1
20020147653 Shmueli et al. Oct 2002 A1
20020148892 Bardwell Oct 2002 A1
20020150282 Kinsella Oct 2002 A1
20020152391 Willins et al. Oct 2002 A1
20020153996 Chan et al. Oct 2002 A1
20020158121 Stanford-Clark Oct 2002 A1
20020158750 Almalik Oct 2002 A1
20020158765 Pape et al. Oct 2002 A1
20020160820 Winkler Oct 2002 A1
20020174348 Ting Nov 2002 A1
20020177460 Beasley et al. Nov 2002 A1
20020178063 Gravelle et al. Nov 2002 A1
20020184208 Kato Dec 2002 A1
20020187746 Cheng et al. Dec 2002 A1
20020191816 Maritzen et al. Dec 2002 A1
20020196963 Bardwell Dec 2002 A1
20020199120 Schmidt Dec 2002 A1
20030001016 Fraier et al. Jan 2003 A1
20030022701 Gupta Jan 2003 A1
20030024975 Rajasekharan Feb 2003 A1
20030034877 Miller et al. Feb 2003 A1
20030036416 Pattabiraman et al. Feb 2003 A1
20030036425 Kaminkow et al. Feb 2003 A1
20030046228 Berney Mar 2003 A1
20030046237 Uberti Mar 2003 A1
20030046552 Hamid Mar 2003 A1
20030048174 Stevens et al. Mar 2003 A1
20030051173 Krueger Mar 2003 A1
20030054868 Paulsen et al. Mar 2003 A1
20030054881 Hedrick et al. Mar 2003 A1
20030055689 Block et al. Mar 2003 A1
20030055792 Kinoshita et al. Mar 2003 A1
20030061172 Robinson Mar 2003 A1
20030063619 Montano et al. Apr 2003 A1
20030079133 Breiter et al. Apr 2003 A1
20030087601 Agam et al. May 2003 A1
20030088441 McNerney May 2003 A1
20030105719 Berger et al. Jun 2003 A1
20030109274 Budka et al. Jun 2003 A1
20030115351 Giobbi Jun 2003 A1
20030115474 Khan et al. Jun 2003 A1
20030117969 Koo et al. Jun 2003 A1
20030117980 Kim et al. Jun 2003 A1
20030120934 Ortiz Jun 2003 A1
20030127511 Kelly et al. Jul 2003 A1
20030128866 McNeal Jul 2003 A1
20030137404 Bonneau et al. Jul 2003 A1
20030139190 Steelberg et al. Jul 2003 A1
20030142041 Barlow et al. Jul 2003 A1
20030146835 Carter Aug 2003 A1
20030149744 Bierre et al. Aug 2003 A1
20030156742 Witt et al. Aug 2003 A1
20030159040 Hashimoto et al. Aug 2003 A1
20030163388 Beane Aug 2003 A1
20030167207 Berardi et al. Sep 2003 A1
20030169697 Suzuki et al. Sep 2003 A1
20030172028 Abell et al. Sep 2003 A1
20030172037 Jung et al. Sep 2003 A1
20030174839 Yamagata et al. Sep 2003 A1
20030176218 LeMay Sep 2003 A1
20030177102 Robinson Sep 2003 A1
20030186739 Paulsen et al. Oct 2003 A1
20030187787 Freund Oct 2003 A1
20030195842 Reece Oct 2003 A1
20030196084 Okereke et al. Oct 2003 A1
20030199267 Iwasa et al. Oct 2003 A1
20030204526 Salehi-Had Oct 2003 A1
20030204721 Barrus et al. Oct 2003 A1
20030213840 Livingston et al. Nov 2003 A1
20030223394 Parantainen et al. Dec 2003 A1
20030225703 Angel Dec 2003 A1
20030226031 Proudler et al. Dec 2003 A1
20030233458 Kwon et al. Dec 2003 A1
20040002347 Hoctor et al. Jan 2004 A1
20040015403 Moskowitz et al. Jan 2004 A1
20040021552 Koo Feb 2004 A1
20040022384 Flores et al. Feb 2004 A1
20040029620 Karaoguz Feb 2004 A1
20040029635 Giobbi Feb 2004 A1
20040030764 Birk et al. Feb 2004 A1
20040030894 Labrou et al. Feb 2004 A1
20040035644 Ford et al. Feb 2004 A1
20040039909 Cheng Feb 2004 A1
20040044627 Russell et al. Mar 2004 A1
20040048570 Oba et al. Mar 2004 A1
20040048609 Kosaka Mar 2004 A1
20040059682 Hasumi et al. Mar 2004 A1
20040059912 Zizzi Mar 2004 A1
20040064728 Scheurich Apr 2004 A1
20040068656 Lu Apr 2004 A1
20040073792 Noble et al. Apr 2004 A1
20040081127 Gardner et al. Apr 2004 A1
20040082385 Silva et al. Apr 2004 A1
20040088558 Candelore May 2004 A1
20040090345 Hitt May 2004 A1
20040098597 Giobbi May 2004 A1
20040103064 Howard May 2004 A1
20040107169 Lowe Jun 2004 A1
20040114563 Shvodian Jun 2004 A1
20040117644 Colvin Jun 2004 A1
20040123106 D'Angelo et al. Jun 2004 A1
20040123127 Teicher et al. Jun 2004 A1
20040127277 Walker et al. Jul 2004 A1
20040128162 Schlotterbeck et al. Jul 2004 A1
20040128389 Kopchik Jul 2004 A1
20040128500 Cihula et al. Jul 2004 A1
20040128508 Wheeler et al. Jul 2004 A1
20040128519 Klinger et al. Jul 2004 A1
20040129787 Saito Jul 2004 A1
20040132432 Moores et al. Jul 2004 A1
20040137912 Lin Jul 2004 A1
20040153649 Rhoads et al. Aug 2004 A1
20040158746 Hu et al. Aug 2004 A1
20040166875 Jenkins et al. Aug 2004 A1
20040167465 Mihai et al. Aug 2004 A1
20040181695 Walker Sep 2004 A1
20040193925 Safriel Sep 2004 A1
20040194133 Ikeda et al. Sep 2004 A1
20040201755 Norskog Oct 2004 A1
20040203566 Leung Oct 2004 A1
20040203885 Quaid Oct 2004 A1
20040203923 Mullen Oct 2004 A1
20040208139 Iwamura Oct 2004 A1
20040209690 Bruzzese et al. Oct 2004 A1
20040209692 Schober et al. Oct 2004 A1
20040214582 Lan et al. Oct 2004 A1
20040215615 Larsson et al. Oct 2004 A1
20040217859 Pucci et al. Nov 2004 A1
20040218581 Cattaneo Nov 2004 A1
20040222877 Teramura et al. Nov 2004 A1
20040230488 Beenau et al. Nov 2004 A1
20040230809 Lowensohn et al. Nov 2004 A1
20040234117 Tibor Nov 2004 A1
20040243519 Perttila et al. Dec 2004 A1
20040246103 Zukowski Dec 2004 A1
20040246950 Parker et al. Dec 2004 A1
20040250074 Kilian-Kehr Dec 2004 A1
20040252012 Beenau et al. Dec 2004 A1
20040252659 Yun et al. Dec 2004 A1
20040253996 Chen et al. Dec 2004 A1
20040254837 Roshkoff Dec 2004 A1
20040255139 Giobbi Dec 2004 A1
20040255145 Chow Dec 2004 A1
20050001028 Zuili Jan 2005 A1
20050001720 Mason et al. Jan 2005 A1
20050002028 Kasapi et al. Jan 2005 A1
20050005136 Chen et al. Jan 2005 A1
20050006452 Aupperle et al. Jan 2005 A1
20050009517 Maes Jan 2005 A1
20050020322 Ruuska et al. Jan 2005 A1
20050021369 Cohen et al. Jan 2005 A1
20050021561 Noonan Jan 2005 A1
20050025093 Yun et al. Feb 2005 A1
20050028168 Marcjan Feb 2005 A1
20050035897 Perl et al. Feb 2005 A1
20050039027 Shapiro Feb 2005 A1
20050040961 Tuttle Feb 2005 A1
20050040968 Damarla et al. Feb 2005 A1
20050044372 Aull et al. Feb 2005 A1
20050044387 Ozolins Feb 2005 A1
20050047386 Yi Mar 2005 A1
20050049013 Chang et al. Mar 2005 A1
20050050208 Chatani Mar 2005 A1
20050050324 Corbett et al. Mar 2005 A1
20050054431 Walker et al. Mar 2005 A1
20050055242 Bello et al. Mar 2005 A1
20050055244 Mullan et al. Mar 2005 A1
20050058292 Diorio et al. Mar 2005 A1
20050074126 Stanko Apr 2005 A1
20050076242 Breuer Apr 2005 A1
20050081040 Johnson et al. Apr 2005 A1
20050084137 Kim et al. Apr 2005 A1
20050086115 Pearson Apr 2005 A1
20050086497 Nakayama Apr 2005 A1
20050086501 Woo et al. Apr 2005 A1
20050086515 Paris Apr 2005 A1
20050089000 Bae et al. Apr 2005 A1
20050090200 Karaoguz et al. Apr 2005 A1
20050091338 De La Huerga Apr 2005 A1
20050091553 Chien et al. Apr 2005 A1
20050094657 Sung et al. May 2005 A1
20050096053 Liu et al. May 2005 A1
20050097037 Tibor May 2005 A1
20050105600 Culum et al. May 2005 A1
20050105734 Buer et al. May 2005 A1
20050108164 Salafia et al. May 2005 A1
20050109836 Ben-Aissa May 2005 A1
20050109841 Ryan et al. May 2005 A1
20050113070 Okabe May 2005 A1
20050114149 Rodriguez et al. May 2005 A1
20050114150 Franklin May 2005 A1
20050116020 Smolucha et al. Jun 2005 A1
20050117530 Abraham et al. Jun 2005 A1
20050119979 Murashita et al. Jun 2005 A1
20050124294 Wentink Jun 2005 A1
20050125258 Yellin et al. Jun 2005 A1
20050136947 Llombart-Juan et al. Jun 2005 A1
20050137827 Takamiya Jun 2005 A1
20050137977 Wankmueller Jun 2005 A1
20050138390 Adams et al. Jun 2005 A1
20050138576 Baumert et al. Jun 2005 A1
20050139656 Arnouse Jun 2005 A1
20050141451 Yoon et al. Jun 2005 A1
20050152394 Cho Jul 2005 A1
20050154897 Holloway et al. Jul 2005 A1
20050161503 Remery et al. Jul 2005 A1
20050165684 Jensen et al. Jul 2005 A1
20050166063 Huang Jul 2005 A1
20050167482 Ramachandran et al. Aug 2005 A1
20050169292 Young Aug 2005 A1
20050177716 Ginter et al. Aug 2005 A1
20050180385 Jeong et al. Aug 2005 A1
20050182661 Allard et al. Aug 2005 A1
20050182975 Guo et al. Aug 2005 A1
20050187792 Harper Aug 2005 A1
20050192748 Andric et al. Sep 2005 A1
20050195975 Kawakita Sep 2005 A1
20050198208 Nystrom Sep 2005 A1
20050200453 Turner et al. Sep 2005 A1
20050201389 Shimanuki et al. Sep 2005 A1
20050203682 Omino et al. Sep 2005 A1
20050203844 Ferguson et al. Sep 2005 A1
20050210270 Rohatgi et al. Sep 2005 A1
20050212657 Simon Sep 2005 A1
20050215233 Perera et al. Sep 2005 A1
20050216313 Claud et al. Sep 2005 A1
20050216639 Sparer et al. Sep 2005 A1
20050218215 Lauden Oct 2005 A1
20050220046 Falck et al. Oct 2005 A1
20050221869 Liu et al. Oct 2005 A1
20050224573 Yoshizane et al. Oct 2005 A1
20050229007 Bolle et al. Oct 2005 A1
20050229240 Nanba Oct 2005 A1
20050231328 Castle et al. Oct 2005 A1
20050235364 Wilson Oct 2005 A1
20050242921 Zimmerman et al. Nov 2005 A1
20050243787 Hong et al. Nov 2005 A1
20050249385 Kondo et al. Nov 2005 A1
20050251688 Nanavati et al. Nov 2005 A1
20050253683 Lowe Nov 2005 A1
20050256878 Brown et al. Nov 2005 A1
20050257102 Moyer et al. Nov 2005 A1
20050264416 Maurer Dec 2005 A1
20050268111 Markham Dec 2005 A1
20050269401 Spitzer et al. Dec 2005 A1
20050272403 Ryu et al. Dec 2005 A1
20050277385 Daum Dec 2005 A1
20050281215 Budampati et al. Dec 2005 A1
20050281320 Neugebauer Dec 2005 A1
20050282558 Choi et al. Dec 2005 A1
20050284932 Sukeda et al. Dec 2005 A1
20050287985 Balfanz et al. Dec 2005 A1
20050288015 Azizi et al. Dec 2005 A1
20050288069 Arunan et al. Dec 2005 A1
20050289473 Gustafson et al. Dec 2005 A1
20060001525 Nitzan et al. Jan 2006 A1
20060009216 Welnick et al. Jan 2006 A1
20060014430 Liang et al. Jan 2006 A1
20060022042 Smets et al. Feb 2006 A1
20060022046 Iwamura Feb 2006 A1
20060022800 Krishna et al. Feb 2006 A1
20060025180 Rajkotia et al. Feb 2006 A1
20060026673 Tsuchida Feb 2006 A1
20060030279 Leabman Feb 2006 A1
20060030353 Jun Feb 2006 A1
20060034250 Kim et al. Feb 2006 A1
20060041746 Kirkup et al. Feb 2006 A1
20060046664 Paradiso et al. Mar 2006 A1
20060053234 Kumar et al. Mar 2006 A1
20060058102 Nguyen et al. Mar 2006 A1
20060063575 Gatto et al. Mar 2006 A1
20060064605 Giobbi Mar 2006 A1
20060066441 Knadle et al. Mar 2006 A1
20060069814 Abraham et al. Mar 2006 A1
20060072586 Callaway et al. Apr 2006 A1
20060074713 Conry et al. Apr 2006 A1
20060076401 Frerking Apr 2006 A1
20060078176 Abiko et al. Apr 2006 A1
20060087407 Stewart et al. Apr 2006 A1
20060089138 Smith et al. Apr 2006 A1
20060095792 Hurtado et al. May 2006 A1
20060097882 Brinkerhoff et al. May 2006 A1
20060097949 Luebke et al. May 2006 A1
20060106645 Bergelson et al. May 2006 A1
20060110012 Ritter May 2006 A1
20060111955 Winter et al. May 2006 A1
20060113381 Hochstein et al. Jun 2006 A1
20060116935 Evans Jun 2006 A1
20060117013 Wada Jun 2006 A1
20060120287 Foti et al. Jun 2006 A1
20060129838 Chen et al. Jun 2006 A1
20060136728 Gentry et al. Jun 2006 A1
20060136742 Giobbi Jun 2006 A1
20060143441 Giobbi Jun 2006 A1
20060144943 Kim Jul 2006 A1
20060156027 Blake Jul 2006 A1
20060158308 McMullen et al. Jul 2006 A1
20060163349 Neugebauer Jul 2006 A1
20060163350 Melton et al. Jul 2006 A1
20060165060 Dua Jul 2006 A1
20060169771 Brookner Aug 2006 A1
20060170530 Nwosu et al. Aug 2006 A1
20060170565 Husak et al. Aug 2006 A1
20060172700 Wu Aug 2006 A1
20060173846 Omae et al. Aug 2006 A1
20060173991 Piikivi Aug 2006 A1
20060183426 Graves et al. Aug 2006 A1
20060183462 Kolehmainen Aug 2006 A1
20060184531 Russlies Aug 2006 A1
20060184795 Doradla et al. Aug 2006 A1
20060185005 Graves et al. Aug 2006 A1
20060187029 Thomas Aug 2006 A1
20060190348 Ofer et al. Aug 2006 A1
20060190413 Harper Aug 2006 A1
20060194598 Kim et al. Aug 2006 A1
20060195576 Rinne et al. Aug 2006 A1
20060198337 Hoang et al. Sep 2006 A1
20060200467 Ohmori et al. Sep 2006 A1
20060205408 Nakagawa et al. Sep 2006 A1
20060208066 Finn et al. Sep 2006 A1
20060208853 Kung et al. Sep 2006 A1
20060222042 Teramura et al. Oct 2006 A1
20060226950 Kanou et al. Oct 2006 A1
20060229909 Kaila et al. Oct 2006 A1
20060236373 Graves et al. Oct 2006 A1
20060237528 Bishop et al. Oct 2006 A1
20060238305 Loving et al. Oct 2006 A1
20060268891 Heidari-Bateni et al. Nov 2006 A1
20060273176 Audebert et al. Dec 2006 A1
20060274711 Nelson et al. Dec 2006 A1
20060279412 Holland et al. Dec 2006 A1
20060286969 Talmor et al. Dec 2006 A1
20060288095 Torok et al. Dec 2006 A1
20060288233 Kozlay Dec 2006 A1
20060290473 Mahasenan et al. Dec 2006 A1
20060290580 Noro et al. Dec 2006 A1
20060292986 Bitran et al. Dec 2006 A1
20060293925 Flom Dec 2006 A1
20060294388 Abraham et al. Dec 2006 A1
20070003111 Awatsu et al. Jan 2007 A1
20070005403 Kennedy et al. Jan 2007 A1
20070007331 Jasper et al. Jan 2007 A1
20070008070 Friedrich Jan 2007 A1
20070008916 Haugli et al. Jan 2007 A1
20070011724 Gonzalez et al. Jan 2007 A1
20070016800 Spottswood et al. Jan 2007 A1
20070019845 Kato Jan 2007 A1
20070029381 Braiman Feb 2007 A1
20070032225 Konicek et al. Feb 2007 A1
20070032288 Nelson et al. Feb 2007 A1
20070033072 Bildirici Feb 2007 A1
20070033150 Nwosu Feb 2007 A1
20070036396 Sugita et al. Feb 2007 A1
20070038751 Jorgensen Feb 2007 A1
20070043594 Lavergne Feb 2007 A1
20070050259 Wesley Mar 2007 A1
20070050398 Mochizuki Mar 2007 A1
20070050845 Das et al. Mar 2007 A1
20070051794 Glanz et al. Mar 2007 A1
20070051798 Kawai et al. Mar 2007 A1
20070055630 Gauthier et al. Mar 2007 A1
20070060095 Subrahmanya et al. Mar 2007 A1
20070060319 Block et al. Mar 2007 A1
20070064742 Shvodian Mar 2007 A1
20070069852 Mo et al. Mar 2007 A1
20070070040 Chen et al. Mar 2007 A1
20070072636 Worfolk et al. Mar 2007 A1
20070073553 Flinn et al. Mar 2007 A1
20070084523 McLean et al. Apr 2007 A1
20070084913 Weston Apr 2007 A1
20070087682 DaCosta Apr 2007 A1
20070087834 Moser et al. Apr 2007 A1
20070094088 Mastie et al. Apr 2007 A1
20070100507 Simon May 2007 A1
20070100939 Bagley et al. May 2007 A1
20070109117 Heitzmann et al. May 2007 A1
20070112676 Kontio et al. May 2007 A1
20070118891 Buer May 2007 A1
20070119923 Garrison et al. May 2007 A1
20070120643 Lee May 2007 A1
20070120651 Kobayashi et al. May 2007 A1
20070130025 Nakajima Jun 2007 A1
20070132586 Plocher et al. Jun 2007 A1
20070133478 Armbruster et al. Jun 2007 A1
20070136407 Rudelic Jun 2007 A1
20070142032 Balsillie Jun 2007 A1
20070143626 Okuda Jun 2007 A1
20070147332 Lappetelainen et al. Jun 2007 A1
20070152826 August et al. Jul 2007 A1
20070156850 Corrion Jul 2007 A1
20070157249 Cordray et al. Jul 2007 A1
20070158411 Krieg, Jr. Jul 2007 A1
20070159301 Hirt et al. Jul 2007 A1
20070159994 Brown et al. Jul 2007 A1
20070164847 Crawford et al. Jul 2007 A1
20070169121 Hunt et al. Jul 2007 A1
20070174809 Brown et al. Jul 2007 A1
20070174868 Hitaka Jul 2007 A1
20070176756 Friedrich Aug 2007 A1
20070176778 Ando et al. Aug 2007 A1
20070180047 Dong et al. Aug 2007 A1
20070187266 Porter et al. Aug 2007 A1
20070192601 Spain et al. Aug 2007 A1
20070194882 Yokota et al. Aug 2007 A1
20070197261 Humbel Aug 2007 A1
20070198436 Weiss Aug 2007 A1
20070204078 Boccon-Gibod et al. Aug 2007 A1
20070205860 Jones et al. Sep 2007 A1
20070205861 Nair et al. Sep 2007 A1
20070207750 Brown et al. Sep 2007 A1
20070213048 Trauberg Sep 2007 A1
20070214492 Gopi et al. Sep 2007 A1
20070218921 Lee et al. Sep 2007 A1
20070219926 Korn Sep 2007 A1
20070220272 Campisi et al. Sep 2007 A1
20070229268 Swan et al. Oct 2007 A1
20070245157 Giobbi et al. Oct 2007 A1
20070245158 Giobbi Oct 2007 A1
20070247366 Smith et al. Oct 2007 A1
20070258626 Reiner Nov 2007 A1
20070260883 Giobbi et al. Nov 2007 A1
20070260888 Giobbi et al. Nov 2007 A1
20070262134 Humphrey et al. Nov 2007 A1
20070266257 Camaisa et al. Nov 2007 A1
20070268862 Singh et al. Nov 2007 A1
20070271194 Walker et al. Nov 2007 A1
20070271433 Takemura Nov 2007 A1
20070277044 Graf et al. Nov 2007 A1
20070280509 Owen et al. Dec 2007 A1
20070285212 Rotzoll Dec 2007 A1
20070285238 Batra Dec 2007 A1
20070288263 Rodgers Dec 2007 A1
20070288752 Chan Dec 2007 A1
20070293155 Liao et al. Dec 2007 A1
20070294755 Dadhia et al. Dec 2007 A1
20070296544 Beenau et al. Dec 2007 A1
20080001783 Cargonja et al. Jan 2008 A1
20080005432 Kagawa Jan 2008 A1
20080008359 Beenau et al. Jan 2008 A1
20080011842 Curry et al. Jan 2008 A1
20080012685 Friedrich et al. Jan 2008 A1
20080012767 Caliri et al. Jan 2008 A1
20080016004 Kurasaki et al. Jan 2008 A1
20080019578 Saito et al. Jan 2008 A1
20080028227 Sakurai Jan 2008 A1
20080028453 Nguyen et al. Jan 2008 A1
20080040609 Giobbi Feb 2008 A1
20080046366 Bemmel et al. Feb 2008 A1
20080046715 Balazs et al. Feb 2008 A1
20080049700 Shah et al. Feb 2008 A1
20080061941 Fischer et al. Mar 2008 A1
20080071577 Highley Mar 2008 A1
20080072063 Takahashi et al. Mar 2008 A1
20080088475 Martin Apr 2008 A1
20080090548 Ramalingam Apr 2008 A1
20080095359 Schreyer et al. Apr 2008 A1
20080107089 Larsson et al. May 2008 A1
20080109895 Janevski May 2008 A1
20080111752 Lindackers et al. May 2008 A1
20080127176 Lee et al. May 2008 A1
20080129450 Riegebauer Jun 2008 A1
20080129463 Tuttle Jun 2008 A1
20080142588 Blum Jun 2008 A1
20080148351 Bhatia et al. Jun 2008 A1
20080149705 Giobbi et al. Jun 2008 A1
20080150678 Giobbi Jun 2008 A1
20080156866 McNeal Jul 2008 A1
20080164997 Aritsuka et al. Jul 2008 A1
20080169909 Park et al. Jul 2008 A1
20080180213 Flax Jul 2008 A1
20080186166 Zhou et al. Aug 2008 A1
20080188308 Shepherd et al. Aug 2008 A1
20080195863 Kennedy Aug 2008 A1
20080201768 Koo et al. Aug 2008 A1
20080203107 Conley et al. Aug 2008 A1
20080208016 Hughes et al. Aug 2008 A1
20080209571 Bhaskar et al. Aug 2008 A1
20080218416 Handy et al. Sep 2008 A1
20080222701 Saaranen et al. Sep 2008 A1
20080223918 Williams et al. Sep 2008 A1
20080228524 Brown Sep 2008 A1
20080235144 Phillips Sep 2008 A1
20080238625 Rofougaran et al. Oct 2008 A1
20080246613 Linstrom et al. Oct 2008 A1
20080250388 Meyer et al. Oct 2008 A1
20080251579 Larsen Oct 2008 A1
20080278325 Zimman et al. Nov 2008 A1
20080278327 Nierenberg et al. Nov 2008 A1
20080289030 Poplett Nov 2008 A1
20080289032 Aoki et al. Nov 2008 A1
20080303637 Gelbman et al. Dec 2008 A1
20080313728 Pandrangi et al. Dec 2008 A1
20080314971 Faith et al. Dec 2008 A1
20080316002 Brunet et al. Dec 2008 A1
20080316045 Sriharto et al. Dec 2008 A1
20090002134 McAllister Jan 2009 A1
20090013191 Popowski Jan 2009 A1
20090016573 McAfee et al. Jan 2009 A1
20090024584 Dharap et al. Jan 2009 A1
20090033464 Friedrich Feb 2009 A1
20090033485 Naeve et al. Feb 2009 A1
20090036164 Rowley Feb 2009 A1
20090040041 Janetis et al. Feb 2009 A1
20090041309 Kim et al. Feb 2009 A1
20090045916 Nitzan et al. Feb 2009 A1
20090052389 Qin et al. Feb 2009 A1
20090070146 Haider et al. Mar 2009 A1
20090076849 Diller Mar 2009 A1
20090081996 Duggal et al. Mar 2009 A1
20090085724 Naressi et al. Apr 2009 A1
20090094681 Sadler et al. Apr 2009 A1
20090096580 Paananen Apr 2009 A1
20090121890 Brown et al. May 2009 A1
20090125401 Beenau et al. May 2009 A1
20090140045 Evans Jun 2009 A1
20090157512 King Jun 2009 A1
20090165123 Giobbi Jun 2009 A1
20090176566 Kelly Jul 2009 A1
20090177495 Abousy et al. Jul 2009 A1
20090195461 Hirt Aug 2009 A1
20090199206 Finkenzeller et al. Aug 2009 A1
20090206992 Giobbi et al. Aug 2009 A1
20090232362 Otsubo et al. Sep 2009 A1
20090237245 Brinton et al. Sep 2009 A1
20090237253 Neuwirth Sep 2009 A1
20090239667 Rowe et al. Sep 2009 A1
20090253516 Hartmann et al. Oct 2009 A1
20090254448 Giobbi Oct 2009 A1
20090254971 Herz et al. Oct 2009 A1
20090264712 Baldus et al. Oct 2009 A1
20090310514 Jeon et al. Dec 2009 A1
20090313689 Nystroem et al. Dec 2009 A1
20090319788 Zick et al. Dec 2009 A1
20090320118 Mueller et al. Dec 2009 A1
20090322510 Berger et al. Dec 2009 A1
20090322566 Shirakawa Dec 2009 A1
20090328182 Malakapalli et al. Dec 2009 A1
20100005526 Tsuji et al. Jan 2010 A1
20100007498 Jackson Jan 2010 A1
20100022308 Hartmann et al. Jan 2010 A1
20100023074 Powers et al. Jan 2010 A1
20100037255 Sheehan et al. Feb 2010 A1
20100062743 Jonsson Mar 2010 A1
20100077214 Jogand-Coulomb et al. Mar 2010 A1
20100091987 Takahashi et al. Apr 2010 A1
20100117794 Adams et al. May 2010 A1
20100134257 Puleston et al. Jun 2010 A1
20100169442 Liu et al. Jul 2010 A1
20100169964 Liu et al. Jul 2010 A1
20100172567 Prokoski Jul 2010 A1
20100174911 Isshiki Jul 2010 A1
20100188226 Seder et al. Jul 2010 A1
20100214100 Page Aug 2010 A1
20100277283 Burkart et al. Nov 2010 A1
20100277286 Burkart et al. Nov 2010 A1
20100291896 Corda Nov 2010 A1
20100305843 Yan et al. Dec 2010 A1
20100328033 Kamei Dec 2010 A1
20110072034 Sly et al. Mar 2011 A1
20110072132 Shafer et al. Mar 2011 A1
20110082735 Kannan et al. Apr 2011 A1
20110085287 Ebrom et al. Apr 2011 A1
20110091136 Danch et al. Apr 2011 A1
20110116358 Li et al. May 2011 A9
20110126188 Bernstein et al. May 2011 A1
20110221568 Giobbi Sep 2011 A1
20110227740 Wohltjen Sep 2011 A1
20110238517 Ramalingam et al. Sep 2011 A1
20110246790 Koh et al. Oct 2011 A1
20110266348 Denniston, Jr. Nov 2011 A1
20110307599 Saretto Dec 2011 A1
20120028609 Hruska Feb 2012 A1
20120030006 Yoder et al. Feb 2012 A1
20120069776 Caldwell et al. Mar 2012 A1
20120086571 Scalisi et al. Apr 2012 A1
20120182123 Butler et al. Jul 2012 A1
20120212322 Idsoee Aug 2012 A1
20120226451 Bacot et al. Sep 2012 A1
20120226565 Drozd Sep 2012 A1
20120226907 Hohberger et al. Sep 2012 A1
20120238287 Scherzer Sep 2012 A1
20120278188 Attar et al. Nov 2012 A1
20120300753 Brown et al. Nov 2012 A1
20120310720 Balsan et al. Dec 2012 A1
20130019295 Park et al. Jan 2013 A1
20130019323 Arvidsson et al. Jan 2013 A1
20130044111 Vangilder et al. Feb 2013 A1
20130111543 Brown et al. May 2013 A1
20130135082 Xian et al. May 2013 A1
20130179201 Fuerstenberg et al. Jul 2013 A1
20130219186 Giobbi et al. Aug 2013 A1
20130276140 Coffing et al. Oct 2013 A1
20130277425 Sharma et al. Oct 2013 A1
20130297514 Giobbi Nov 2013 A1
20130312082 Izu et al. Nov 2013 A1
20130315210 Brown et al. Nov 2013 A1
20130331063 Cormier et al. Dec 2013 A1
20140074696 Glaser Mar 2014 A1
20140147018 Argue et al. May 2014 A1
20140256511 Smith Sep 2014 A1
20140266604 Masood et al. Sep 2014 A1
20140266713 Sehgal et al. Sep 2014 A1
20140337920 Giobbi Nov 2014 A1
20150026480 Giobbi et al. Jan 2015 A1
20150039451 Bonfiglio Feb 2015 A1
20150138330 Krishnamoorthi May 2015 A1
20150294293 Signarsson Oct 2015 A1
20150310385 King et al. Oct 2015 A1
20150310440 Hynes et al. Oct 2015 A1
20160005020 Fernando et al. Jan 2016 A1
20160093081 Kim et al. Mar 2016 A1
20160133123 Giobbi et al. May 2016 A1
20160171200 Giobbi Jun 2016 A1
20160203349 Giobbi Jul 2016 A1
20160205682 Brown et al. Jul 2016 A1
20160210614 Hall Jul 2016 A1
20160300236 Wiley et al. Oct 2016 A1
20160306956 Giobbi Oct 2016 A1
20170041315 Giobbi Feb 2017 A1
20170085564 Giobbi et al. Mar 2017 A1
20170091548 Agrawal et al. Mar 2017 A1
20170270738 Giobbi Sep 2017 A1
20170309165 Brown et al. Oct 2017 A1
20170353500 Jacobsen et al. Dec 2017 A1
20180019998 Giobbi Jan 2018 A1
20180129799 Giobbi May 2018 A1
20180322718 Qian et al. Nov 2018 A1
20180357475 Honda et al. Dec 2018 A1
20190065721 Giobbi Feb 2019 A1
20190172281 Einberg et al. Jun 2019 A1
20190260724 Hefetz et al. Aug 2019 A1
20190289562 Brown Sep 2019 A1
20200351873 Brown et al. Nov 2020 A1
20210219869 Ryu et al. Jul 2021 A1
20210241592 Allen et al. Aug 2021 A1
20220210643 Hynds et al. Jun 2022 A1
Foreign Referenced Citations (16)
Number Date Country
1536306 Jun 2005 EP
2937805 Oct 2015 EP
10-049604 Feb 1998 JP
9956429 Nov 1999 WO
0062505 Oct 2000 WO
0122724 Mar 2001 WO
0135334 May 2001 WO
0148714 Jul 2001 WO
0175876 Oct 2001 WO
0177790 Oct 2001 WO
2004010774 Feb 2004 WO
2004038563 May 2004 WO
2005031663 Apr 2005 WO
2005050450 Jun 2005 WO
2005086802 Sep 2005 WO
2007087558 Aug 2007 WO
Non-Patent Literature Citations (176)
Entry
Zhang et al., “A User-Centric M-Payment Solution,” The ISG-Smart Card Centre and the Information Security Group, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, UK, 2005, 8 pgs.
Adams, “Designing with 802.15.4 and Zigbee,” presented at Industrial Wireless Applications Summit, San Diego, California, Mar. 9, 2004, 22 pgs.
Adams, “Meet the ZigBee Standard,” Sensors Online, Jun. 2003, 7 pgs., archived at https://web.archive.org/web/20031008191032/http:/sensorsmag.com/articles/0603/14/pf_main.shtml.
Adams, “Zigbee vital in industrial applications,” EE Times, Jul. 29, 2003, 3 pgs., archived at https://web.archive.org/web/20031013062940/http:/www.eetimes.com/story/OEG20030727S0002.
Anonymous, “Applying Biometrics to Door Access,” Security Magazine, Sep. 26, 2002, retrieved from http://www.securitymagazine.com/CDA/Articles/Technologies/3ae610eaa34d8010VgnVCM100000f932a8cO on Jan. 7, 2007, 5 pgs.
Anonymous, “Firecrest Shows How Truly Commercially-Minded Companies Will Exploit the Internet,” Computergram International, Jan. 18, 1996, 2 pgs.
Anonymous, “IEEE 802.15.4-2006—Wikipedia, the free encyclopedia,” Wikipedia, last modified Mar. 21, 2009, retrieved from http://en.wikipedia.org/wiki/IEEE_802.15.4-2006 on Apr. 30, 2009, 5 pgs.
Antonoff, “Visiting Video Valley,” Sound & Vision, Nov. 2001, pp. 116, 118-119.
Apple et al., “Smart Card Setup Guide,” 2006, downloaded from http://manuals.info.apple.com/en_US/Smart_Card_Setup_Guide.pdf on or before May 3, 2012, 16 pgs.
Balanis, “Antenna Theory: A Review,” Jan. 1992, Proceedings of the IEEE, vol. 80, No. 1, p. 13.
Beaufour, “Personal Servers as Digital Keys,” Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCOM'04), Mar. 14-17, 2004, pp. 319-328.
BioPay, LLC, “Frequently Asked Questions (FAQs) About BioPay,” retrieved from http://www.biopay.com/faqs-lowes.asp on Jan. 7, 2007, 5 pgs.
Blip Systems, “Mar. 8, 2004—Bluetooth at the office?” at least as early as Oct. 11, 2004, archived at https://web.archive.org/web/20041011094320/http:/www.blipsystems.com/Default.asp?ID=16&M=News&PID=25&NewsID=9.
Blip Systems, “BlipManager,” at least as early as May 17, 2004, 1 pg., archived at https://web.archive.org/web/20040517050728/http:/www.blipsystems.com/Default.asp?ID=11.
Blip Systems, “BlipMobility,” at least as early as Apr. 7, 2004, archived at https://web.archive.org/web/20040407212934/http:/www.blipsystems.com/Default.asp?ID=118.
Blip Systems, “BlipNet API,” at least as early as May 18, 2004, 1 pg., archived at https://web.archive.org/web/20040518060132/http:/www.blipsystems.com/Default.asp?ID=92.
Blip Systems, “BlipNet Explore a wireless world . . . of great opportunities,” brochure available Sep. 2002, 6 pgs., availabe online at https://web.archive.org/web/20031012184406/http:/www.blipsystems.com/products_blipnet.shtml.
Blip Systems, “BlipNet Technical Overview,” Mar. 2003, 30 pgs., archived at https://web.archive.org/web/20031012184406/http:/www.blipsystems.com/products_blipnet.shtml.
Blip Systems, “BlipNode,” at least as early as May 16, 2004, 1 pg., archived at https://web.archive.org/web/20040516001554/http:/www.blipsystems.com/Default.asp?ID=10.
Blip Systems, “BlipServer,” at least as early as May 17, 2004, 1 pg., archived at https://web.archive.org/web/20040517044955/http:/www.blipsystems.com/Default.asp?ID=9.
Blip Systems, “Bluetooth Networks: Products: Bluetooth infracture,” product description, at least as early as Oct. 2003, archived at https://web.archive.org/web/20031012184406/http:/www.blipsystems.com/products_blipnet.shtml.
Blip Systems, “Product Information—BlipNet—Presentation of BlipNet 1.0—A Bluetooth Access System,” Aug. 2002, 2 pgs., archived at https://web.archive.org/web/20031012184406/http:/www.blipsystems.com/products_blipnet.shtml.
BlueProximity, “BlueProximity—Leave it—it's locked, come back, it's back too . . . ” Aug. 26, 2007, retrieved from http://blueproximity.sourceforge.net/viahttp://www.archive.org/ on or before Oct. 11, 2011, 1 pg.
Bluetooth SIG, Inc. “Specification of the Bluetooth System,” Version 1.2, Nov. 5, 2003, 82 pgs., archived at https://web.archive.org/web/20031119092849/http:/www.bluetooth.com/dev/spec.v12.asp.
Bluetooth SIG, Inc., “Bluetooth,” www.bluetooth.com, Jun. 1, 2000, 8 pgs.
Bluetooth SIG, Inc., “Say Hello to Bluetooth,” retrieved from www.bluetooth.com, at least as early as Jan. 14, 2005, 4 pgs.
Blum, “Digital Rights Management May Solve the Napster ‘Problem,’” Technology Investor, Oct. 2000, pp. 24-27.
Bohrsatom et al., “Automatically unlock PC when entering proximity,” Dec. 7, 2005, retrieved from http://salling.com/forums/viewtopic.php?t=3190 on or before Oct. 11, 2011, 3 pgs.
Brown, “Techniques for Privacy and Authentication in Personal Communication Systems,” Personal Communications, IEEE, Aug. 1995, vol. 2, No. 4, pp. 6-10.
Callaway, “Wireless Sensor Networks: Architectures and Protocols,” book description, Motorola Labs, Auerbach Publications, Aug. 26, 2003, 3 pgs., archived at https://web.archive.org/web/20031023101953/http:/www.crcpress.com/shopping_cart/products/product_detail.asp?sku=AU1823.
Chi et al., “Industrial Wireless Sensor Networking: A Market Dynamics Study,” ON World, Jun. 28, 2004, 5 pgs., archived at https://web.archive.org/web/20040710182216/http:/onworld.com:80/html/industrialwirelesssensor.htm.
Cisco Systems, Inc., “Antenna Patterns and Their Meaning,” 1992-2007, p. 10.
Costa, “Imation USB 2.0 Micro Hard Drive,” Nov. 22, 2005, retrieved from http://www.pcmag.com/article2/0,2817,1892209,00.asp on or before Oct. 11, 2011, 2 pgs.
Dagan, “Power over Ethernet (POE) Midspan—The Smart Path to Providign Power for IP Telephony,” Product Manager, Systems, Aug. 2005, Power Dsine Inc., 28 pgs.
Dai et al., “Toward Blockchain-Based Accounting and Assurance,” Journal of Information Systems, vol. 31, No. 3, Fall 2017, pp. 5-21.
Debow, “Credit/Debit Debuts in Midwest Smart Card Test,” Computers in Banking, vol. 6, No. 11, Nov. 1989, pp. 10-13.
Dennis, “Digital Passports Need Not Infringe Civil Liberties,” Newsbytes, NA, Dec. 2, 1999, 2 pgs.
Derfler, “How Networks Work,” Bestseller Edition, 1996, Ziff-Davis Press, Emeryville, CA, all pages.
Disclosed Anonymously (Method and Apparatus for Mobile Identity Authentication)., An IP.com Prior Art Database Technical IP.com No. IPCOM000194545D., IP.com Electronic Publication Date: Mar. 29, 2010 (Year: 2010).
Duflot et al., “A Formal Analysis of Bluetooth Device Discovery,” presented at the 1st International Symposium on Leveraging Applications of Formal Methods (ISOLA'04), Oct. 30-Nov. 2, 2004, Paphos, Cyprus, and published in the International Journal on Software Tools for Technology Transfer 8, pp. 621-632, 16 pgs., https://doi.org/10.1007/s10009-006-0014-x.
Eshed, “Bluetooth Wireless Technology Application for the Retail Market,” published at www.tadlys.com on May 2001, 8 pgs.
Farouk et al., “Authentication Mechanisms in Grid Computing Environment: Comparative Study,” IEEE, Oct. 2012, p. 1-6.
Fasca, “S3, Via Formalize Agreement,” Electronic News, The Circuit, 45(45, Nov. 8, 1999), p. 20.
Freescale Semicondutor, Inc., “Freescale Events,” see ZigBee Open House Event, Aug. 18, 2004, 6 pgs., archived at https://web.archive.org/web/20040909082726/https://www.freescale.com/webapp/sps/site/overview.jsp?nodeId=02XPgQ7JgbBqJQ#zigbee_openhouse_04.
Freescale Semiconductor, Inc., “Overview,” ZigBee General Information, at least as early as Aug. 17, 2004, 1 pg., archived at https://web.archive.org/web/20040817210006/http:/www.freescale.com/webapp/sps/site/overview.jsp?nodeId=02XPgQhHPRjdyB37087725.
Freescale Semiconductor, Inc., “ZigBeeTM,” Freescale Semiconductor Wireless Standards, at least as early as Aug. 18, 2004, 2 pgs., archived at https://web.archive.org/web/20040818075046/http:/www.freescale.com/webapp/sps/site/overview.jsp?nodeId=02XPgQhHPRjdyB.
Freescale Semiconductor, Inc., “ZigBeeTM,” Freescale Semiconductor Wireless Standards, at least as early as Jun. 11, 2004, 2 pgs., archived at https://web.archive.org/web/20040611051834/http:/e-www.motorola.com/webapp/sps/site/overview.jsp?nodeId=02XPgQhHPRjdyB.
Freescale Semiconductor, Inc., “Freescale's ZigBeeTM-ready Platform Wins Sensors Magazine Best of Sensors Expo Award,” Freescale Semiconductor Wireless, at least as early as Aug. 17, 2004, 1 pg., archived at https://web.archive.org/web/20040817203409mp_/http:/www.freescale.com/webapp/sps/site/overview.jsp?nodeId=02XPgQ6988.
Freescale Semiconductor, Inc., “ZigBee Alliance Successfully Concludes First Multi-node Network Test,” press release, Jul. 6, 2004, 2 pgs., archived at https://web.archive.org/web/20040717113733/http:/www.zigbee.org/documents/First-Multi-Node_Testing_FINAL_000.pdf.
Freescale Semiconductor, Inc., “ZigBeeTM Technology from Freescale,” Freescale Semiconductor, Inc. white paper, 2004, 4 pgs., archived at https://web.archive.org/web/20050513024652/http:/www.freescale.com/files/wireless_comm/doc/brochure/BRZIGBEETECH.pdf.
Priyantha, “The Cricket Indoor Location System,” Ph.D. thesis submitted to Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Jun. 2005, 199 pgs.
Rodriguez et al., “In-building location using Bluetooth,” Proceedings of the International Workshop on Wireless Ad-Hoc Networks (IWWAN 2005), May 23-26, 2005, London, England, 7 pgs.
Saflink Corporation, “SAFModule (Trademark): A Look Into Strong Authentication,” white paper, retrieved from www.ibia.org/membersadmin/whilepapers/pdf/6/SAFmod_WP.pdf on Jan. 7, 2007, 8 pgs.
Sapsford, “E-Business: Sound Waves Could Help Ease Web-Fraud Woes,” Wall Street Journal, Aug. 14, 2000, p. B1.
Singh et al. “A Constraint-Based Biometric Scheme on ATM and Swiping Machine.” 2016 International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), Mar. 11, 2016, pp. 74-79.
Smart Card Alliance, “Alliance Activities: Publications: Identity: Identity Management Systems, Smart Cards and Privacy,” 1997-2007, retrieved from www.smartcardalliance.org/pages/publications-identity on Jan. 7, 2007, 3 pgs.
Smart Card Alliance, “Contactless Technology for Secure Physical Access: Technology and Standards Choices,” Smart Card Alliance, Oct. 2002, pp. 1-48.
Smart Card Alliance, “Smart Cards and Biometrics White Paper: Smart Card Alliance,” May 2002, retrieved from http://www.securitymanagement.com/library/smartcard faqtech0802.pdf on Jan. 7, 2007, 7 pgs.
Srivastava, “Is internet security a major issue with respect to the slow acceptance rate of digital signatures,” Jan. 2, 2005, Computer Law & Security Report, pp. 392-404.
Tadlys Ltd., “‘Hotspot’ Gaming Arcade,” at least as early as Dec. 9, 2004, 2 pgs., archived at https://web.archive.org/web/20041209234518/http://www.tadlys.com/media/downloads/Tadly_s_gaming_arcade.pdf.
Tadlys Ltd., “About Tadlys,” at least as early as Apr. 5, 2001, 1 pg., archived at https://web.archive.org/web/20010405044249/http:/www.tadlys.com/about.html.
Tadlys Ltd., “An Advertisers' Dream—From direct marketing to sales,” Nov. 2004, 2 pgs., archived at https://web.archive.org/web/20041101092944/http://www.tadlys.com/media/downloads/m-commerce_app.pdf.
Tadlys Ltd., “Bluetooth Glossary,” at least as early as Jun. 2004, 12 pgs., archived at https://web.archive.org/web/20040531082349/http://www.tadlys.com/pages/Downloads_content.asp?intGlobalId=1.
Tadlys Ltd., “First Demo of Distribution and Redemption of e-Coupons over Bluetooth,” Tadlys Company News and Events, Jun. 5, 2001, 1 pg., archived at https://web.archive.org/web/20040601051516/http://tadlys.com/Pages/news_content.asp?iGlobalID=17.
Tadlys Ltd., “Indoor Location Networks,” at least as early as Apr. 3, 2004, 1 pg., archived at https://web.archive.org/web/20040403200221/http:/www.tadlys.com/Pages/Product_content.asp?iGlobalId=2.
Tadlys Ltd., “Operator Systems,” at least as early as Nov. 1, 2004, 2 pgs., archived at https://web.archive.org/web/20041101101402/http://www.tadlys.com/media/downloads/operator_network.pdf.
Tadlys Ltd., “Tadlys Announces Range of Bluetooth Access Network Solutions,” Tadlys Company News and Events, Jan. 22, 2001, 1 pg., archived at https://web.archive.org/web/20040624122319/http://www.tadlys.com/Pages/news_content.asp?iGlobalID=16.
Tadlys Ltd., “Tadlys' Wire free networking solutions,” Feb. 2001, 2 pgs., archived at https://web.archive.org/web/20010204012700/http:/www.tadlys.com/solutions.html.
Tadlys Ltd., “Wireless hospital network,” at least as early as Jul. 1, 2004, 2 pgs., archived at https://web.archive.org/web/20040701105046/http://www.tadlys.com/media/downloads/tadlys_hospital_wireless_network.pdf.
Tadlys Ltd., “Wireless Museum Information,” at least as early as Dec. 12, 2005, 2 pgs., archived at https://web.archive.org/web/20051212162456/http://www.tadlys.com/media/downloads/Tadlys_wireless_museum_network.pdf.
Tadlys Ltd., “Corporate Systems,” at least as early as Nov. 1, 2004, 2 pgs., archived at https://web.archive.org/web/20041101095441/http://www.tadlys.com/media/downloads/Corporate_network.pdf.
Thomson Multimedia, “Thomson multimedia unveils copy protection proposal designed to provide additional layer of digital content security,” retrieved from www.thompson-multimedia.com/gb/06/c01/010530.htm on Mar. 4, 2002, May 30, 2001, 2 pgs.
Thongthammachart et al., “Bluetooth Enables In-door Mobile Location Services,” Proceedings of the 57th IEEE Semiannual Vehicular Technology Conference, Apr. 22-25, 2003, 5 pgs.
University of Birmingham, “Prism: Probabilistic Symbolic Model Checker,” at least as early as Aug. 3, 2004, 3 pgs., archived at https://web.archive.org/web/20040803193058/http://www.cs.bham.ac.uk/˜dxp/prism/casestudies/index.html.
Unixhelp, “What is a file?” Apr. 30, 1998, retrieved from unixhelp.ed.ac.uk/editors/whatisafile.html accessed Mar. 11, 2010 via http://waybackmachine.org/19980615000000*/http://unixhelp.ed.ac.uk/editors/whatisafile.html on Mar. 11, 2011, 1 pg.
Vainio, “Bluetooth Security,” Helsinki University of Technology, May 25, 2000, 17 pgs.
Van Winkle, “Bluetooth: The King of Connectivity,” Laptop Buyer's Guide and Handbook, Jan. 2000, pp. 148-153.
Wade, “Using Fingerprints to Make Payments at POS Slowly Gaining Popularity,” Credit Union Journal, International Biometric Group, Apr. 21, 2003, retrieved from http://www.biometricgroup.com/in_the_news/04.21.03.html on Jan. 7, 2007, 3 pgs.
Wallace, “The Internet Unplugged,” InformationWeek, vol. 765, No. 22, Dec. 13, 1999, pp. 22-24.
Weber, “In the Age of Napster, Protecting Copyright is a Digital Arms Race,” Wall Street Journal, Eastern ed., Jul. 24, 2000, p. B1.
Weissman, “Indoor Location,” Tadlys Ltd. white paper, at least as early as Oct. 31, 2004, 15 pgs., archived at https://web.archive.org/web/20041031125859/http:/www.tadlys.com/media/downloads/Indoors_Location_Systems.pdf.
White, “How computers Work,” Millennium Edition, 1999, Que Corporation, Indianapolis, IN, all pages.
Yoshida, “Content Protection Plan Targets Wireless Home Networks,” EE Times, Jan. 11, 2002, retrieved from www.eetimes.com/story/OEG20020111S0060 on Mar. 4, 2002, 2 pgs.
ZigBee Alliance, “Welcome to the ZigBeeTM Alliance,” exemplary web page, at least as early as Sep. 24, 2004, 2 pgs., archived at https://web.archive.org/web/20040924045517/http://zigbee.org/.
ZigBee Alliance, “ZigBee Specification,” ZigBee Document 053474r06, Version 1.0, Dec. 14, 2004, 378 pgs.
ZigBee Alliance, “The ZigBeeTM Buzz Is Growing: New Low-Power Wireless Standard Opens Powerful Possibilities,” Electronic Design, Jan. 12, 2004, 12 pgs., archived at https://web.archive.org/web/20040411172015/http:/www.elecdesign.com/Files/29/7186/7186_01.pdf.
ZigBee Alliance, “ZigBeeTM Positioned to Drive Wireless Networking in Building Automation, Industrial and Residential Control and Sensors Markets in 2004,” press release, Feb. 17, 2004, 3 pgs., archived at https://web.archive.org/web/20040423220244/http:/www.zigbee.org/documents/04036r5ZB_MWG-Momentum-Release_FINAL.pdf.
Schneier, Applied Cryptography, Second Edition: Protocols, Algorithms, and Source Doe in C, Jan. 1, 1996, John Wiley & Sons, Inc., 1027 pgs.
Freescale Semiconductor, Inc., “ZRP-1 : ZigBee-ready Platform,” at least as early as Oct. 19, 2005, 6 pgs., archived at https://web.archive.org/web/20051019122919/http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=ZRP-1&nodeId=02XPgQhCQ6m6cy7103.
Freescale Semiconductor, Inc., M68HC08 microcontroller ordering web page, at least as early as Aug. 17, 2004, 5 pgs., archived at https://web.archive.org/web/20040817014804/http:/www.freescale.com/webapp/sps/site/taxonomy.jsp?nodeId=01624684498634.
Giobbi, Specification of U.S. Appl. No. 60/824,758, filed Sep. 6, 2006, all pages.
Govindan et al. “Real Time Security Management Using RFID, Biometric and Smart Messages.” 2009 3rd International Conference on Anti-Counterfeiting, Security, and Identification in Communication, Aug. 20, 2009, pp. 282-285.
Gralla, “How the Internet works,” Millennium Edition, 1999, Que Corporation, Indianapolis, IN, all pages.
Hendron, “File Security, Keychains, Encryption, and More with Mac OS X (10.3+)” Apr. 4, 2005, downloaded from http://www.johnhendron.net/documents/OSX_Security.pdf on or before May 3, 2012, 30 pgs.
IBM Corporation, “Tadlys' Bluetooth Wireless Local Network for Corporate,” Wireless e-business, at least as early as May 6, 2004, 2 pgs., archived at https://web.archive.org/web/20040621130525/http://www.tadlys.com/media/downloads/Corporate%20PVDEE01005-3.pdf.
IBM Corporation, “Tadlys' Bluetooth Wireless Local Network for Hotspots,” Wireless e-business, at least as early as May 6, 2004, 2 pgs., archived at https://web.archive.org/web/20040508123915/http://www.tadlys.com/media/downloads/Hotspots%20PVDEE01006-3.pdf.
IEEE Computer Society, “IEEE Std 802.15.4 (Trade Mark)—Part 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs),” The Institute of electrical and Electronics Engineers, Inc., New York, NY, Oct. 1, 2003, 679 pgs.
IEEE, “IEEE 802.15 WPANTM Task Group 4 (TG4)” exemplary web page, Aug. 24, 2004, 2 pgs., archived at https://web.archive.org/web/20040824085452/http:/www.ieee802.org/15/pub/TG4.html.
International Search Report and Written Opinion for International Application No. PCT/US04/38124, mailed Apr. 7, 2005, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US05/00349, mailed Mar. 19, 2008, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US05/07535, mailed Dec. 6, 2005, 6 pgs.
International Search Report and Written Opinion for International Application No. PCT/US05/43447, mailed Feb. 22, 2007, 7 pgs.
International Search Report and Written Opinion for International Application No. PCT/US05/46843, mailed Mar. 1, 2007, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11102, mailed Oct. 3, 2008, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11103, mailed Apr. 23, 2008, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11104, mailed Jun. 26, 2008, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US07/11105, mailed Oct. 20, 2008, 10 pgs.
International Search Report and Written Opinion for International Application No. PCT/US08/83060, mailed Dec. 29, 2008, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US08/87835, mailed Feb. 11, 2009, 8 pgs.
International Search Report and Written Opinion for International Application No. PCT/US09/34095, mailed Mar. 25, 2009, 11 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2009/039943, mailed Jun. 1, 2009, 9 pgs.
International Search Report and Written Opinion for International Application No. PCT/US2014/037609, mailed Dec. 9, 2014, 13 pgs.
International Search Report for International Application No. PCT/US2001/049916, mailed on Apr. 25, 2002, 1 pg.
Jeyaprakash et al., “Secured Smart Card Using Palm Vein Biometric On-Card-Process,” 2008 International Conference on Convergence and Hybrid Information Technology, 2008, pp. 548-551.
Katz et al., “Smart Cards and Biometrics in Privacy-Sensitive Secure Personal Identification System,” May 2002, Smart Card Alliance, p. 1-29.
Kontzer, “Thomson Bets On Smart Cards For Video Encryption,” www.informationweek.com, Jun. 7, 2001, 1 pg.
Korzeniowski, “First Intelligent, Wireless Consumer Devices About To Hit Market,” TechNewsWorld, Jul. 28, 2004, 3 pgs., archived at https://web.archive.org/web/20040821061130/http:/www.technewsworld.com/story/35376.html%20com/.
Lake, “Downloading for Dollars: Who said buying music off the Net would be easy?” Sound & Vision, Nov. 2000, pp. 137-138.
Lee et al., “Effects of dielectric superstrates on a two-layer electromagnetically coupled patch antenna,” Digest on Antennas and Propagation Society International Symposium, 1989, pp. 620-623 vol. 2, doi: 10.1109/APS.1989.134763.
Lewis, “Sony and Visa in On-Line Entertainment Venture,” New York Times, vol. 145, Thurs. Ed., Nov. 16, 1995, 1 pg.
Liu et al., “A Practical Guide to Biometric Security Technology,” IT Pro, vol. 3, No. 1, Jan./Feb. 2001, pp. 27-32.
Machine translation of JPH10049604, 27 pages.
Malan, “Here come Wireless Sensors,” Machine Design, Jun. 10, 2004, 3 pgs., archived at https://web.archive.org/web/20040610131354/http:/www.machinedesign.com/ASP/viewSelectedArticle.asp?strArticleId=56796&strSite=MDSite&Screen=CURRENTISSUE.
Mciver et al., “Identification and Verification Working Together,” Bioscrypt, White Paper: Identification and Verification Working Together, Aug. 27, 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/15/Identification%20and%20Verification%20Working%20Together.pdf on Jan. 7, 2007, 5 pgs.
Micronas, “Micronas and Thomson Multimedia Showcase a New Copy Protection System that Will Drive the Future of Digital Television,” www.micronas.com: Jan. 8, 2002, 3 pgs.
MIT Computer Science and Artificial Intelligence Laboratory, “Cricket v2 User Manual,” Cricket Project, MIT Computer Science and Artificial Intelligence Lab, Cambridge, MA, Jan. 2005, 57 pgs., available online at https://web.archive.org/web/20041206144922/http:/cricket.csail.mit.edu/v2man.html.
MIT Computer Science and Artificial Intelligence Laboratory, “The Cricket Indoor Location System,” at least as early as Nov. 19, 2004, 6 pgs., archived at https://web.archive.org/web/20041119183049/http://cricket.csail.mit.edu/.
Motorola, Inc., “Motorola First to Demonstrate ZigBee 2.4 GHz Wireless Networking Technology,” press release, Mar. 27, 2003, 2 pgs., archived at https://web.archive.org/web/20050205053308/http:/www.motorola.com/mediacenter/news/detail/0,1958,2743_2228_23,00.html.
Muller, “Desktop Encyclopedia of the Internet,” 1999, Artech House Inc., Norwood, MA, all pages.
National Criminal Justice Reference Service, “Antenna Types,” Dec. 11, 2006, online at http://ncjrs.gov/pdfffiles1/nij/185030b.pdf, retrieved from http:/web.archive.erg/web/*/http://www.ncjrs.gov/pdffiles1/nij/185030b.pdf on Jan. 12, 2011, 1 pg.
Nel et al., “Generation of Keys for use with the Digital Signature Standard (DSS),” Communications and Signal Processing, Proceedings of the 1993 IEEE South African Symposium, Aug. 6, 1993, pp. 6-11.
Nerd Vitiles, “magicJack: Could It Be the Asterisk Killer?” Aug. 1, 2007, retrieved from http://nerdvittles.com/index.php?p=187 on or before Oct. 11, 2011, 2 pgs.
Nilsson et al., “Match-on-Card for Java Cards,” Precise Biometrics, white paper, Apr. 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20for%20Java%20Cards.pdf on Jan. 7, 2007, 5 pgs.
Noore, “Highly Robust Biometric Smart Card Design.” IEEE Transactions on Consumer Electronics, vol. 46, No. 4, Nov. 2000, pp. 1059-1063.
Paget, “The Security Behind Secure Extranets,” Enterprise Systems Journal, vol. 14, No. 12, Dec. 1999, 4 pgs.
Pash, “Automate proximity and location-based computer actions,” Jun. 5, 2007, retrieved from http://lifehacker.com/265822/automate-proximity-and-location+based-computer-actionson or before Oct. 11, 2011, 3 pgs.
Pope et al., “Oasis Digital Signature Services: Digital Signing without the Headaches,” IEEE Internet Computing, vol. 10, Sep./Oct. 2006, pp. 81-84.
Beaufour et al., “Personal servers as digital keys,” Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications, 2004, pp. 319-328, doi: 10.1109/PERCOM.2004.1276869.
Callaway, Wireless Sensor Networks: Architectures and Protocols, Jan. 1, 2004, Auerbach Publications, 366 pgs.
Dvorak, IEEE 802.15.4 and Zigbee Overview, Sep. 27, 2005, Motorola, 26 pgs.
Hester et al., “neuRFon(TM) Netform: A Self-Organizing Wireless Sensor Network”, Oct. 14, 2002, Proceedings of the Eleventh International Conference on Computer Communications and Networks, pp. 364-369.
Honkanen et al., “Low End Extension for Bluetooth”, Sep. 19, 2004, Proceedings of the 2004 IEEE Radio and Wireless Conference, Atlanta, GA, pp. 199-202.
Jonker et al., “Digital rights management in consumer electronics products,” IEEE Signal Processing Magazine, vol. 21, No. 2, pp. 82-91, Mar. 2004, doi: 10.1109/MSP.2004.1276116.
David et al., Security Issues for Contactless Smart Cards, Sep. 1, 1997, conference paper, available online at https://link.springer.com/chapter/10.1007/BFb0054029, 6 pgs.
Kuhn et al., Introduction to Public Key Technology and the Federal PKI Infrastructure, Feb. 26, 2001, National Institute of Standards and Technology, 54 pgs.
Petition for Inter Partes Review of U.S. Pat. No. 9,049,188, Aug. 26, 2021, 800 pgs.
Petition for Inter Partes Review of U.S. Pat. No. 9,235,700, Aug. 26, 2021, 466 pgs.
Request for Ex Parte Reexamination of U.S. Pat. No. 10,698,989, Jun. 8, 2022, 1505 pgs.
Request for Ex Parte Reexamination of U.S. Pat. No. 8,352,730, Jun. 8, 2022, 1401 pgs.
Request for Ex Parte Reexamination of U.S. Pat. No. 9,298,905, Jun. 8, 2022, 1123 pgs.
Smart Card Alliance, Contactless Payment and the Retail Point of Sale: Applications, Technologies and Transaction Models, Mar. 1, 2003, a Smart Card Alliance Report, 50 pgs.
Smart Card Alliance, Smart Card Alliance—The Alliance, Jan. 22, 2001, http://www.smartcardalliance.org, 1 pg.
Anonymous, “BluePayz: A Seamless Payment Method Using Bluetooth-Enabled Mobile Phones,” IP.com Publication Date 2003—Jun. 20, 2003, https://priorart.ip.com/1 PCOM/000015495 (Year: 2003).
Feng Bao, et al., “Design of portable mobile devices based e-payment system and e-ticketing system with digital signature,” 2001 International Conferences on Info-Tech and Info-Net. Proceedings (Cat. No. 01 EX479), Beijing, China, 2001, pp. 7-12 vol. 6, doi: 10.1109/ICII.2001.982996. (Year: 2001).
Y. Labrou, J. Agre, L. Ji, J. Molina and W.. -1. Chen, “Wireless wallet,” The First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services, 2004. Mobiquitous 2004., Boston, MA, USA, 2004, pp. 32-41, doi: 10.1109/MOBIQ.2004.1331708. (Year: 2004).
Serrao et al., “Protecting Digital Music Delivery and Consumption using the OCCAMM Project Framework,” Proceedings of the Second International Conference on Web Delivering of Music, 2002, pp. 38-45, doi: 10.1109/WDM.2002.1176192.
NPL Search Terms (Year: 2023).
Agourare et al., “Authentication and location control via RFID analysis,” 2009 IEEE Conference on Emerging Technologies & Factory Automation, Sep. 1, 2009, 8 pgs.
Labrou et al., “Wireless Wallet,” Proceedings of the First Annual International Conference on Mobile and Ubiquitous Systems: Networking and Services (MobiQuitos '04), IEEE, Aug. 22-26, 2004, 10 pgs.
Petition for Inter Partes Review of U.S. Pat. No. 10,698,989, Aug. 26, 2021, 3356 pgs.
Petition for Inter Partes Review of U.S. Pat. No. 8,352,730, Aug. 26, 2021, 2450 pgs.
Petition for Inter Partes Review of U.S. Pat. No. 9,298,905, Aug. 26, 2021, 1941 pgs.
Anonymous, “BluePayz: A Seamless Payment Method Using Bluetooth-Enabled Mobile Phones,” IP.com Publication Date Jun. 20, 2003, https://priorart.ip.eom/1 PCOM/000015495 (Year: 2003).
Beaufour, “Personal Servers as Digital Keys,” Proceedings of the Second IEEE Annual Conference on Pervasive Computing and Communications (PERCQM'04), Mar. 14-17, 2004, pp. 319-328.
Blip Systems, BlipMobihty, at least as early as Apr. 7, 2004, archived at https://web. archive.org/web/20040407212934/http:/www. blipsystems.com/Default.asp?ID=1 18.
Chen et al. “On Enhancing Biometric Authentication with Data Protection.” KES2000. Fourth International Conference on Knowledge-Based Intelligent Engineering Systems and Allied Technologies. Proceedings (Cat. No.OOTH8516), vol. 1, Aug. 1, 2000, pp. 249-252.
Costa, “Imation USB 2.0 Micro Hard Drive,” Nov. 22, 2005, retrieved from http://www.pcmag.eom/article2/0,2817,1892209,00.asp on or before Oct. 11, 2011, 2 pgs.
Dai et al., Toward Blockchain-Based Accounting and Assurance, Journal of Information Systems, vol. 31, No. 3, Fai 2017, pp. 5-21.
Lockton et al., RFID: The next serious threat to privacy, Ethics and Information Technology (2005) 7:221-231 (Year: 2006).
Nordin, “Match-on-Card Technology,” Precise Biometrics, white paper, Apr. 2004, retrieved from www.ibia.org/membersadmin/whitepapers/pdf/17/Precise%20Match-on-Card%20technology.pdf on Jan. 7, 2007, 7 pgs.
Reescale Semiconductor, Inc., “ZigBeeTM,” Freescale Semiconductor Wireless Standards, at least as early as Aug. 18, 2004, 2 pgs., archived at https://web.archive.org/web/20040818075046/http:/www.freescale.com/webapp/sps/site/overview.jsp? nodeld=02XPgQhHPRjdyB.
Rodriguez et al., “In-building location using Bluetooth,” Proceedings of the International Workshop on Wreless Ad-Hoc Networks (IWWAN 2005), May 23-26, 2005, London, England, 7 pgs.
Schneier, Applied Cryptography, Second Edition: Protocols, Algorithms, and Source Doe in C, Jan. 1, 1996, John Wley & Sons, Inc., 1027 pgs.
Splashid, “SplashID—Secure Password Manager for PDA's and Smartphones,” Mar. 8, 2007, retrieved from http://www.splashdata/com/splashid/via http://www.archive.org/on or before Oct. 11, 2011, 2 pgs.
Tadlys Ltd., “Bluetooth Glossary,” at least as early as Jun. 2004, 12 pgs., archived at https://web. archive.org/web/20040531082349/http://www.tadlys.com/pages/Downloads_content.asp?intGloballd=1.
Tadlys Ltd., “Indoor Location Networks,” at least as early as Apr. 3, 2004, 1 pg., archived at https://web. archive.org/web/20040403200221/http:/www.tadlys.com/Pages/Product_content.asp?iGloballd=2.
Related Publications (1)
Number Date Country
20210334481 A1 Oct 2021 US
Provisional Applications (1)
Number Date Country
61445035 Feb 2011 US
Continuations (3)
Number Date Country
Parent 16247111 Jan 2019 US
Child 17372189 US
Parent 14981607 Dec 2015 US
Child 16247111 US
Parent 13401702 Feb 2012 US
Child 14981607 US