The present invention relates to a proximity fuze, in particular able to be fitted to medium caliber munitions. It also relates to a projectile fitted with such a proximity fuze.
Attack helicopters are generally fitted with a medium caliber cannon placed in a nose turret. The munitions used are fitted with an impact fuze initiating the explosive charge of the shell in contact with the target or the ground. On impact with the ground the shell inevitably buries itself before being detonated, even if the delay is small. This configuration leads to considerable loss of effectiveness, all the more so when the explosive charge is relatively small.
A solution for increasing the effectiveness is to trigger detonation before impact, in proximity to the target or the ground, by fitting the explosive projectile with a proximity fuze.
Having regard to the particular configuration of firing from a helicopter, at low altitude, this proximity fuze must be compatible with very grazing firing trajectories. Moreover, the munition must be totally autonomous, without requiring any interaction with the weapons system.
The need for a munition that operates totally independently of a weapons system prohibits certain technical solutions such as those based on a chronometric function, for example a programmable-time function termed “airburst”. This type of chronometric solution requires that the munition be programmed. Moreover, the chronometric principle exhibits a major drawback. This drawback is limited precision, which is incompatible with the effectiveness of medium caliber munitions for which the precision sought is of the order of a few tens of centimeters for a nominal detection distance of between 0.5 meter and 2 meters in particular.
There is therefore a need to produce a proximity detection device, or proximity fuze:
The need can be extended to other calibers and for firing from carriers other than helicopters, ground vehicles for example.
The aim of the invention is therefore in particular to alleviate the aforementioned drawbacks and to address the need expressed hereinabove. For this purpose, the subject of the invention is a proximity fuze able to be fitted to a projectile, said fuze having the mission of detecting an obstacle in proximity, an obstacle in proximity being defined as being an obstacle exhibiting a minimum distance from said fuze, said fuze comprising at least:
an emission device having a pupil emitting a light beam directed forward of said fuze;
a reception device having a pupil detecting the luminous fluxes in a cone directed forward of said fuze, said light beam and said cone having relative orientations such that they cross one another, the emission pupil and the reception pupil being off-centered;
a detection volume being the volume where said light beam crosses said cone so that when an obstacle is in said detection volume, the light emitted by said emission device is backscattered toward said detection device, an obstacle in proximity being detected by detecting the maximum of backscattered power, said cone for reception being centered on the axis of said fuze.
The reception pupil has for example a crescent moon shape.
In a particular embodiment, the fuze delivers a signal if at least one condition is satisfied, said condition being the detection of said maximum of backscattered power. Said signal is for example delivered if a second condition is satisfied, said second condition being that said maximum of backscattered power exceeds a given threshold. Said signal is for example able to trip the detonation of an explosive charge.
The emission beam is for example coded to allow its identification by said reception device, said light beam being for example modulated. The light beam can be produced by a laser diode or a light-emitting diode (LED).
The subject of the invention is also a projectile fitted with a fuze such as described above. In a possible embodiment, said projectile comprises a munition of medium caliber type. It is for example able to be fired from an airborne platform and/or from a ground platform.
Other characteristics and advantages of the invention will become apparent with the aid of the description which follows given in relation to appended drawings which represent:
Proximity fuzes for mortar or artillery projectiles are designed to detect the ground by considering arrival angles of generally between 15° and 80°.
As mentioned previously, a medium caliber application is characterized by extremely small angles of arrival at the target (angle of incidence with respect to the ground).
The implementation of a proximity function must consequently address the need for reliable operation for arrival angles of less than a few degrees. The triggering distances, in relation to the effectiveness of the munition, also require to be greatly reduced, these distances possibly being between 0.5 meter and 1.5 meters for example.
The operation of a proximity fuze for very small angles of incidence then requires a very directional detector, stated otherwise a particularly slender emission lobe, so as in particular to avoid the risks of false alarms due to obstacles situated in proximity to the trajectory of the munition. The configurations of
In particular, as regards RF technology, increased directivity can be obtained by operating at higher working frequencies and by employing antenna arrays. However, despite these adaptations, and when operating in the KA band, obtaining aperture angles of less than 15° remains difficult to achieve. The need cannot therefore be addressed easily and at low cost by an RF solution. Moreover, it is important to note that the operation of an RF proximity fuze at such high frequencies, in addition to increased sensitivity to the environment, poses the problem of the availability of components and as a consequence that of the cost of mass production as has just been mentioned.
The performance to cost ratio of the RF solution implies that the latter is not suitable for addressing the need expressed in an optimal manner.
An emission device emitting a light beam 31 directed forward of the munition, the beam having the shape of a narrow cone, having an angular aperture of less than a degree;
A reception device detecting a luminous flux 32 in a narrow cone directed forward of the munition, forming a detection cone or reception cone;
Means for processing the signals received.
The power emitted is advantageously of the order of a few milliwatts.
The pupil 33 for emission and the pupil 34 for reception are separated in such a way in particular that the two cones 31, 32 cross one another in front of the munition. The detection volume is the volume 35 where the light beam 35 is in the reception cone 34. This volume is advantageously centered on the axis 40 of the munition, the axis common to the fuze.
When the munition approaches initially the spot of the emission on the obstacle is outside the reception cone 32. There is no detected signal.
Next, with the obstacle approaching, the spot on the obstacle enters the reception field. The signal increases with the increase in the fraction of the spot in the of the reception cone 32.
The spot of the emission on the obstacle enters the detection zone. The fraction of the spot of the emission on the obstacle increases as the munition approaches. When the whole spot is in the reception cone 32 the backscattered flux to be detected grows as the inverse of the square of the distance to the obstacle.
Finally the spot of the emission on the obstacle exits the reception cone 32 progressively. The detected flux decreases rapidly when the emission cone 31 exits the reception cone 32. This passage through a maximum of the detected flux is the temporal marker of proximity of the obstacle.
A curve 61 represents the received signal in the case of a modulated emitted signal. Passage to the maximum 62 of power received serves as marker of distance from the obstacle.
In this case, at large distance from the obstacle or from the target, the reception pupil collects the flux backscattered by the obstacle illuminated by the emission beam 31. On approaching, the signal increases as a function of the inverse of the square of the distance of the munition from the obstacle. Next the signal reaches a maximum 62 when the backscattered flux no longer reaches the whole of the reception pupil in the reception field. Thereafter, the signal decreases rapidly until the emission spot is no longer visible by the reception.
The signals received are for example digitized and analyzed by the processing means.
An emitter with laser diode 51, producing a luminous emission of small divergence, the pupil 33;
A receiver 52 carrying out a mono-detection element, the cone of which is narrow, a few milliradians for example, observing forward of the fuze precisely in the direction of travel of the munition, preferably the pupil 34 is centered in the front of the fuze and in all cases separated from the emission pupil 33.
The alignment of the axis of the reception cone 32 on the axis 40 of the munition advantageously allows the luminous flux coming from the obstacle illuminated by the ambient light to vary slowly despite the rotation of the munition, thereby facilitating the detection of the emission on the obstacle. Also, the emitted power can thus advantageously be reduced. The detection of the receiver is synchronous with the emission. The direction of emission crosses the reception cone, not necessarily on the axis of the munition. The emission is for example coded and modulated to facilitate its identification by the receiver.
The emitter is for example placed on a first printed circuit 53 whose plane is perpendicular to the axis 40 of the fuze. The emitter is for example placed in an off-centered position so as to cross the emission and reception beams as illustrated by
The receiver 52 is for example mounted on a second printed circuit 54 whose plane contains the axis 40 of the fuze. The receiver 52 is for example positioned on this axis 40, toward the front in accordance with the centered position of the pupil 34. The second printed circuit 54 comprises for example the processing means. These processing means detect in particular an obstacle in proximity in accordance with the procedure described in
A threshold for the level of power received can be combined with the detection of the maximum of power received. This is in order to avoid triggering on overly weak signals of parasitic origin.
The invention can also be integrated as proximity function, in any munition fuze, including in configurations of indirect firing, such as for artillery or mortar. It is also suitable for all types of calibers.
Number | Date | Country | Kind |
---|---|---|---|
1400973 | Apr 2014 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2015/058405 | 4/17/2015 | WO | 00 |