The subject matter of the invention is a proximity switch and a method for contacting a sensor printed circuit board according to the features of Claims 1 and 6.
Proximity switches and distance sensors that detect the distance of objects by means of various physical principles and that generate a digital or analog electrical output signal as a function of the object distance often comprise a cylindrical or block-shaped housing made from metal or plastic. For cylindrical housings, threading is usually formed on the outer lateral surface for attaching the sensor to a machine part.
Inductive proximity switches and distance sensors usually comprise an oscillator with a coil inserted into a shell core made from ferrite, an evaluation stage, and an output amplifier. For cylindrical sensors, the coil is arranged in the region of one casing end, wherein the coil unit is usually covered by a cap made from plastic or ceramic arranged flush with the casing or projecting past the casing. In the housing interior there is a printed circuit board or PCB with the components necessary for controlling the oscillator and for evaluating the sensor measurement variable. The printed circuit board can be mounted on the shell core on the back side, e.g., by mechanical attachment means. For such known sensors, the ends of the coil wire are connected electrically by solder to contact surfaces on the printed circuit board. On the opposite end of the printed circuit board there are additional contact surfaces for soldering a connection plug or a cable. These surfaces form the interface of the sensor to the outside.
In the production of conventional sensors, the interior of the housing is encapsulated, e.g., from the connection side with a curing casting resin after the printed circuit board and the coil unit have been inserted into the casing and the closing cap has been set on the front side. Then the back-side closing plug is placed on the casing with the contacts guided outward. Obviously, slightly different methods for assembling such sensors are also known.
The production or the assembly of such conventional sensors is relatively complicated and expensive due to the solder connections required for contacting the sensor element and the sensor interface and due to the encapsulation with a casting resin.
The objective of the present invention is thus to create a sensor and a method for contacting a sensor printed circuit board that allow a simple and economical production of the sensor, in particular, an inductive proximity switch or distance sensor.
This objective is met by a proximity switch and by a method for contacting a printed circuit board according to the features of Claims 1 and 6. Advantageous constructions are described in the subordinate claims.
The invention is based on the idea of eliminating solder connections for the connection of sensor elements and/or contact elements for the sensor interface and using, instead of solder connections, solder-free connection means, such as spring and/or clamp contacts. In this way, the production process of the sensors can be significantly simplified. Contrary to the previous opinion of experts, sufficiently good electrical connections between the printed circuit board and sensor elements (e.g., coils) and/or between the printed circuit board and contact pins for connecting a connection plug or a connection cable can be established with suitable spring and clamp contacts. Such solder-free connections are functional even under harsh conditions of use and are suitable, in particular, for the production of sensors in which the housing with the electronics is not encapsulated with a curing casting resin as was typical before.
Advantageously, the contacting of the sensor printed circuit board according to the invention is used for sensors with a housing casing produced using injection-molding technology.
Such sensors can comprise, e.g., a housing with an outer, usually metallic housing casing and an inner casing made from plastic injection molded onto the inside of the outer casing. The housing advantageously has a cylindrical or cylinder-like shape with a round housing cross section and with or alternatively without an outer threading on the outer casing. Alternatively, the housing can also have a square, rectangular, or an arbitrarily different cross-sectional form. In particular, the housing can have different cross-sectional surfaces at different positions in the axial direction given by the housing casing. The injection-molded inner casing made from plastic acts as an electrical isolator between the sensor electronics arranged on a printed circuit board in the interior of the housing and the outer housing casing. Guides formed on the inside of the inner casing allow a simple and guided insertion of a printed circuit board equipped with electronic components into the housing and then hold these in the provided position. Longitudinal or transverse grooves, boreholes, or other structures formed on the inside of the outer housing casing guarantee that the inner housing casing and the outer housing casing cannot move relative to each other, not even if the adhesive connection between the injection-molded plastic casing and the outer casing or the outer housing casing should become loose. In particular, for example, for cylindrical housings, rotational locking and displacement locking of the two housing casings can be guaranteed. A separating wall or a base that divides the interior of the housing into a front sub-space and a rear sub-space is formed on the inner casing. The front sub-space is designed for holding the electronics with the sensor element or elements. The rear, usually significantly shorter sub-space is constructed as a plug receptacle for connecting a connection cable via plug-in connectors. In the production process, that is, when plastic is injected into the injection-molding die provided for this purpose, contact elements according to the invention are encased in the base or set partially in plastic using injection molding. The contact elements project past the base on both sides. Advantageously, the contact elements are all equal and shaped as bent stamped parts. For connecting a plug, contact pins of the contact elements project backward from the base. The positions of the contact pins correspond to the positions of the corresponding contact springs of the desired connection plug. The rear part of the inner housing casing is constructed in such a way that it corresponds to the provided connection plugs. In particular, e.g., in the rear region there can be ribs that project to the inside of the inner casing and that are used as reverse polarity protection when connecting a plug with corresponding grooves. The part of the contact elements projecting into the housing interior has a bifurcated construction with contact springs or contact blades. The contact elements are arranged in such a way that the contact arms projecting axially into the housing interior lie in a row. When a printed circuit board equipped with components is inserted, the board is clamped tight between the bifurcated arms, with the contact springs or blades establishing solder-free electrical connections with corresponding contact surfaces or pads on the printed circuit board. The production of a sensor with contacting of the printed circuit board according to the invention is very simple. The electronic printed circuit board is inserted into the housing along the guides on the inner wall of the housing until its rear end is clamped tight between the contact arms and the electrical connection of the contact elements is established with the pads on the printed circuit board. In the region of the front edge of the printed circuit board, a closing cap made from plastic is connected to the printed circuit board or placed on this printed circuit board. The closing cap is advantageously constructed so that it can be used as a carrier for the sensor element or elements—for example, a coil with a ferrite core—so that these are arranged as close as possible to the front end of the sensor housing. Alternatively, the closing cap and coil carrier can also be constructed as separate parts and mounted in some other way on the printed circuit board or housing. The electrical connection of the sensor elements with the printed circuit board can be realized, e.g., by soldering or bonding connection wires or without solder according to the invention by use of plug-in connections.
After inserting the printed circuit board into the housing, the closing cap or the closing cover is connected to the front-side end of the inner casing in the edge region, e.g., through laser welding, ultrasonic welding, or adhesion. Therefore, the front sub-space of the housing is closed tight. In contrast to conventionally manufactured sensors, encapsulation of the housing interior with a curing casting mass is not required, but it is nevertheless possible if necessary. Obviously, in this case additional means, such as, e.g., elastic sealing lips could be provided that prevent or make more difficult the direct contact of the casting resin with the contact elements and thus prevent the interruption of solder-free contacts by the curing casting resin. Alternatively or additionally, blade contacts can be provided that cut or press or mark corresponding contact surfaces and thus prevent contact interruption by casting resin.
With reference to the figures, the invention is described in more detail below with the example of cylindrical inductive proximity switches. Shown herein are:
a a perspective view of another closing cover with connection pins,
In
A recess 31 in the middle region 29 of the contact elements 21 is filled by plastic during the injection molding with the plastic mass and is used for stabilizing and for absorbing forces during the contacting or during the separation of a connection plug. In the region of the rear sub-space 19b there is a guide rib 33 projecting inward on the inner housing casing 15 and running in the direction of the housing axis α. It is used as reverse polarity protection and as a guide during the connection of a connection plug provided with a corresponding groove.
For another construction of the cap 35 according to
In the first construction of the sensor according to
In another configuration of the distance sensor or proximity switch 1, as shown in
The cap 35 has a nozzle-like construction, wherein the peripheral end 55 is inserted or pressed into the gap between the shell core 45 and the outer housing casing 3. For sealing the cap 35 and the inner housing casing 15 relative to the outer housing casing 3, sealing elements, such as, e.g., O-rings, can be provided (not shown). The non-positive fit connections between the cap 35 or the inner housing casing 15 and the outer housing casing 3 can also be secured by latch means (not shown). In the example shown in
The idea forming the basis of the invention comprises all possible combinations in which the printed circuit board 10 of a distance sensor or proximity switch 1 is connected by plug-in contacts to a connection interface allocated to the sensor or proximity switch 1 (e.g., contact pins 23 for a connection plug or for connecting a cable) and/or a sensor element (e.g., coil) allocated to the distance sensor or proximity switch 1. The connections can be constructed arbitrarily by use of plug-in contacts and couplings or by contact springs or contact blades that are pressed against metallized contact elements.
Number | Date | Country | Kind |
---|---|---|---|
780/06 | May 2006 | CH | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CH2007/000226 | 5/4/2007 | WO | 00 | 11/5/2008 |