The present invention generally relates to proximity switches, and more particularly relates to an arrangement of proximity switches for controlling devices, such as vehicle windows.
Automotive vehicles are typically equipped with various user actuatable switches for operating devices including powered windows, moonroofs or sunroofs, door locks, and various other devices. Generally, these types of switches are actuated by a user to activate or deactivate a device or perform some type of control function. Proximity switches, such as capacitive switches, employ one or more proximity sensors to generate a sense activation field and sense changes to the activation field indicative of user actuation of the switch, typically caused by a user's finger in close proximity or contact with the sensor. Capacitive switches are typically configured to detect user actuation of the switch based on comparison of the sense activation field with a threshold.
It is desirable to provide for an arrangement of proximity switches in a manner that prevents or reduces interference from adjacent sensors.
According to one aspect of the present invention, a proximity switch assembly is provided. The proximity switch assembly includes a ground layer, a first proximity switch, and a second proximity switch. The first proximity switch includes a first proximity sensor and a first dielectric layer on a first side of the ground layer. The second proximity switch includes a second proximity sensor and a second dielectric layer on a second side of the ground layer.
According to another aspect of the present invention, a vehicle proximity switch assembly is provided. The vehicle proximity switch assembly includes a ground layer. The switch assembly also includes a first proximity switch on a first major side of the ground layer and including a first proximity sensor and a first dielectric layer for controlling movement of a panel. The vehicle proximity switch assembly further includes a second proximity switch on an opposite second major side of the ground layer and including a second proximity sensor and a second dielectric layer for controlling movement of the panel.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design; some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring to
The vehicle 10 is further equipped with a proximity switch assembly 20 for controlling actuation of the movable window panel 14. The proximity switch assembly 20 is shown located on an armrest 16 on the interior trim of door 12, according to one embodiment. However, it should be appreciated that the proximity switch assembly 20 may be located elsewhere on the vehicle 10. The proximity switch assembly 20 includes a first proximity switch having a first proximity sensor for sensing user activation on one surface and a second proximity switch having a second proximity sensor for sensing user activation on an opposite second surface. The first proximity switch senses user activation to activate the window panel 14 to move downward to an open position and the second proximity switch senses activation to move the window panel 14 upward to a closed position.
The proximity switch assembly 20 is further illustrated in
Referring to
The proximity switch assembly 20 is shown in
A cover material 52 is shown formed surrounding the proximity sensors 54 and 64, dielectric layers 56 and 60 and ground layer 58. The cover material 52 may include a molded polymeric material, according to one embodiment. The cover material 52 may include a material suitable for the armrest, such as a vinyl or leather material, according to other embodiments. The first and second proximity sensors 54 and 64 may be formed on an inner surface of the cover material 52, according to one embodiment. The proximity sensors 54 and 64 may be printed as an ink onto the inner surface of the cover material 52 or otherwise may be formed thereon or disposed between the dielectric layer 56 or 60 and cover material 52. According to another embodiment, the proximity sensors 54 and 64 may be formed on the respective dielectric layers 56 and 60. It should be appreciated that circuit arrangements such as a FR4 hard printed circuit board or flex circuit may be employed.
The proximity switch assembly 20 is further shown including a connector 66 that provides electrical connections to the first and second proximity sensors 54 and 64. The connector 66 may include electrical conductors that connect between the circuit board 68 and each of the first and second proximity sensors 54 and 64 to apply a signal to generate an activation field and an output indicative of user interface with the activation field. The connector 66 also provides a ground line connection to the conductive ground layer 58 such that layer 58 is electrically grounded. The connector 66 may include printed circuits or wires that lead to printed circuits on the inner surface of the cover material 52, according to one embodiment. According to another embodiment, the circuitry traces may connect to circuit traces on the dielectric layers 56 and 60. The resulting package of the ground layer 58, dielectric layers 56 and 60 and first and second proximity sensors 54 and 64 may form a printed circuit board that is covered by the cover material 52.
In operation, the first proximity sensor 54 generates a first activation field 74 on and above the first or top surface 50A of member 50. The first activation field 74 is prevented from extending downward and onto the bottom or second surface due to the conductive ground layer 58. Similarly, the bottom or second proximity sensor 64 generates a second activation field 84 that extends on and below the second or bottom surface 50B. The second activation field 84 is prevented from extending upward and onto first surface due to the conductive ground layer 58.
It should be appreciated that the conductive ground layer 58 has dimensions such as length and width, which are greater than the length and width of the first and second proximity sensors 54 and 64, as shown in
The proximity sensors 54 and 64 are shown and described herein as capacitive sensors, according to one embodiment. Each proximity sensor 54 and 64 includes at least one proximity sensor that provides a sense activation field to sense contact or close proximity (e.g., within one millimeter) of an object, such as the finger (digit) or other part of the hand of an operator in relation to the one or more proximity sensors. The proximity sensors 54 and 64 may also detect a swiping motion by the hand of the operator such as a swipe of a user's finger. Thus, the sense activation field of each proximity sensor 54 and 64 is a capacitive field in the exemplary embodiment and the user's hand including the fingers has electrical conductivity and dielectric properties that cause a change or disturbance in the sense activation field as should be evident to those skilled in the art. However, it should also be appreciated by those skilled in the art that additional or alternative types of proximity sensors can be used, such as, but not limited to, inductive sensors, optical sensors, temperatures sensors, resistive sensors, the like, or a combination thereof. Exemplary proximity sensors are described in the Apr. 9, 2009, ATMEL® Touch Sensors Design Guide, 10620 D-AT42-04/09, the entire reference hereby being incorporated herein by reference.
One example of the printed ink proximity sensor 54 and 64 is shown in
In the embodiment shown and described herein, the drive electrode 26 of each proximity sensor 54 and 64 is applied with voltage input VI as square wave pulses having a charge pulse cycle sufficient to charge the receive electrode 28 to a desired voltage. The receive electrode 28 thereby serves as a measurement electrode. When a user or operator, such as the user's finger, enters an activation field, the proximity switch assembly 20 detects the disturbance caused by the finger to the activation field and determines whether the disturbance in either activation fields 74 or 84 is sufficient to activate a door window command. The disturbance of each activation field is detected by processing the charge pulse signal associated with the corresponding signal channel. When the user's finger enters the activation fields 74 or 84 generated by the first and second sensors 54 or 64, the proximity switch assembly 20 detects the disturbance of each contacted activation field via separate signal channels. Each proximity sensor 54 or 64 may have its own dedicated signal channel generating charge pulse counts which may be processed and compared to threshold(s) to make output determinations.
Referring to
The controller 40 provides an output signal to one or more devices that are configured to perform dedicated actions responsive to detected activation of the proximity sensors on the door handle. The one or more devices may include a power window 14. The power window 14 may include a conventional power window having a motor that electrically is actuated to drive a window panel between open and closed positions. The window 14 may include a power door window installed in the door of a vehicle to move up and down. According to other embodiments, a movable panel may include a sunroof or moonroof or a rear window panel. It should be appreciated that other devices may be controlled in response to user activation of the proximity switch assembly 20.
The controller 40 is further shown having an analog to digital (A/D) comparator 44 coupled to the microprocessor 42. The A/D comparator 44 receives the voltage output VO from each of the proximity sensors 24, converts the analog signal to a digital signal, and provides the digital signal to the microprocessor 42. Additionally, controller 40 includes a pulse counter 46 coupled to the microprocessor 42. The pulse counter 46 counts the charge signal pulses that are applied to each drive electrode of each proximity sensor, performs a count of the pulses needed to charge the capacitor until the voltage output VO reaches a predetermined voltage, and provides the count to the microprocessor 42. The pulse count is indicative of the change in capacitance of the corresponding capacitive sensor. The controller 40 is further shown communicating with a pulse width modulated drive buffer 15. The controller 40 provides a pulse width modulated signal to the pulse width modulated drive buffer 15 to generate a square wave pulse train VI which is applied to each drive electrode of each proximity sensor 24. The controller 40 processes one or more control routines, shown in one embodiment including a window control routine 100 stored in memory to monitor user activation of the switch assembly and control movement of the vehicle window.
Operation of the proximity switch assembly may include a user positioning a finger onto the top surface or in close proximity to the top surface of input member 50 to cause a sufficient disturbance of the first activation field 74 to detect user input to close the vehicle window panel. Sensitivity may be adjusted to require that the user press the finger onto the top surface 50A of member 50 to create a sufficient amplitude signal sensed by the activation field 74. When a user desires to raise the window panel, the user advances the finger forward, around input member 50 and into contact with the bottom surface 50B so as to sufficiently engage the second activation field 84 to generate a signal of a sufficient strength indicative of a user input to close the window. When this occurs, the user's hand rotates forward and departs from the top activation field 74. A signal response to the closing operation is shown in
The first proximity switch may be configured to momentarily move the window toward the open position for as long as the user's finger is detected on the first proximity sensor based on a first threshold value and may further initiate the demand to fully open the window upon an increase force applied to the top surface by detecting the output of the first proximity sensor relative to a higher second threshold. Similarly, the second proximity switch may momentarily cause the window to move toward the closed position for as long as the user's finger is detected by the second proximity sensor based on a first threshold value and may further activate the window to the fully closed position based on an increase for supply to the bottom surface detected by the second proximity sensor based on a comparison to a second higher threshold. Further, the vehicle may be actuated to the closed position based on sensed signals from both the first and second proximity sensors. In doing so, the proximity switch assembly may detect activation of the bottom second proximity sensor exceeding a threshold combined with the signal detected by the top first proximity sensor being below a threshold.
The window control routine 100 is shown in
Returning to decision step 104, if the open signal is not greater than the close signal, routine 100 proceeds to decision step 114 to determine if the close signal is greater than a close threshold and, if not, is done at step 122. If the close signal is greater than the close threshold, routine 100 proceeds to decision step 116 to determine if a ratio of the open signal to close signal is less than a close ratio and, if not, is done at step 122. If the ratio of the open to close signal is less than the close ratio, routine 100 proceeds to step 118 to determine if the open and close signals are stable for a predetermined time period, such as 40 milliseconds and, if so, proceeds to step 120 to set the open start equal to open, and to set the ratio start equal to a ratio of open to close, and enters the Wait_For_Pull state. Otherwise, routine 100 is done at step 122.
Referring to
Referring to
Accordingly, the proximity switch assembly 20 advantageously allow for activation of the window based on an object sensed with first and second proximity sensors on first and second sides and isolated by a ground layer. The system and method advantageously allows a user to effectively control the vehicle window without having to actuate a mechanical input lever and with reduced signal interference, and thereby providing for a robust switch assembly having fewer moving parts and which is cost-effective and easy to operate.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
3382588 | Serrell et al. | May 1968 | A |
3544804 | Gaumer et al. | Dec 1970 | A |
3691396 | Hinrichs | Sep 1972 | A |
3707671 | Morrow et al. | Dec 1972 | A |
3826979 | Steinmann | Jul 1974 | A |
4204204 | Pitstick | May 1980 | A |
4205325 | Haygood et al. | May 1980 | A |
4232289 | Daniel | Nov 1980 | A |
4257117 | Besson | Mar 1981 | A |
4290052 | Eichelberger et al. | Sep 1981 | A |
4340813 | Sauer | Jul 1982 | A |
4374381 | Ng et al. | Feb 1983 | A |
4380040 | Posset | Apr 1983 | A |
4413252 | Tyler et al. | Nov 1983 | A |
4431882 | Frame | Feb 1984 | A |
4446380 | Moriya et al. | May 1984 | A |
4453112 | Sauer et al. | Jun 1984 | A |
4492958 | Minami | Jan 1985 | A |
4494105 | House | Jan 1985 | A |
4502726 | Adams | Mar 1985 | A |
4514817 | Pepper et al. | Apr 1985 | A |
4613802 | Kraus et al. | Sep 1986 | A |
4680429 | Murdock et al. | Jul 1987 | A |
4743895 | Alexander | May 1988 | A |
4748390 | Okushima et al. | May 1988 | A |
4758735 | Ingraham | Jul 1988 | A |
4821029 | Logan et al. | Apr 1989 | A |
4855550 | Schultz, Jr. | Aug 1989 | A |
4872485 | Laverty, Jr. | Oct 1989 | A |
4899138 | Araki et al. | Feb 1990 | A |
4901074 | Sinn et al. | Feb 1990 | A |
4905001 | Penner | Feb 1990 | A |
4924222 | Antikidis et al. | May 1990 | A |
4972070 | Laverty, Jr. | Nov 1990 | A |
5025516 | Wilson | Jun 1991 | A |
5033508 | Laverty, Jr. | Jul 1991 | A |
5036321 | Leach et al. | Jul 1991 | A |
5063306 | Edwards | Nov 1991 | A |
5108530 | Niebling, Jr. et al. | Apr 1992 | A |
5153590 | Charlier | Oct 1992 | A |
5159159 | Asher | Oct 1992 | A |
5159276 | Reddy, III | Oct 1992 | A |
5177341 | Balderson | Jan 1993 | A |
5215811 | Reafler et al. | Jun 1993 | A |
5239152 | Caldwell et al. | Aug 1993 | A |
5270710 | Gaultier et al. | Dec 1993 | A |
5294889 | Heep et al. | Mar 1994 | A |
5329239 | Kindermann et al. | Jul 1994 | A |
5341231 | Yamamoto et al. | Aug 1994 | A |
5403980 | Eckrich | Apr 1995 | A |
5451724 | Nakazawa et al. | Sep 1995 | A |
5467080 | Stoll et al. | Nov 1995 | A |
5477422 | Hooker et al. | Dec 1995 | A |
5494180 | Callahan | Feb 1996 | A |
5512836 | Chen et al. | Apr 1996 | A |
5548268 | Collins | Aug 1996 | A |
5566702 | Philipp | Oct 1996 | A |
5572205 | Caldwell et al. | Nov 1996 | A |
5586042 | Pisau et al. | Dec 1996 | A |
5594222 | Caldwell | Jan 1997 | A |
5598527 | Debrus et al. | Jan 1997 | A |
5670886 | Wolff et al. | Sep 1997 | A |
5681515 | Pratt et al. | Oct 1997 | A |
5730165 | Philipp | Mar 1998 | A |
5747756 | Boedecker | May 1998 | A |
5760554 | Bustamante | Jun 1998 | A |
5790107 | Kasser et al. | Aug 1998 | A |
5796183 | Hourmand | Aug 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5864105 | Andrews | Jan 1999 | A |
5867111 | Caldwell et al. | Feb 1999 | A |
5874672 | Gerardi et al. | Feb 1999 | A |
5917165 | Platt et al. | Jun 1999 | A |
5920309 | Bisset et al. | Jul 1999 | A |
5942733 | Allen et al. | Aug 1999 | A |
5963000 | Tsutsumi et al. | Oct 1999 | A |
5973417 | Goetz et al. | Oct 1999 | A |
5973623 | Gupta et al. | Oct 1999 | A |
6010742 | Tanabe et al. | Jan 2000 | A |
6011602 | Miyashita et al. | Jan 2000 | A |
6031465 | Burgess | Feb 2000 | A |
6035180 | Kubes et al. | Mar 2000 | A |
6037930 | Wolfe et al. | Mar 2000 | A |
6040534 | Beukema | Mar 2000 | A |
6157372 | Blackburn et al. | Dec 2000 | A |
6172666 | Okura | Jan 2001 | B1 |
6215476 | Depew et al. | Apr 2001 | B1 |
6219253 | Green | Apr 2001 | B1 |
6231111 | Carter et al. | May 2001 | B1 |
6275644 | Domas et al. | Aug 2001 | B1 |
6288707 | Philipp | Sep 2001 | B1 |
6292100 | Dowling | Sep 2001 | B1 |
6310611 | Caldwell | Oct 2001 | B1 |
6320282 | Caldwell | Nov 2001 | B1 |
6323919 | Yang et al. | Nov 2001 | B1 |
6369369 | Kochman et al. | Apr 2002 | B2 |
6377009 | Philipp | Apr 2002 | B1 |
6379017 | Nakabayashi et al. | Apr 2002 | B2 |
6380931 | Gillespie et al. | Apr 2002 | B1 |
6415138 | Sirola et al. | Jul 2002 | B2 |
6427540 | Monroe et al. | Aug 2002 | B1 |
6452138 | Kochman et al. | Sep 2002 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
6456027 | Pruessel | Sep 2002 | B1 |
6457355 | Philipp | Oct 2002 | B1 |
6464381 | Anderson, Jr. et al. | Oct 2002 | B2 |
6466036 | Philipp | Oct 2002 | B1 |
6485595 | Yenni, Jr. et al. | Nov 2002 | B1 |
6529125 | Butler et al. | Mar 2003 | B1 |
6535200 | Philipp | Mar 2003 | B2 |
6537359 | Spa | Mar 2003 | B1 |
6559902 | Kusuda et al. | May 2003 | B1 |
6587097 | Aufderheide et al. | Jul 2003 | B1 |
6607413 | Stevenson et al. | Aug 2003 | B2 |
6614579 | Roberts et al. | Sep 2003 | B2 |
6617975 | Burgess | Sep 2003 | B1 |
6639159 | Anzai | Oct 2003 | B2 |
6652777 | Rapp et al. | Nov 2003 | B2 |
6654006 | Kawashima et al. | Nov 2003 | B2 |
6661410 | Casebolt et al. | Dec 2003 | B2 |
6664489 | Kleinhans et al. | Dec 2003 | B2 |
6713897 | Caldwell | Mar 2004 | B2 |
6734377 | Gremm et al. | May 2004 | B2 |
6738051 | Boyd et al. | May 2004 | B2 |
6740416 | Yokogawa et al. | May 2004 | B1 |
6756970 | Keely, Jr. et al. | Jun 2004 | B2 |
6773129 | Anderson, Jr. et al. | Aug 2004 | B2 |
6774505 | Wnuk | Aug 2004 | B1 |
6794728 | Kithil | Sep 2004 | B1 |
6795226 | Agrawal et al. | Sep 2004 | B2 |
6809280 | Divigalpitiya et al. | Oct 2004 | B2 |
6812424 | Miyako | Nov 2004 | B2 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6819990 | Ichinose | Nov 2004 | B2 |
6825752 | Nahata et al. | Nov 2004 | B2 |
6834373 | Dieberger | Dec 2004 | B2 |
6841748 | Serizawa et al. | Jan 2005 | B2 |
6847018 | Wong | Jan 2005 | B2 |
6854870 | Huizenga | Feb 2005 | B2 |
6879250 | Fayt et al. | Apr 2005 | B2 |
6884936 | Takahashi et al. | Apr 2005 | B2 |
6891114 | Peterson | May 2005 | B2 |
6891530 | Umemoto et al. | May 2005 | B2 |
6897390 | Caldwell et al. | May 2005 | B2 |
6929900 | Farquhar et al. | Aug 2005 | B2 |
6930672 | Kuribayashi | Aug 2005 | B1 |
6940291 | Ozick | Sep 2005 | B1 |
6960735 | Hein et al. | Nov 2005 | B2 |
6964023 | Maes et al. | Nov 2005 | B2 |
6966225 | Mallary | Nov 2005 | B1 |
6967587 | Snell et al. | Nov 2005 | B2 |
6977615 | Brandwein, Jr. | Dec 2005 | B2 |
6987605 | Liang et al. | Jan 2006 | B2 |
6993607 | Philipp | Jan 2006 | B2 |
6999066 | Litwiller | Feb 2006 | B2 |
7030513 | Caldwell | Apr 2006 | B2 |
7046129 | Regnet et al. | May 2006 | B2 |
7053360 | Balp et al. | May 2006 | B2 |
7063379 | Steuer et al. | Jun 2006 | B2 |
7091886 | DePue et al. | Aug 2006 | B2 |
7098414 | Caldwell | Aug 2006 | B2 |
7105752 | Tsai et al. | Sep 2006 | B2 |
7106171 | Burgess | Sep 2006 | B1 |
7135995 | Engelmann et al. | Nov 2006 | B2 |
7146024 | Benkley, III | Dec 2006 | B2 |
7151450 | Beggs et al. | Dec 2006 | B2 |
7151532 | Schulz | Dec 2006 | B2 |
7154481 | Cross et al. | Dec 2006 | B2 |
7180017 | Hein | Feb 2007 | B2 |
7186936 | Marcus et al. | Mar 2007 | B2 |
7205777 | Schulz et al. | Apr 2007 | B2 |
7215529 | Rosenau | May 2007 | B2 |
7218498 | Caldwell | May 2007 | B2 |
7232973 | Kaps et al. | Jun 2007 | B2 |
7242393 | Caldwell | Jul 2007 | B2 |
7245131 | Kurachi et al. | Jul 2007 | B2 |
7248151 | Mc Call | Jul 2007 | B2 |
7248955 | Hein et al. | Jul 2007 | B2 |
7254775 | Geaghan et al. | Aug 2007 | B2 |
7255466 | Schmidt et al. | Aug 2007 | B2 |
7255622 | Stevenson et al. | Aug 2007 | B2 |
7269484 | Hein | Sep 2007 | B2 |
7295168 | Saegusa et al. | Nov 2007 | B2 |
7295904 | Kanevsky et al. | Nov 2007 | B2 |
7339579 | Richter et al. | Mar 2008 | B2 |
7342485 | Joehl et al. | Mar 2008 | B2 |
7355595 | Bathiche et al. | Apr 2008 | B2 |
7361860 | Caldwell | Apr 2008 | B2 |
7385308 | Yerdon et al. | Jun 2008 | B2 |
7445350 | Konet et al. | Nov 2008 | B2 |
7479788 | Bolender et al. | Jan 2009 | B2 |
7489053 | Gentile et al. | Feb 2009 | B2 |
7521941 | Ely et al. | Apr 2009 | B2 |
7521942 | Reynolds | Apr 2009 | B2 |
7531921 | Cencur | May 2009 | B2 |
7532202 | Roberts | May 2009 | B2 |
7535131 | Safieh, Jr. | May 2009 | B1 |
7535459 | You et al. | May 2009 | B2 |
7567240 | Peterson, Jr. et al. | Jul 2009 | B2 |
7583092 | Reynolds et al. | Sep 2009 | B2 |
7643010 | Westerman et al. | Jan 2010 | B2 |
7653883 | Hotelling et al. | Jan 2010 | B2 |
7688080 | Golovchenko et al. | Mar 2010 | B2 |
7701440 | Harley | Apr 2010 | B2 |
7705257 | Arione et al. | Apr 2010 | B2 |
7708120 | Einbinder | May 2010 | B2 |
7714846 | Gray | May 2010 | B1 |
7719142 | Hein et al. | May 2010 | B2 |
7728819 | Inokawa | Jun 2010 | B2 |
7737953 | Mackey | Jun 2010 | B2 |
7737956 | Hsieh et al. | Jun 2010 | B2 |
7777732 | Herz et al. | Aug 2010 | B2 |
7782307 | Westerman et al. | Aug 2010 | B2 |
7791594 | Dunko | Sep 2010 | B2 |
7795882 | Kirchner et al. | Sep 2010 | B2 |
7800590 | Satoh et al. | Sep 2010 | B2 |
7821425 | Philipp | Oct 2010 | B2 |
7834853 | Finney et al. | Nov 2010 | B2 |
7839392 | Pak et al. | Nov 2010 | B2 |
7876310 | Westerman et al. | Jan 2011 | B2 |
7881940 | Dusterhoff | Feb 2011 | B2 |
RE42199 | Caldwell | Mar 2011 | E |
7898531 | Bowden et al. | Mar 2011 | B2 |
7920131 | Westerman | Apr 2011 | B2 |
7924143 | Griffin et al. | Apr 2011 | B2 |
7957864 | Lenneman et al. | Jun 2011 | B2 |
7977596 | Born et al. | Jul 2011 | B2 |
7978181 | Westerman | Jul 2011 | B2 |
7989752 | Yokozawa | Aug 2011 | B2 |
8026904 | Westerman | Sep 2011 | B2 |
8050876 | Feen et al. | Nov 2011 | B2 |
8054296 | Land et al. | Nov 2011 | B2 |
8054300 | Bernstein | Nov 2011 | B2 |
8077154 | Emig et al. | Dec 2011 | B2 |
8090497 | Ando | Jan 2012 | B2 |
8253425 | Reynolds et al. | Aug 2012 | B2 |
8283800 | Salter et al. | Oct 2012 | B2 |
8330385 | Salter et al. | Dec 2012 | B2 |
8339286 | Cordeiro | Dec 2012 | B2 |
8454181 | Salter et al. | Jun 2013 | B2 |
8508487 | Schwesig et al. | Aug 2013 | B2 |
8575949 | Salter et al. | Nov 2013 | B2 |
20010019228 | Gremm | Sep 2001 | A1 |
20010028558 | Rapp et al. | Oct 2001 | A1 |
20020040266 | Edgar et al. | Apr 2002 | A1 |
20020084721 | Walczak | Jul 2002 | A1 |
20020093786 | Maser | Jul 2002 | A1 |
20020149376 | Haffner et al. | Oct 2002 | A1 |
20020167439 | Bloch et al. | Nov 2002 | A1 |
20020167704 | Kleinhans et al. | Nov 2002 | A1 |
20030002273 | Anderson, Jr. et al. | Jan 2003 | A1 |
20030122554 | Karray et al. | Jul 2003 | A1 |
20040056753 | Chiang et al. | Mar 2004 | A1 |
20040145613 | Stavely et al. | Jul 2004 | A1 |
20040160072 | Carter et al. | Aug 2004 | A1 |
20040160713 | Wei | Aug 2004 | A1 |
20040197547 | Bristow et al. | Oct 2004 | A1 |
20040246239 | Knowles et al. | Dec 2004 | A1 |
20050052429 | Philipp | Mar 2005 | A1 |
20050068712 | Schulz et al. | Mar 2005 | A1 |
20050088417 | Mulligan | Apr 2005 | A1 |
20050110769 | DaCosta et al. | May 2005 | A1 |
20050137765 | Hein et al. | Jun 2005 | A1 |
20050242923 | Pearson et al. | Nov 2005 | A1 |
20050275567 | DePue et al. | Dec 2005 | A1 |
20060022682 | Nakamura et al. | Feb 2006 | A1 |
20060038793 | Philipp | Feb 2006 | A1 |
20060044800 | Reime | Mar 2006 | A1 |
20060082545 | Choquet et al. | Apr 2006 | A1 |
20060244733 | Geaghan | Nov 2006 | A1 |
20060262549 | Schmidt et al. | Nov 2006 | A1 |
20060267953 | Peterson, Jr. et al. | Nov 2006 | A1 |
20060279015 | Wang | Dec 2006 | A1 |
20060287474 | Crawford et al. | Dec 2006 | A1 |
20070008726 | Brown | Jan 2007 | A1 |
20070023265 | Ishikawa et al. | Feb 2007 | A1 |
20070051609 | Parkinson | Mar 2007 | A1 |
20070068790 | Yerdon et al. | Mar 2007 | A1 |
20070096565 | Breed et al. | May 2007 | A1 |
20070103431 | Tabatowski-Bush | May 2007 | A1 |
20070226994 | Wollach et al. | Oct 2007 | A1 |
20070232779 | Moody et al. | Oct 2007 | A1 |
20070247429 | Westerman | Oct 2007 | A1 |
20070255468 | Strebel et al. | Nov 2007 | A1 |
20070257891 | Esenther et al. | Nov 2007 | A1 |
20070296709 | GuangHai | Dec 2007 | A1 |
20080012835 | Rimon et al. | Jan 2008 | A1 |
20080018604 | Paun et al. | Jan 2008 | A1 |
20080023715 | Choi | Jan 2008 | A1 |
20080030465 | Konet et al. | Feb 2008 | A1 |
20080074398 | Wright | Mar 2008 | A1 |
20080111714 | Kremin | May 2008 | A1 |
20080136792 | Peng et al. | Jun 2008 | A1 |
20080142352 | Wright | Jun 2008 | A1 |
20080143681 | XiaoPing | Jun 2008 | A1 |
20080150905 | Grivna et al. | Jun 2008 | A1 |
20080158146 | Westerman | Jul 2008 | A1 |
20080196945 | Konstas | Aug 2008 | A1 |
20080202912 | Boddie et al. | Aug 2008 | A1 |
20080231290 | Zhitomirsky | Sep 2008 | A1 |
20080238650 | Riihimaki et al. | Oct 2008 | A1 |
20080257706 | Haag | Oct 2008 | A1 |
20080272623 | Kadzban et al. | Nov 2008 | A1 |
20090066659 | He et al. | Mar 2009 | A1 |
20090079699 | Sun | Mar 2009 | A1 |
20090108985 | Haag et al. | Apr 2009 | A1 |
20090115731 | Rak | May 2009 | A1 |
20090120697 | Wilner et al. | May 2009 | A1 |
20090135157 | Harley | May 2009 | A1 |
20090225043 | Rosener | Sep 2009 | A1 |
20090235588 | Patterson et al. | Sep 2009 | A1 |
20090236210 | Clark et al. | Sep 2009 | A1 |
20090251435 | Westerman et al. | Oct 2009 | A1 |
20090309616 | Klinghult et al. | Dec 2009 | A1 |
20100001974 | Su et al. | Jan 2010 | A1 |
20100007613 | Costa | Jan 2010 | A1 |
20100007620 | Hsieh et al. | Jan 2010 | A1 |
20100013777 | Baudisch et al. | Jan 2010 | A1 |
20100026654 | Suddreth | Feb 2010 | A1 |
20100039392 | Pratt et al. | Feb 2010 | A1 |
20100090712 | Vandermeijden | Apr 2010 | A1 |
20100090966 | Gregorio | Apr 2010 | A1 |
20100102830 | Curtis et al. | Apr 2010 | A1 |
20100103139 | Soo et al. | Apr 2010 | A1 |
20100110037 | Huang et al. | May 2010 | A1 |
20100125393 | Jarvinen et al. | May 2010 | A1 |
20100156814 | Weber et al. | Jun 2010 | A1 |
20100177057 | Flint et al. | Jul 2010 | A1 |
20100188356 | Vu et al. | Jul 2010 | A1 |
20100188364 | Lin et al. | Jul 2010 | A1 |
20100194692 | Orr et al. | Aug 2010 | A1 |
20100207907 | Tanabe et al. | Aug 2010 | A1 |
20100214253 | Wu et al. | Aug 2010 | A1 |
20100241431 | Weng et al. | Sep 2010 | A1 |
20100241983 | Walline et al. | Sep 2010 | A1 |
20100245286 | Parker | Sep 2010 | A1 |
20100250071 | Pala et al. | Sep 2010 | A1 |
20100277431 | Klinghult | Nov 2010 | A1 |
20100280983 | Cho et al. | Nov 2010 | A1 |
20100286867 | Bergholz et al. | Nov 2010 | A1 |
20100289754 | Sleeman et al. | Nov 2010 | A1 |
20100289759 | Fisher et al. | Nov 2010 | A1 |
20100296303 | Sarioglu et al. | Nov 2010 | A1 |
20100302200 | Netherton et al. | Dec 2010 | A1 |
20100315267 | Chung et al. | Dec 2010 | A1 |
20100321214 | Wang et al. | Dec 2010 | A1 |
20100321321 | Shenfield et al. | Dec 2010 | A1 |
20100321335 | Lim et al. | Dec 2010 | A1 |
20100328261 | Woolley et al. | Dec 2010 | A1 |
20100328262 | Huang et al. | Dec 2010 | A1 |
20110001707 | Faubert et al. | Jan 2011 | A1 |
20110001722 | Newman et al. | Jan 2011 | A1 |
20110007021 | Bernstein et al. | Jan 2011 | A1 |
20110007023 | Abrahamsson et al. | Jan 2011 | A1 |
20110012623 | Gastel et al. | Jan 2011 | A1 |
20110018744 | Philipp | Jan 2011 | A1 |
20110018817 | Kryze et al. | Jan 2011 | A1 |
20110022393 | Waller et al. | Jan 2011 | A1 |
20110031983 | David et al. | Feb 2011 | A1 |
20110034219 | Filson et al. | Feb 2011 | A1 |
20110037725 | Pryor | Feb 2011 | A1 |
20110037735 | Land et al. | Feb 2011 | A1 |
20110039602 | McNamara et al. | Feb 2011 | A1 |
20110043481 | Bruwer | Feb 2011 | A1 |
20110050251 | Franke et al. | Mar 2011 | A1 |
20110050587 | Natanzon et al. | Mar 2011 | A1 |
20110050618 | Murphy et al. | Mar 2011 | A1 |
20110050620 | Hristov | Mar 2011 | A1 |
20110055753 | Horodezky et al. | Mar 2011 | A1 |
20110062969 | Hargreaves et al. | Mar 2011 | A1 |
20110063425 | Tieman | Mar 2011 | A1 |
20110074573 | Seshadri | Mar 2011 | A1 |
20110080365 | Westerman | Apr 2011 | A1 |
20110080366 | Bolender | Apr 2011 | A1 |
20110080376 | Kuo et al. | Apr 2011 | A1 |
20110082616 | Small et al. | Apr 2011 | A1 |
20110083110 | Griffin et al. | Apr 2011 | A1 |
20110095997 | Philipp | Apr 2011 | A1 |
20110115732 | Coni et al. | May 2011 | A1 |
20110115742 | Sobel et al. | May 2011 | A1 |
20110134047 | Wigdor et al. | Jun 2011 | A1 |
20110134054 | Woo et al. | Jun 2011 | A1 |
20110141006 | Rabu | Jun 2011 | A1 |
20110141041 | Parkinson et al. | Jun 2011 | A1 |
20110148803 | Xu | Jun 2011 | A1 |
20110157037 | Shamir et al. | Jun 2011 | A1 |
20110157079 | Wu et al. | Jun 2011 | A1 |
20110157080 | Ciesla et al. | Jun 2011 | A1 |
20110157089 | Rainisto | Jun 2011 | A1 |
20110161001 | Fink | Jun 2011 | A1 |
20110169758 | Aono | Jul 2011 | A1 |
20110187492 | Newman et al. | Aug 2011 | A1 |
20110279276 | Newham | Nov 2011 | A1 |
20110279409 | Salaverry et al. | Nov 2011 | A1 |
20120007821 | Zaliva | Jan 2012 | A1 |
20120037485 | Sitarski | Feb 2012 | A1 |
20120043976 | Bokma et al. | Feb 2012 | A1 |
20120062247 | Chang | Mar 2012 | A1 |
20120062498 | Weaver et al. | Mar 2012 | A1 |
20120068956 | Jira et al. | Mar 2012 | A1 |
20120154324 | Wright et al. | Jun 2012 | A1 |
20120217147 | Porter et al. | Aug 2012 | A1 |
20120312676 | Salter et al. | Dec 2012 | A1 |
20120313648 | Salter et al. | Dec 2012 | A1 |
20130036529 | Salter et al. | Feb 2013 | A1 |
20130076121 | Salter et al. | Mar 2013 | A1 |
20130093500 | Bruwer | Apr 2013 | A1 |
20130113397 | Salter et al. | May 2013 | A1 |
20130113544 | Salter et al. | May 2013 | A1 |
20130126325 | Curtis et al. | May 2013 | A1 |
20130270896 | Buttolo et al. | Oct 2013 | A1 |
20130270899 | Buttolo et al. | Oct 2013 | A1 |
20130271157 | Buttolo et al. | Oct 2013 | A1 |
20130271159 | Santos et al. | Oct 2013 | A1 |
20130271182 | Buttolo et al. | Oct 2013 | A1 |
20130271202 | Buttolo et al. | Oct 2013 | A1 |
20130271203 | Salter et al. | Oct 2013 | A1 |
20130271204 | Salter et al. | Oct 2013 | A1 |
20130291439 | Wuerstlein et al. | Nov 2013 | A1 |
20130307610 | Salter et al. | Nov 2013 | A1 |
20130321065 | Salter et al. | Dec 2013 | A1 |
20130328616 | Buttolo et al. | Dec 2013 | A1 |
20140002405 | Salter et al. | Jan 2014 | A1 |
Number | Date | Country |
---|---|---|
4024052 | Jan 1992 | DE |
1152443 | Nov 2001 | EP |
1327860 | Jul 2003 | EP |
1562293 | Aug 2005 | EP |
2133777 | Oct 2011 | EP |
2133777 | Oct 2011 | EP |
2071338 | Sep 1981 | GB |
2158737 | Nov 1985 | GB |
2279750 | Jan 1995 | GB |
2409578 | Jun 2005 | GB |
2418741 | Apr 2006 | GB |
61188515 | Aug 1986 | JP |
4065038 | Mar 1992 | JP |
04082416 | Mar 1992 | JP |
07315880 | Dec 1995 | JP |
08138446 | May 1996 | JP |
11065764 | Mar 1999 | JP |
11110131 | Apr 1999 | JP |
11260133 | Sep 1999 | JP |
11316553 | Nov 1999 | JP |
2000047178 | Feb 2000 | JP |
2000075293 | Mar 2000 | JP |
2001013868 | Jan 2001 | JP |
2006007764 | Jan 2006 | JP |
2007027034 | Feb 2007 | JP |
2008033701 | Feb 2008 | JP |
2010139362 | Jun 2010 | JP |
2010165618 | Jul 2010 | JP |
2010218422 | Sep 2010 | JP |
2010239587 | Oct 2010 | JP |
2010287148 | Dec 2010 | JP |
2011014280 | Jan 2011 | JP |
20040110463 | Dec 2004 | KR |
20090127544 | Dec 2009 | KR |
20100114768 | Oct 2010 | KR |
9636960 | Nov 1996 | WO |
9963394 | Dec 1999 | WO |
2006093398 | Sep 2006 | WO |
2007022027 | Feb 2007 | WO |
2008121760 | Oct 2008 | WO |
2009054592 | Apr 2009 | WO |
2010111362 | Sep 2010 | WO |
2012032318 | Mar 2012 | WO |
2012032318 | Mar 2012 | WO |
2012169106 | Dec 2012 | WO |
2012169106 | Dec 2012 | WO |
Entry |
---|
Van Ess, Dave et al., “Capacitive Touch Switches for Automotive Applications,” 7 pages, Published in Automotive DesignLine, www.automotiedesignline.com, Feb. 2006. |
“Introduction to Touch Solutions, White Paper, Rivision 1.0 A,” Densitron Corporation, 14 pages, Aug. 21, 2007. |
Kliffken, Marksu G. et al., “Obstacle Detection for Power Operated Window-Lift and Sunroof Actuation Systems,” Paper No. 2001-01-0466, 1 page, © 2011 SAE International, Published Mar. 5, 2001. |
NXP Capacitive Sensors, 1 page, www.nxp.com, copyrighted 2006-2010, NXP Semiconductors. |
“Moisture Immunity in QuickSense Studio,” AN552, Rev. 0.1 10/10, 8 pages, Silicon Laboratories, Inc., © 2010. |
“CLEVIOS P Formulation Guide,” 12 pages, www.clevios.com, Heraeus Clevios GmbH, no date provided. |
“Charge-Transfer Sensing-Based Touch Controls Facilitate Creative Interfaces,” www.ferret.com.au, 2 pages, Jan. 18, 2006. |
Kiosk Peripherals, “Touch Screen,” www.bitsbytesintegrators.com/kiosk-peripherals.html, 10 pages, no date provided. |
JVC KD-AVX777 Detachable Front-Panel with Integrated 5.4″ Touch-Screen Monitor, 6 pages, www.crutchfield.com, no date provided. |
Ergonomic Palm Buttons, Pepperl+Fuchs, www.wolfautomation.com, 6 pages, no date provided. |
“Orgacon EL-P3000, Screen printing Ink Series 3000,” 2 pages, AGFA, last updated in Feb. 2006. |
U.S. Appl. No. 13/609,390, filed Sep. 11, 2012, entitled “Proximity Switch Based Door Latch Release,” (14 pages of specification and 4 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 13/799,413, filed Mar. 13, 2013, entitled “Proximity Interface Development System Having Replicator and Method,” (29 pages of specification and 20 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 13/799,478, filed Mar. 13, 2013, entitled “Proximity Interface Development System Having Analyzer and Method,” (29 pages of specification and 20 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 14/168,614, filed Jan. 30, 2014, entitled “Proximity Switch Assembly and Activation Method Having Virtual Button Mode,” (30 pages of specification and 15 pages of drawings) and Official Filing Receipt (3 pages). |
“Touch Sensors Design Guide” by Atmel, 10620 D-AT42-04/09, Revised Apr. 2009, 72 pages, Copyrighted 2008-2009 Atmel Corporation. |
Number | Date | Country | |
---|---|---|---|
20140116869 A1 | May 2014 | US |