The present invention generally relates to sensors and switches, and more particularly relates to proximity switches for controlling movement of a movable panel to prevent inadvertent activation.
Automotive vehicles are typically equipped with various user actuated switches, such as switches for operating devices including powered windows, moonroofs or sunroofs, and various other devices. Generally, these types of switches need to be actuated by a user in order to activate or deactivate a device or perform some type of control function. Proximity switches, such as capacitive switches, employ one or more proximity sensors to generate a sense activation field and sense changes to the activation field indicative of user actuation of the switch, typically caused by a user's finger in close proximity or contact with the sensor. Proximity switches are typically configured to detect user actuation of the switch based on a comparison of the sense activation field to a threshold. Inadvertent contact or proximity with the switch may cause a non-intended operation, such as closure of a moonroof. It is desirable to provide for an enhanced proximity switch that reduces or prevent inadvertent activations.
According to one aspect of the present invention, a proximity sensor for a movable panel is provided. The proximity sensor senses an object in a sense activation field and one or more lockout sensors proximate the proximity sensor for sensing an object. The switch further includes control circuitry controlling movement of a movable panel based on the sensed object in the activation field and the one or more lockout sensors.
According to another aspect of the present invention, a vehicle capacitive switch for controlling a movable panel on a vehicle is provided. The capacitive switch has a capacitive sensor installed in a vehicle for sensing an object in a sense activation field and one or more lockout sensors proximate the capacitive sensor for sensing an object. The switch further includes control circuitry controlling movement of a movable panel based on the sensed object in the activation field and the one or more lockout sensors and preventing movement of the movable panel when the one or more lockout sensors sense an object.
According to a further aspect of the present invention, a method of controlling a movable panel is provided. The method includes the steps of providing a sense activation field with a proximity sensor and processing the sense activation field to sense user activation of the proximity sensor. The method also includes the step of detecting an activation of one or more lockout sensors proximate to the proximity sensor. The method further includes the step of preventing at least some movement of the movable panel when activation of the one or more lockout sensors is detected.
These and other aspects, objects, and features of the present invention will be understood and appreciated by those skilled in the art upon studying the following specification, claims, and appended drawings.
In the drawings:
As required, detailed embodiments of the present invention are disclosed herein; however, it is to be understood that the disclosed embodiments are merely exemplary of the invention that may be embodied in various and alternative forms. The figures are not necessarily to a detailed design; some schematics may be exaggerated or minimized to show function overview. Therefore, specific structural and functional details disclosed herein are not to be interpreted as limiting, but merely as a representative basis for teaching one skilled in the art to variously employ the present invention.
Referring to
It should be appreciated that these and other proximity switches may be implemented to control any of a number of other vehicle devices and functions relating to movable panels, such as movable lateral side door windows and rear windows. Further, it is contemplated that the switches may be implemented to control other devices including lighting devices, such as interior map/reading and dome lights. It should further be appreciated that the proximity switches 22, 24 and 26 and lockout sensors may be located elsewhere on the vehicle 10, such as in the dash panel, on other consoles such as a center console, integrated into a touch screen display for a radio or infotainment system such as navigation and audio display, or located elsewhere onboard the vehicle 10.
The proximity switches 22, 24 and 26 are shown and described herein as capacitive switches, according to one embodiment. Each proximity switch 22, 24 and 26 includes at least one proximity sensor that provides a sense activation field to sense contact or close proximity of a user in relation to the one or more proximity sensors, such as a swiping motion by a user's finger. Thus, the sense activation field of each proximity switch 22, 24 and 26 is a capacitive field in the exemplary embodiment and the user's finger has electrical conductivity and dielectric properties that cause a change or disturbance in the sense activation field as should be evident to those skilled in the art. It should also be appreciated by those skilled in the art that additional or alternative types of proximity sensors can be used, such as, but not limited to, inductive sensors, optical sensors, temperatures sensors, resistive sensors, the like, or a combination thereof. Exemplary proximity sensors are described in the Apr. 9, 2009, ATMEL® Touch Sensors Design Guide, 10620 D-AT42-04/09, the entire reference hereby being incorporated herein by reference.
The proximity switches 22, 24 and 26 shown in
Additionally, first and second lockout sensors 30 and 32 are provided on opposite lateral sides of one or more of the proximity switches, such as proximity switch 22. The lockout sensors 30 and 32 are distanced from the proximity switch 22, yet are close proximity or sufficiently close to the proximity sensor 22 to detect inadvertent activation by an object. The lockout sensors 30 and 32 detect contact or close proximity with an object and serve to prevent activation or at least some functionality of a control device or function based on an object detected by the lockout sensors 30 and 32. The lockout sensors 30 and 32 operate to detect an object on opposite sides of the closure switch 22 for purposes of preventing closure of the moonroof 12 when an occupant inadvertently contacts or inadvertently is in close proximity to switch 22. Inadvertent activation may result when a user's knee, elbow or other large object is in close proximity to switch 22, as opposed to the user's finger. According to one embodiment, when both lockout sensors 30 and 32 detect an object, activation of the closure switch 22 is prevented from causing a motor to either close the moonroof 12 pursuant to manual activation or to close the moonroof 12 pursuant to a one-touch closure routine. In a one-touch closure routine 100, a single operation of the switch 22 causes the motor to close the moonroof despite removal of a user's finger from the switch. According to another embodiment, one or more lockout sensors may be employed adjacent to a switch to sense an object and thereby prevent activation of the moonroof 12.
In the capacitive sensor embodiment, the proximity switches 22, 24 and 26 and lockout sensors 30 and 32 each include capacitive plates or electrode pads which may be formed as part of the capacitor and electronic circuitry on a circuit board. The circuit board may be assembled into the overhead console. The overhead console 14 may be sandwiched between the roof and the headliner 16 such that the overhead console 14 extends from the headliner 16. Electrical signals are applied to each of the capacitive switches 22, 24 and 26 and the lockout sensors 30 and 32. According to one embodiment, electronic circuitry provides electrical signals to each of capacitive switches 22, 24 and 26 each having a charge burst length to charge the capacitive sensors. The charge burst length determines the base amplitude of the sense activation field and the sensitivity of the corresponding proximity switches 22, 24 and 26. The lockout sensors 30 and 32 may likewise be capacitive sensors that operate similar to switches 22, 24 and 26.
Referring to
By placing the capacitive switch 22 in a trough, certain objects of a sufficient size such as a knee or arm 50 will always trigger the lockout sensors 30 and 32, whereas a smaller object such as a finger 52 of a user may be swiped in contact or close proximity to switch 22 without activating both lockout sensors 30 and 32. The activation fields for the lockout sensors 30 and 32 may be as sensitive or greater than that of the proximity switch 22, according to one embodiment. According to a more aggressive design approach, the field strength and/or sensitivity of the lockout sensors 30 and 32 may be increased relative to switch 22, such that an object would still trigger the lockout sensors 30 and 32 prior to activation field 42 of switch 22. By keeping the activation fields of the lockout sensors 30 and 32 and switch 22 tight, a finger of a user can actuate the one-touch close switch 22 by touching the switch 22 without triggering both lockout sensors 30 and 32 while still allowing for detection of inadvertent actuation. Each of lockout sensors 30 and 32 produces corresponding activation fields 46 and 44, respectively. Hence, switch 22 may detect an object whenever the object touches the switch 22 or is positioned within the activation field 42. Similarly, the lockout sensors 30 and 32 may detect an object based on contact therewith or when the object is within the corresponding activation fields 46 and 44, respectively.
It should be appreciated that the proximity switch 22 may be actuated by a swiping motion of a user's finger which may contact an outer surface of the sensor housing proximate to switch 22 or may be sufficiently close to the switch 22 such that the finger passes through the sense activation field 42. Activation of proximity switch 22 may cause the device, such as the moonroof to perform a designated function to close the moonroof. Closure is typically achieved via actuation by an electric motor. While a single sensor or activation field may be used, it should be appreciated that a plurality or an array of sensors may be employed to provide a plurality of overlapping activation fields. It should also be appreciated that the activation field 42 may have a rectangular shape or an arched shape field. In the event that a user's hand passes through activation field 42 of sensor 22 and at least one of or both of the sense activation fields 46 and 44 provided by lockout sensors 30 and 32, respectively, activation of the control device is prevented or at least some functionality is controlled. In one embodiment, closure of the moonroof is prevented by preventing actuation of the motor. In another embodiment, closure of the moonroof pursuant to a one-touch closure routine is prevented, which enables the user to manually actuate the switch to close the moonroof provided the user's finger remains in continued contact or close proximity to the switch 22.
Referring to
The controller 60 provides control outputs to one or more devices, such as the motor 11 of moonroof device 12, based on user activation of the proximity switches 22, 24 and 26 and further based on sensed outputs of the first and second lockout sensors 30 and 32. The moonroof 12 may be controlled to actuate to a closed position based on the activation of the close switch 22 when none of the first and second lockout sensors sense an object, according to one embodiment. According to another embodiment, the moonroof 12 may close whenever the close switch 22 is activated and one or none of the first and second lockout sensors 30 and 32 sense an object.
Referring to
Referring to
The proximity switch assembly 20 advantageously prevents inadvertent activation of the proximity switch 22 when controlling a movable panel, such as a moon roof or a window of a vehicle, and sensing when large objects come in contact with the proximity sensor 22 and the lockout sensors 30 and 32. Additionally, the proximity switch assembly 20 further allows for passage of a standard test referred to as a knee ball test, which is designed to address the inadvertent actuation of a movable panel control switch. Accordingly, when a specified object, such as a 40 mm ball, is placed in contact with the proximity switch assembly 20, the proximity switch assembly 20 prohibits at least some movement of the control panel based on detection of the object by the lockout sensors 30 and 32.
Accordingly, the proximity switch assembly 20 and method advantageously provides for controlled activation of a proximity switch, such as a capacitive switch, to prevent inadvertent activation of the switch by employing one or more lockout sensors. By employing the lockout sensors, inadvertent activation of a switch, such as for a moonroof may prevent or reduce entrapment of the moonroof closure onto an object when the moonroof inadvertently is activated into the close position, such as via a one-touch closure routine. While the closure panel described herein is a moonroof, it should be appreciated that other closure panels, such as lateral and rear windows of a vehicle may likewise employ the proximity switch assembly with lockout sensors. Further, it should be appreciated that other control devices may employ lockout sensors as described herein.
It is to be understood that variations and modifications can be made on the aforementioned structure without departing from the concepts of the present invention, and further it is to be understood that such concepts are intended to be covered by the following claims unless these claims by their language expressly state otherwise.
Number | Name | Date | Kind |
---|---|---|---|
3382588 | Serrell et al. | May 1968 | A |
3544804 | Gaumer et al. | Dec 1970 | A |
3691396 | Hinrichs | Sep 1972 | A |
3707671 | Morrow et al. | Dec 1972 | A |
3725589 | Golden | Apr 1973 | A |
3826979 | Steinmann | Jul 1974 | A |
4204204 | Pitstick | May 1980 | A |
4205325 | Haygood et al. | May 1980 | A |
4232289 | Daniel | Nov 1980 | A |
4257117 | Besson | Mar 1981 | A |
4290052 | Eichelberger et al. | Sep 1981 | A |
4340813 | Sauer | Jul 1982 | A |
4374381 | Ng et al. | Feb 1983 | A |
4377049 | Simon et al. | Mar 1983 | A |
4380040 | Posset | Apr 1983 | A |
4413252 | Tyler et al. | Nov 1983 | A |
4431882 | Frame | Feb 1984 | A |
4446380 | Moriya et al. | May 1984 | A |
4453112 | Sauer et al. | Jun 1984 | A |
4492958 | Minami | Jan 1985 | A |
4494105 | House | Jan 1985 | A |
4502726 | Adams | Mar 1985 | A |
4514817 | Pepper et al. | Apr 1985 | A |
4613802 | Kraus et al. | Sep 1986 | A |
4680429 | Murdock et al. | Jul 1987 | A |
4743895 | Alexander | May 1988 | A |
4748390 | Okushima et al. | May 1988 | A |
4758735 | Ingraham | Jul 1988 | A |
4821029 | Logan et al. | Apr 1989 | A |
4855550 | Schultz, Jr. | Aug 1989 | A |
4872485 | Laverty, Jr. | Oct 1989 | A |
4899138 | Araki et al. | Feb 1990 | A |
4901074 | Sinn et al. | Feb 1990 | A |
4905001 | Penner | Feb 1990 | A |
4924222 | Antikidis et al. | May 1990 | A |
4972070 | Laverty, Jr. | Nov 1990 | A |
5025516 | Wilson | Jun 1991 | A |
5033508 | Laverty, Jr. | Jul 1991 | A |
5036321 | Leach et al. | Jul 1991 | A |
5050634 | Fiechtner | Sep 1991 | A |
5063306 | Edwards | Nov 1991 | A |
5108530 | Niebling, Jr. et al. | Apr 1992 | A |
5153590 | Charlier | Oct 1992 | A |
5159159 | Asher | Oct 1992 | A |
5159276 | Reddy, III | Oct 1992 | A |
5177341 | Balderson | Jan 1993 | A |
5212621 | Panter | May 1993 | A |
5215811 | Reafler et al. | Jun 1993 | A |
5239152 | Caldwell et al. | Aug 1993 | A |
5270710 | Gaultier et al. | Dec 1993 | A |
5294889 | Heep et al. | Mar 1994 | A |
5329239 | Kindermann et al. | Jul 1994 | A |
5341231 | Yamamoto et al. | Aug 1994 | A |
5403980 | Eckrich | Apr 1995 | A |
5451724 | Nakazawa et al. | Sep 1995 | A |
5467080 | Stoll et al. | Nov 1995 | A |
5477422 | Hooker et al. | Dec 1995 | A |
5494180 | Callahan | Feb 1996 | A |
5512836 | Chen et al. | Apr 1996 | A |
5548268 | Collins | Aug 1996 | A |
5566702 | Philipp | Oct 1996 | A |
5572205 | Caldwell et al. | Nov 1996 | A |
5586042 | Pisau et al. | Dec 1996 | A |
5594222 | Caldwell | Jan 1997 | A |
5598527 | Debrus et al. | Jan 1997 | A |
5670886 | Wolff et al. | Sep 1997 | A |
5681515 | Pratt et al. | Oct 1997 | A |
5730165 | Philipp | Mar 1998 | A |
5747756 | Boedecker | May 1998 | A |
5760554 | Bustamante | Jun 1998 | A |
5790107 | Kasser et al. | Aug 1998 | A |
5796183 | Hourmand | Aug 1998 | A |
5801340 | Peter | Sep 1998 | A |
5825352 | Bisset et al. | Oct 1998 | A |
5827980 | Doemens et al. | Oct 1998 | A |
5864105 | Andrews | Jan 1999 | A |
5867111 | Caldwell et al. | Feb 1999 | A |
5874672 | Gerardi et al. | Feb 1999 | A |
5917165 | Platt et al. | Jun 1999 | A |
5920309 | Bisset et al. | Jul 1999 | A |
5942733 | Allen et al. | Aug 1999 | A |
5963000 | Tsutsumi et al. | Oct 1999 | A |
5973417 | Goetz et al. | Oct 1999 | A |
5973623 | Gupta et al. | Oct 1999 | A |
6010742 | Tanabe et al. | Jan 2000 | A |
6011602 | Miyashita et al. | Jan 2000 | A |
6031465 | Burgess | Feb 2000 | A |
6035180 | Kubes et al. | Mar 2000 | A |
6037930 | Wolfe et al. | Mar 2000 | A |
6040534 | Beukema | Mar 2000 | A |
6157372 | Blackburn et al. | Dec 2000 | A |
6172666 | Okura | Jan 2001 | B1 |
6215476 | Depew et al. | Apr 2001 | B1 |
6219253 | Green | Apr 2001 | B1 |
6231111 | Carter et al. | May 2001 | B1 |
6275644 | Domas et al. | Aug 2001 | B1 |
6288707 | Philipp | Sep 2001 | B1 |
6292100 | Dowling | Sep 2001 | B1 |
6310611 | Caldwell | Oct 2001 | B1 |
6320282 | Caldwell | Nov 2001 | B1 |
6323919 | Yang et al. | Nov 2001 | B1 |
6369369 | Kochman et al. | Apr 2002 | B2 |
6377009 | Philipp | Apr 2002 | B1 |
6379017 | Nakabayashi et al. | Apr 2002 | B2 |
6380931 | Gillespie et al. | Apr 2002 | B1 |
6404158 | Boisvert et al. | Jun 2002 | B1 |
6415138 | Sirola et al. | Jul 2002 | B2 |
6427540 | Monroe et al. | Aug 2002 | B1 |
6452138 | Kochman et al. | Sep 2002 | B1 |
6452514 | Philipp | Sep 2002 | B1 |
6456027 | Pruessel | Sep 2002 | B1 |
6457355 | Philipp | Oct 2002 | B1 |
6464381 | Anderson, Jr. et al. | Oct 2002 | B2 |
6466036 | Philipp | Oct 2002 | B1 |
6485595 | Yenni, Jr. et al. | Nov 2002 | B1 |
6529125 | Butler et al. | Mar 2003 | B1 |
6535200 | Philipp | Mar 2003 | B2 |
6535694 | Engle et al. | Mar 2003 | B2 |
6537359 | Spa | Mar 2003 | B1 |
6538579 | Yoshikawa et al. | Mar 2003 | B1 |
6559902 | Kusuda et al. | May 2003 | B1 |
6587097 | Aufderheide et al. | Jul 2003 | B1 |
6603306 | Olsson et al. | Aug 2003 | B1 |
6607413 | Stevenson et al. | Aug 2003 | B2 |
6614579 | Roberts et al. | Sep 2003 | B2 |
6617975 | Burgess | Sep 2003 | B1 |
6639159 | Anzai | Oct 2003 | B2 |
6646398 | Fukazawa et al. | Nov 2003 | B1 |
6652777 | Rapp et al. | Nov 2003 | B2 |
6654006 | Kawashima et al. | Nov 2003 | B2 |
6661410 | Casebolt et al. | Dec 2003 | B2 |
6664489 | Kleinhans et al. | Dec 2003 | B2 |
6713897 | Caldwell | Mar 2004 | B2 |
6734377 | Gremm et al. | May 2004 | B2 |
6738051 | Boyd et al. | May 2004 | B2 |
6740416 | Yokogawa et al. | May 2004 | B1 |
6756970 | Keely, Jr. et al. | Jun 2004 | B2 |
6773129 | Anderson, Jr. et al. | Aug 2004 | B2 |
6774505 | Wnuk | Aug 2004 | B1 |
6794728 | Kithil | Sep 2004 | B1 |
6795226 | Agrawal et al. | Sep 2004 | B2 |
6809280 | Divigalpitiya et al. | Oct 2004 | B2 |
6812424 | Miyako | Nov 2004 | B2 |
6819316 | Schulz et al. | Nov 2004 | B2 |
6819990 | Ichinose | Nov 2004 | B2 |
6825752 | Nahata et al. | Nov 2004 | B2 |
6834373 | Dieberger | Dec 2004 | B2 |
6841748 | Serizawa et al. | Jan 2005 | B2 |
6847018 | Wong | Jan 2005 | B2 |
6847289 | Pang et al. | Jan 2005 | B2 |
6854870 | Huizenga | Feb 2005 | B2 |
6879250 | Fayt et al. | Apr 2005 | B2 |
6884936 | Takahashi et al. | Apr 2005 | B2 |
6891114 | Peterson | May 2005 | B2 |
6891530 | Umemoto et al. | May 2005 | B2 |
6897390 | Caldwell et al. | May 2005 | B2 |
6929900 | Farquhar et al. | Aug 2005 | B2 |
6930672 | Kuribayashi | Aug 2005 | B1 |
6940291 | Ozick | Sep 2005 | B1 |
6960735 | Hein et al. | Nov 2005 | B2 |
6962436 | Holloway et al. | Nov 2005 | B1 |
6964023 | Maes et al. | Nov 2005 | B2 |
6966225 | Mallary | Nov 2005 | B1 |
6967587 | Snell et al. | Nov 2005 | B2 |
6977615 | Brandwein, Jr. | Dec 2005 | B2 |
6987605 | Liang et al. | Jan 2006 | B2 |
6993607 | Philipp | Jan 2006 | B2 |
6999066 | Litwiller | Feb 2006 | B2 |
7030513 | Caldwell | Apr 2006 | B2 |
7046129 | Regnet et al. | May 2006 | B2 |
7053360 | Balp et al. | May 2006 | B2 |
7063379 | Steuer et al. | Jun 2006 | B2 |
7091836 | Kachouh et al. | Aug 2006 | B2 |
7091886 | DePue et al. | Aug 2006 | B2 |
7098414 | Caldwell | Aug 2006 | B2 |
7105752 | Tsai et al. | Sep 2006 | B2 |
7106171 | Burgess | Sep 2006 | B1 |
7135995 | Engelmann et al. | Nov 2006 | B2 |
7146024 | Benkley, III | Dec 2006 | B2 |
7151450 | Beggs et al. | Dec 2006 | B2 |
7151532 | Schulz | Dec 2006 | B2 |
7154481 | Cross et al. | Dec 2006 | B2 |
7180017 | Hein | Feb 2007 | B2 |
7186936 | Marcus et al. | Mar 2007 | B2 |
7205777 | Schulz et al. | Apr 2007 | B2 |
7215529 | Rosenau | May 2007 | B2 |
7218498 | Caldwell | May 2007 | B2 |
7232973 | Kaps et al. | Jun 2007 | B2 |
7242393 | Caldwell | Jul 2007 | B2 |
7245131 | Kurachi et al. | Jul 2007 | B2 |
7248151 | McCall | Jul 2007 | B2 |
7248955 | Hein et al. | Jul 2007 | B2 |
7254775 | Geaghan et al. | Aug 2007 | B2 |
7255466 | Schmidt et al. | Aug 2007 | B2 |
7255622 | Stevenson et al. | Aug 2007 | B2 |
7269484 | Hein | Sep 2007 | B2 |
7295168 | Saegusa et al. | Nov 2007 | B2 |
7295904 | Kanevsky et al. | Nov 2007 | B2 |
7339579 | Richter et al. | Mar 2008 | B2 |
7342485 | Joehl et al. | Mar 2008 | B2 |
7347297 | Ide et al. | Mar 2008 | B2 |
7355595 | Bathiche et al. | Apr 2008 | B2 |
7361860 | Caldwell | Apr 2008 | B2 |
7385308 | Yerdon et al. | Jun 2008 | B2 |
7445350 | Konet et al. | Nov 2008 | B2 |
7447575 | Goldbeck et al. | Nov 2008 | B2 |
7479788 | Bolender et al. | Jan 2009 | B2 |
7489053 | Gentile et al. | Feb 2009 | B2 |
7521941 | Ely et al. | Apr 2009 | B2 |
7521942 | Reynolds | Apr 2009 | B2 |
7531921 | Cencur | May 2009 | B2 |
7532202 | Roberts | May 2009 | B2 |
7535131 | Safieh, Jr. | May 2009 | B1 |
7535459 | You et al. | May 2009 | B2 |
7567240 | Peterson, Jr. et al. | Jul 2009 | B2 |
7583092 | Reynolds et al. | Sep 2009 | B2 |
7643010 | Westerman et al. | Jan 2010 | B2 |
7653883 | Hotelling et al. | Jan 2010 | B2 |
7688080 | Golovchenko et al. | Mar 2010 | B2 |
7701440 | Harley | Apr 2010 | B2 |
7705257 | Arione et al. | Apr 2010 | B2 |
7708120 | Einbinder | May 2010 | B2 |
7710245 | Pickering | May 2010 | B2 |
7714846 | Gray | May 2010 | B1 |
7719142 | Hein et al. | May 2010 | B2 |
7728819 | Inokawa | Jun 2010 | B2 |
7737953 | Mackey | Jun 2010 | B2 |
7737956 | Hsieh et al. | Jun 2010 | B2 |
7777732 | Herz et al. | Aug 2010 | B2 |
7782307 | Westerman et al. | Aug 2010 | B2 |
7791594 | Dunko | Sep 2010 | B2 |
7795882 | Kirchner et al. | Sep 2010 | B2 |
7800590 | Satoh et al. | Sep 2010 | B2 |
7821425 | Philipp | Oct 2010 | B2 |
7834853 | Finney et al. | Nov 2010 | B2 |
7839392 | Pak et al. | Nov 2010 | B2 |
7876310 | Westerman et al. | Jan 2011 | B2 |
7881940 | Dusterhoff | Feb 2011 | B2 |
RE42199 | Caldwell | Mar 2011 | E |
7898531 | Bowden et al. | Mar 2011 | B2 |
7920131 | Westerman | Apr 2011 | B2 |
7924143 | Griffin et al. | Apr 2011 | B2 |
7957864 | Lenneman et al. | Jun 2011 | B2 |
7977596 | Born et al. | Jul 2011 | B2 |
7978181 | Westerman | Jul 2011 | B2 |
7989752 | Yokozawa | Aug 2011 | B2 |
8026904 | Westerman | Sep 2011 | B2 |
8050876 | Feen et al. | Nov 2011 | B2 |
8054296 | Land et al. | Nov 2011 | B2 |
8054300 | Bernstein | Nov 2011 | B2 |
8077154 | Emig et al. | Dec 2011 | B2 |
8090497 | Ando | Jan 2012 | B2 |
8253425 | Reynolds et al. | Aug 2012 | B2 |
8283800 | Salter et al. | Oct 2012 | B2 |
8330385 | Salter et al. | Dec 2012 | B2 |
8339286 | Cordeiro | Dec 2012 | B2 |
8386027 | Chuang et al. | Feb 2013 | B2 |
8454181 | Salter et al. | Jun 2013 | B2 |
8456180 | Sitarski | Jun 2013 | B2 |
8508487 | Schwesig et al. | Aug 2013 | B2 |
8517383 | Wallace et al. | Aug 2013 | B2 |
8537107 | Li | Sep 2013 | B1 |
8570053 | Ryshtun et al. | Oct 2013 | B1 |
8659414 | Schuk | Feb 2014 | B1 |
8908034 | Bordonaro | Dec 2014 | B2 |
8933708 | Buttolo et al. | Jan 2015 | B2 |
8981265 | Jiao et al. | Mar 2015 | B2 |
20010019228 | Gremm | Sep 2001 | A1 |
20010028558 | Rapp et al. | Oct 2001 | A1 |
20020040266 | Edgar et al. | Apr 2002 | A1 |
20020084721 | Walczak | Jul 2002 | A1 |
20020093786 | Maser | Jul 2002 | A1 |
20020149376 | Haffner et al. | Oct 2002 | A1 |
20020167439 | Bloch et al. | Nov 2002 | A1 |
20020167704 | Kleinhans et al. | Nov 2002 | A1 |
20030002273 | Anderson, Jr. et al. | Jan 2003 | A1 |
20030101781 | Budzynski et al. | Jun 2003 | A1 |
20030122554 | Karray et al. | Jul 2003 | A1 |
20030128116 | Ieda et al. | Jul 2003 | A1 |
20030189211 | Dietz | Oct 2003 | A1 |
20040056753 | Chiang et al. | Mar 2004 | A1 |
20040090195 | Motsenbocker | May 2004 | A1 |
20040145613 | Stavely et al. | Jul 2004 | A1 |
20040160072 | Carter et al. | Aug 2004 | A1 |
20040160234 | Denen et al. | Aug 2004 | A1 |
20040160713 | Wei | Aug 2004 | A1 |
20040197547 | Bristow et al. | Oct 2004 | A1 |
20040246239 | Knowles et al. | Dec 2004 | A1 |
20050012484 | Gifford et al. | Jan 2005 | A1 |
20050052429 | Philipp | Mar 2005 | A1 |
20050068045 | Inaba et al. | Mar 2005 | A1 |
20050068712 | Schulz et al. | Mar 2005 | A1 |
20050073425 | Snell et al. | Apr 2005 | A1 |
20050088417 | Mulligan | Apr 2005 | A1 |
20050092097 | Shank et al. | May 2005 | A1 |
20050110769 | DaCosta et al. | May 2005 | A1 |
20050137765 | Hein et al. | Jun 2005 | A1 |
20050242923 | Pearson et al. | Nov 2005 | A1 |
20050275567 | DePue et al. | Dec 2005 | A1 |
20050283280 | Evans, Jr. | Dec 2005 | A1 |
20060022682 | Nakamura et al. | Feb 2006 | A1 |
20060038793 | Philipp | Feb 2006 | A1 |
20060044800 | Reime | Mar 2006 | A1 |
20060055534 | Fergusson | Mar 2006 | A1 |
20060082545 | Choquet et al. | Apr 2006 | A1 |
20060170241 | Yamashita | Aug 2006 | A1 |
20060238518 | Westerman et al. | Oct 2006 | A1 |
20060238521 | Westerman et al. | Oct 2006 | A1 |
20060244733 | Geaghan | Nov 2006 | A1 |
20060250142 | Abe | Nov 2006 | A1 |
20060262549 | Schmidt et al. | Nov 2006 | A1 |
20060267953 | Peterson, Jr. et al. | Nov 2006 | A1 |
20060279015 | Wang | Dec 2006 | A1 |
20060287474 | Crawford et al. | Dec 2006 | A1 |
20070008726 | Brown | Jan 2007 | A1 |
20070023265 | Ishikawa et al. | Feb 2007 | A1 |
20070051609 | Parkinson | Mar 2007 | A1 |
20070068790 | Yerdon et al. | Mar 2007 | A1 |
20070096565 | Breed et al. | May 2007 | A1 |
20070103431 | Tabatowski-Bush | May 2007 | A1 |
20070206668 | Jin | Sep 2007 | A1 |
20070226994 | Wollach et al. | Oct 2007 | A1 |
20070232779 | Moody et al. | Oct 2007 | A1 |
20070247429 | Westerman | Oct 2007 | A1 |
20070255468 | Strebel et al. | Nov 2007 | A1 |
20070257891 | Esenther et al. | Nov 2007 | A1 |
20070271072 | Kovacevich | Nov 2007 | A1 |
20070296709 | GuangHai | Dec 2007 | A1 |
20080012835 | Rimon et al. | Jan 2008 | A1 |
20080018604 | Paun et al. | Jan 2008 | A1 |
20080023715 | Choi | Jan 2008 | A1 |
20080030465 | Konet et al. | Feb 2008 | A1 |
20080074398 | Wright | Mar 2008 | A1 |
20080111714 | Kremin | May 2008 | A1 |
20080136792 | Peng et al. | Jun 2008 | A1 |
20080142352 | Wright | Jun 2008 | A1 |
20080143681 | XiaoPing | Jun 2008 | A1 |
20080150905 | Grivna et al. | Jun 2008 | A1 |
20080158146 | Westerman | Jul 2008 | A1 |
20080196945 | Konstas | Aug 2008 | A1 |
20080202912 | Boddie et al. | Aug 2008 | A1 |
20080231290 | Zhitomirsky | Sep 2008 | A1 |
20080238650 | Riihimaki et al. | Oct 2008 | A1 |
20080246723 | Baumbach | Oct 2008 | A1 |
20080257706 | Haag | Oct 2008 | A1 |
20080272623 | Kadzban et al. | Nov 2008 | A1 |
20090066659 | He et al. | Mar 2009 | A1 |
20090079699 | Sun | Mar 2009 | A1 |
20090108985 | Haag et al. | Apr 2009 | A1 |
20090115731 | Rak | May 2009 | A1 |
20090120697 | Wilner et al. | May 2009 | A1 |
20090135157 | Harley | May 2009 | A1 |
20090212849 | Reime | Aug 2009 | A1 |
20090225043 | Rosener | Sep 2009 | A1 |
20090235588 | Patterson et al. | Sep 2009 | A1 |
20090236210 | Clark et al. | Sep 2009 | A1 |
20090251435 | Westerman et al. | Oct 2009 | A1 |
20090256578 | Wuerstlein et al. | Oct 2009 | A1 |
20090256677 | Hein et al. | Oct 2009 | A1 |
20090273563 | Pryor | Nov 2009 | A1 |
20090295409 | Irkliy | Dec 2009 | A1 |
20090295556 | Inoue et al. | Dec 2009 | A1 |
20090309616 | Klinghult et al. | Dec 2009 | A1 |
20100001746 | Duchene et al. | Jan 2010 | A1 |
20100001974 | Su et al. | Jan 2010 | A1 |
20100007613 | Costa | Jan 2010 | A1 |
20100007620 | Hsieh et al. | Jan 2010 | A1 |
20100013777 | Baudisch et al. | Jan 2010 | A1 |
20100026654 | Suddreth | Feb 2010 | A1 |
20100039392 | Pratt et al. | Feb 2010 | A1 |
20100066391 | Hirasaka et al. | Mar 2010 | A1 |
20100090712 | Vandermeijden | Apr 2010 | A1 |
20100090966 | Gregorio | Apr 2010 | A1 |
20100102830 | Curtis et al. | Apr 2010 | A1 |
20100103139 | Soo et al. | Apr 2010 | A1 |
20100110037 | Huang et al. | May 2010 | A1 |
20100117970 | Burstrom et al. | May 2010 | A1 |
20100125393 | Jarvinen et al. | May 2010 | A1 |
20100156814 | Weber et al. | Jun 2010 | A1 |
20100177057 | Flint et al. | Jul 2010 | A1 |
20100188356 | Vu et al. | Jul 2010 | A1 |
20100188364 | Lin et al. | Jul 2010 | A1 |
20100194692 | Orr et al. | Aug 2010 | A1 |
20100207907 | Tanabe et al. | Aug 2010 | A1 |
20100212819 | Salter et al. | Aug 2010 | A1 |
20100214253 | Wu et al. | Aug 2010 | A1 |
20100219935 | Bingle et al. | Sep 2010 | A1 |
20100241431 | Weng et al. | Sep 2010 | A1 |
20100241983 | Walline et al. | Sep 2010 | A1 |
20100245286 | Parker | Sep 2010 | A1 |
20100250071 | Pala et al. | Sep 2010 | A1 |
20100277431 | Klinghult | Nov 2010 | A1 |
20100280983 | Cho et al. | Nov 2010 | A1 |
20100286867 | Bergholz et al. | Nov 2010 | A1 |
20100289754 | Sleeman et al. | Nov 2010 | A1 |
20100289759 | Fisher et al. | Nov 2010 | A1 |
20100296303 | Sarioglu et al. | Nov 2010 | A1 |
20100302200 | Netherton et al. | Dec 2010 | A1 |
20100315267 | Chung et al. | Dec 2010 | A1 |
20100321214 | Wang et al. | Dec 2010 | A1 |
20100321321 | Shenfield et al. | Dec 2010 | A1 |
20100321335 | Lim et al. | Dec 2010 | A1 |
20100328261 | Woolley et al. | Dec 2010 | A1 |
20100328262 | Huang et al. | Dec 2010 | A1 |
20110001707 | Faubert et al. | Jan 2011 | A1 |
20110001722 | Newman et al. | Jan 2011 | A1 |
20110007021 | Bernstein et al. | Jan 2011 | A1 |
20110007023 | Abrahamsson et al. | Jan 2011 | A1 |
20110012623 | Gastel et al. | Jan 2011 | A1 |
20110018744 | Philipp | Jan 2011 | A1 |
20110018817 | Kryze et al. | Jan 2011 | A1 |
20110022393 | Waller et al. | Jan 2011 | A1 |
20110031983 | David et al. | Feb 2011 | A1 |
20110034219 | Filson et al. | Feb 2011 | A1 |
20110037725 | Pryor | Feb 2011 | A1 |
20110037735 | Land et al. | Feb 2011 | A1 |
20110039602 | McNamara et al. | Feb 2011 | A1 |
20110041409 | Newman et al. | Feb 2011 | A1 |
20110043481 | Bruwer | Feb 2011 | A1 |
20110050251 | Franke et al. | Mar 2011 | A1 |
20110050587 | Natanzon et al. | Mar 2011 | A1 |
20110050618 | Murphy et al. | Mar 2011 | A1 |
20110050620 | Hristov | Mar 2011 | A1 |
20110055753 | Horodezky et al. | Mar 2011 | A1 |
20110057899 | Sleeman et al. | Mar 2011 | A1 |
20110062969 | Hargreaves et al. | Mar 2011 | A1 |
20110063425 | Tieman | Mar 2011 | A1 |
20110074573 | Seshadri | Mar 2011 | A1 |
20110080365 | Westerman | Apr 2011 | A1 |
20110080366 | Bolender | Apr 2011 | A1 |
20110080376 | Kuo et al. | Apr 2011 | A1 |
20110082616 | Small et al. | Apr 2011 | A1 |
20110083110 | Griffin et al. | Apr 2011 | A1 |
20110095997 | Philipp | Apr 2011 | A1 |
20110115732 | Coni et al. | May 2011 | A1 |
20110115742 | Sobel et al. | May 2011 | A1 |
20110134047 | Wigdor et al. | Jun 2011 | A1 |
20110134054 | Woo et al. | Jun 2011 | A1 |
20110139934 | Giesa et al. | Jun 2011 | A1 |
20110141006 | Rabu | Jun 2011 | A1 |
20110141041 | Parkinson et al. | Jun 2011 | A1 |
20110148803 | Xu | Jun 2011 | A1 |
20110157037 | Shamir et al. | Jun 2011 | A1 |
20110157079 | Wu et al. | Jun 2011 | A1 |
20110157080 | Ciesla et al. | Jun 2011 | A1 |
20110157089 | Rainisto | Jun 2011 | A1 |
20110161001 | Fink | Jun 2011 | A1 |
20110163764 | Shank et al. | Jul 2011 | A1 |
20110169758 | Aono | Jul 2011 | A1 |
20110187492 | Newman et al. | Aug 2011 | A1 |
20110210755 | Ogawa | Sep 2011 | A1 |
20110279276 | Newham | Nov 2011 | A1 |
20110279409 | Salaverry et al. | Nov 2011 | A1 |
20110309912 | Muller | Dec 2011 | A1 |
20120007821 | Zaliva | Jan 2012 | A1 |
20120037485 | Sitarski | Feb 2012 | A1 |
20120043973 | Kremin | Feb 2012 | A1 |
20120043976 | Bokma et al. | Feb 2012 | A1 |
20120049870 | Salter et al. | Mar 2012 | A1 |
20120055557 | Belz et al. | Mar 2012 | A1 |
20120062247 | Chang | Mar 2012 | A1 |
20120062498 | Weaver et al. | Mar 2012 | A1 |
20120068956 | Jira et al. | Mar 2012 | A1 |
20120104790 | Plavetich et al. | May 2012 | A1 |
20120154324 | Wright et al. | Jun 2012 | A1 |
20120217147 | Porter et al. | Aug 2012 | A1 |
20120312676 | Salter et al. | Dec 2012 | A1 |
20120313648 | Salter et al. | Dec 2012 | A1 |
20120313767 | Sitarski | Dec 2012 | A1 |
20120319992 | Lee | Dec 2012 | A1 |
20130024169 | Veerasamy | Jan 2013 | A1 |
20130033356 | Sitarski et al. | Feb 2013 | A1 |
20130036529 | Salter et al. | Feb 2013 | A1 |
20130093500 | Bruwer | Apr 2013 | A1 |
20130106436 | Brunet et al. | May 2013 | A1 |
20130113397 | Salter et al. | May 2013 | A1 |
20130113544 | Salter et al. | May 2013 | A1 |
20130126325 | Curtis et al. | May 2013 | A1 |
20130170013 | Tonar et al. | Jul 2013 | A1 |
20130270896 | Buttolo et al. | Oct 2013 | A1 |
20130271157 | Buttolo et al. | Oct 2013 | A1 |
20130271159 | Santos et al. | Oct 2013 | A1 |
20130271182 | Buttolo et al. | Oct 2013 | A1 |
20130271202 | Buttolo et al. | Oct 2013 | A1 |
20130271203 | Salter et al. | Oct 2013 | A1 |
20130271204 | Salter et al. | Oct 2013 | A1 |
20130291439 | Wuerstlein et al. | Nov 2013 | A1 |
20130307610 | Salter et al. | Nov 2013 | A1 |
20130321065 | Salter et al. | Dec 2013 | A1 |
20130328616 | Buttolo et al. | Dec 2013 | A1 |
20140002405 | Salter et al. | Jan 2014 | A1 |
20140145733 | Buttolo et al. | May 2014 | A1 |
20140252879 | Dassanayake et al. | Sep 2014 | A1 |
20140306723 | Salter | Oct 2014 | A1 |
20140306724 | Dassanayake et al. | Oct 2014 | A1 |
20150077227 | Salter et al. | Mar 2015 | A1 |
Number | Date | Country |
---|---|---|
4024052 | Jan 1992 | DE |
1152443 | Nov 2001 | EP |
1327860 | Jul 2003 | EP |
1562293 | Aug 2005 | EP |
2133777 | Oct 2011 | EP |
2133777 | Oct 2011 | EP |
2071338 | Sep 1981 | GB |
2158737 | Nov 1985 | GB |
2279750 | Jan 1995 | GB |
2409578 | Jun 2005 | GB |
2418741 | Apr 2006 | GB |
611858515 | Aug 1986 | JP |
40650358 | Mar 1992 | JP |
047082416 | Mar 1992 | JP |
07315880 | Dec 1995 | JP |
11065764 | Mar 1999 | JP |
11110131 | Apr 1999 | JP |
08138446 | May 1999 | JP |
112601333 | Sep 1999 | JP |
11316553 | Nov 1999 | JP |
2000047178 | Feb 2000 | JP |
2000075293 | Mar 2000 | JP |
2001013868 | Jan 2001 | JP |
2006007764 | Jan 2006 | JP |
2007027034 | Feb 2007 | JP |
2008033701 | Feb 2008 | JP |
2010139362 | Jun 2010 | JP |
2010165618 | Jul 2010 | JP |
2010218422 | Sep 2010 | JP |
2010239587 | Oct 2010 | JP |
2010287148 | Dec 2010 | JP |
2011014280 | Jan 2011 | JP |
20040110463 | Dec 2004 | KR |
20090127544 | Dec 2009 | KR |
20100114768 | Oct 2010 | KR |
9636960 | Nov 1996 | WO |
9963394 | Dec 1999 | WO |
2006093398 | Sep 2006 | WO |
2007022027 | Feb 2007 | WO |
2008121760 | Oct 2008 | WO |
2009054592 | Apr 2009 | WO |
2010111362 | Sep 2010 | WO |
2012032318 | Mar 2012 | WO |
2012032318 | Mar 2012 | WO |
2012169106 | Dec 2012 | WO |
2012169106 | Dec 2012 | WO |
Entry |
---|
U.S. Appl. No. 14/314,328, filed Jun. 25, 2014, entitled “Proximity Switch Assembly Having Pliable Surface and Depression,” (43 pages of specification and 24 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 14/314,364, filed Jun. 25, 2014, entitled “Proximity Switch Assembly Having Groove Between Adjacent Proximity Sensors,” (43 pages of specification and 24 pages of drawings) and Official Filing Receipt (3 pages). |
Kliffken, Markus G. et al., SAE International Technical Papers, “Obstacle Detection for Power Operated Window-Lift and Sunroof Actuation Systems,” Paper No. 2001-01-0466, published Mar. 5, 2001, 1 page. |
“Touch Sensors Design Guide” by ATMEL, 10620 D-AT42-04/09, Revised Apr. 2009, 72 pages, Copyrighted 2008-2009 Atmel Corporation. |
U.S. Appl. No. 13/609,390, filed Sep. 11, 2012, entitled “Proximity Switch Based Door Latch Release,” (14 pages of specification and 4 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 13/665,253, filed Oct. 31, 2012, entitled Proximity Switch Assembly Having Round Layer, (15 pages of specification and 7 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 13/799,413, filed Mar. 13, 2013, entitled “Proximity Interface Development System Having Replicator and Method,” (29 pages of specification and 20 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 13/799,478, filed Mar. 13, 2013, entitled “Proximity Interface Development System Having Analyzer and Method,” (29 pages of specification and 20 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 14/168,614, filed Jan. 30, 2014, entitled “Proximity Switch Assembly and Activation Method Having Virtual Button Mode,” (30 pages of specification and 15 pages of drawings) and Official Filing Receipt (3 pages). |
Van Ess, Dave et al., “Capacitive Touch Switches for Automotive Applications,” 7 pages, Published in Automotive DesignLine, www.automotiedesignline.com, Feb. 2006. |
“Introduction to Touch Solutions, White Paper, Rivision 1.0 A,” Densitron Corporation, 14 pages, Aug. 21, 2007. |
“CLEVIOS P Formulation Guide,” 12 pages, www.clevios.com, Heraeus Clevios GmbH, no date provided. |
“Orgacon EL-P3000, Screen printing Ink Series 3000,” 2 pages, AGFA, last updated in Feb. 2006. |
NXP Capacitive Sensors, 1 page, www.nxp.com, copyrighted 2006-2010, NXP Semiconductors. |
“Moisture Immunity in QuickSense Studio,” AN552, Rev. 0.1 Oct. 2010, 8 pages, Silicon Laboratories, Inc., © 2010. |
“Charge-Transfer Sensing-Based Touch Controls Facilitate Creative Interfaces,” www.ferret.com.au, 2 pages, Jan. 18, 2006. |
Kiosk Peripherals, “Touch Screen,” www.bitsbytesintegrators.com/kiosk-peripherals.html, 10 pages, no date provided. |
JVC KD-AVX777 Detachable Front-Panel with Integrated 5.4″ Touch-Screen Monitor, 6 pages, www.crutchfield.com, no date provided. |
Ergonomic Palm Buttons, Pepperl +Fuchs, www.wolfautomation.com, 6 pages, no date provided. |
U.S. Appl. No. 14/518,141, filed Oct. 20, 2014, entitled “Directional Proximity Switch Assemby,” (23 pages of specification and 13 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 14/552,809, filed Nov. 25, 2014, entitled “Proximity Switch Based Door Latch Release,” (14 pages of specification and 4 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 14/689,324, filed Apr. 17, 2015, entitled “Proximity Switch Assembly With Signal Drift Rejection and Method,” (35 pages of specification and 17 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 14/635,140, filed Mar. 2, 2015, entitled “Proximity Switch Having Wrong Touch Adaptive Learning and Method,” (20 pages of specification and 7 pages of drawings) and Official Filing Receipt (3 pages). |
U.S. Appl. No. 14/661,325, filed Mar. 18, 2015, entitled “Proximity Switch Assembly Having Haptic Feedback and Method,” (31 pages of specification and 15 pages of drawings) and Official Filing Receipt (3 pages). |
Number | Date | Country | |
---|---|---|---|
20130076121 A1 | Mar 2013 | US |