Embodiments of the present invention pertain to radar systems. In some embodiments, the present invention relates to locating snipers. In some embodiments, the present invention relates to intercepting incoming projectiles.
Snipers are a problem in urban warfare situations as well as on city streets. Snipers are difficult to locate and it's difficult to protect VIPs, police and soldiers from sniper fire. Some conventional systems use audio sensing techniques to help locate the sniper after a bullet is fired, but these techniques are not accurate and are difficult to implement. Furthermore, these techniques do not provide a way to stop the bullet. In some urban warfare situations, rocket-propelled grenades (PRGs), mortar, as well as other projectiles present similar problems.
Some conventional radar systems have been used to track and intercept incoming projectiles, but these systems are not easily deployed in urban situations, are large, cumbersome, and expensive. Additionally these systems do not offer protection against a close combat weapon (less than 100 meters) due to the scan time of conventional systems including mechanical scanning systems and electronically scanning array (ESA) systems.
Thus, there are general needs for improved radar systems. There area also general needs for systems and methods that can help protect against sniper fire as well as other projectiles, especially in urban situations.
In some simultaneous pseudo-orthogonal waveform embodiments, a radar system transmits pseudo-orthogonal waveforms and performs multiple correlations on a combined single receiver channel signal to identify a target, such as sniper's bullet, incoming projectile, rocket-propelled grenade (RPG), or mortar. In some quadratic polyphase waveform embodiments, the radar system simultaneously transmits frequency separated versions of a single quadratic polyphase waveform on a plurality of transmit antennas, combines the return signal from each antenna into a combined time-domain signal, and perform a Fourier transformation on the combined time-domain signal to locate a target. In some embodiments, the system may estimate the target's trajectory to intercept the target. In some embodiments, the system may estimate the target's trajectory and may further extrapolate the target's trajectory to locate the target's source, such as a sniper or a RPG or mortar shooter. In some embodiments, the system may help protect against sniper fire as well as other projectiles, especially in urban situations. In some embodiments, the system is portable and may be vehicular mounted and may provide a longer stand-off range. In some embodiments, the system may be used to counter sniper, RPG and/or mortar fire.
The appended claims are directed to some of the various embodiments of the present invention. However, the detailed description presents a more complete understanding of embodiments of the present invention when considered in connection with the figures, wherein like reference numbers refer to similar items throughout the figures and:
The following description and the drawings illustrate specific embodiments of the invention sufficiently to enable those skilled in the art to practice them. Other embodiments may incorporate structural, logical, electrical, process, and other changes. Examples merely typify possible variations. Individual components and functions are optional unless explicitly required, and the sequence of operations may vary. Portions and features of some embodiments may be included in or substituted for those of others. Embodiments of the invention set forth in the claims encompass all available equivalents of those claims. Embodiments of the invention may be referred to, individually or collectively, herein by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept if more than one is in fact disclosed.
In some pseudo-orthogonal waveform embodiments, radar system 100 transmits pseudo-orthogonal waveforms 103 and performs multiple correlations on a combined single receiver channel signal 107 to identify a target, such as sniper's bullet, incoming projectile, rocket-propelled grenade (RPG) or mortar. In some embodiments, the target's trajectory may be estimated for launching an interceptor to intercept the target. In some embodiments, the target's trajectory may be extrapolated to determine the source location of target (e.g., the sniper's location).
In some pseudo-orthogonal waveform embodiments, radar system 100 comprises a plurality of transmitter elements 102, each to generate and transmit a pseudo-orthogonal waveform 103 on an associated one of a plurality of antenna elements 104. Radar system 100 also comprises circuitry 106 & 110 to combine and digitize return signals received by antenna elements 104 and generate single digital waveform 111. Radar system 100 also comprises waveform processing and controller circuitry 112 to perform correlations on single digital waveform 111.
In some embodiments, each of transmitter elements 102 may comprise a phase modulator to phase modulate radio-frequency (RF) signal 117 with one of a plurality of pseudo-orthogonal codes 115 to generate a unique one of pseudo-orthogonal waveforms 103 for transmission by the associated one of antenna elements 104. In some embodiments, the dot product of any two of pseudo-orthogonal codes 115 may be substantially zero. The term “pseudo-orthogonal” is used herein to describe codes or code sequences that are substantially orthogonal (i.e., not be perfectly mathematically orthogonal). In other words, the dot product between any two pseudo-orthogonal codes may not equal zero. In these embodiments, the dot product between any two pseudo-orthogonal codes may be close to zero or substantially zero. The term “pseudo-orthogonal” may also include codes or code sequences that are mathematically orthogonal, although the scope of the invention is not limited in this respect. In some embodiments, the cross correlation between two adjacent channels may equate to a channel isolation of greater than 20 dB, although the scope of the invention is not limited in this respect.
In some pseudo-orthogonal waveform embodiments, each of transmitter elements 102 may substantially simultaneously transmit pseudo-orthogonal waveform 103 on associated antenna element 104. In some embodiments, transmitter elements 102 may serve as transmission/rejection (T/R) modules, although the scope of the invention is not limited in this respect. In some embodiments, waveform processing and controller circuitry 112 may perform separate correlations on single digital waveform 111 for use in estimating a trajectory of an incoming target.
In some pseudo-orthogonal waveform embodiments, radar system 100 may include pseudo-orthogonal code generator 114 to generate pseudo-orthogonal codes 115 for use with an associated one of transmitter elements 102. In some embodiments, pseudo-orthogonal code generator 114 is optional and the codes may be generated elsewhere. In these embodiments, one or more of unique pseudo-orthogonal codes 103 may be stored in each of transmitter elements 102, although the scope of the invention is not limited in this respect. In some embodiments, pseudo-orthogonal codes may be generated from a Walsh seed matrix, although the scope of the invention is not limited in this respect.
In some embodiments, radar system 100 may include signal combiner 106 to sum the return signals received by antenna elements 104 into single receiver channel signal 107 and one or more analog-to-digital (A/D) converters 110 to digitize single receiver channel signal 109 and to generate single digital waveform 111.
In some embodiments, radar system 100 may include receiver circuitry 108 to downconvert single receiver channel signal 107. In some embodiments, receiver circuitry 108 may downconvert individual return signals 105 from each antenna element 104 prior to the combining, although the scope of the invention is not limited in this respect.
In some embodiments, A/D converters 110 may comprise a single A/D converter to generate single digital waveform 111. In other embodiments, A/D converters 110 may comprise two or more A/D converters to generate single digital waveform 111 comprising, for example, an in-phase (I) component and a quadrature phase (Q) component. This may allow A/D converters 110 to operate at a lower sampling rate, although the scope of the invention is not limited in this respect.
In some embodiments, the antenna elements 104 together may cover a detection zone of up to 360-degrees in azimuth and may cover a detection angle of up to sixty degrees or greater in elevation, although the scope of the invention is not limited in this respect. These embodiments are discussed in more detail below.
In some embodiments, radar system 100 may also include RF signal generator 116 to generate RF signals 117 for each of transmitter elements 102. RF signals 117 may be substantially in-phase with each other and may be at the same frequency. In some embodiments, RF signals 117 may be continuous-wave (CW) signals, while in other embodiments RF signals 117 may be pulsed. Any radar frequency may be suitable for RF signals 117.
In some embodiments, radar system 100 may also include amplifiers, such as low-noise amplifiers (LNAs), circulators and other circuitry, some of which are illustrated in
In some quadratic polyphase waveform embodiments, radar system 100 may be a quadratic polyphase waveform radar. In these embodiments, each of RF signals 117 for transmitter elements 102 may have a frequency spacing/separation therebetween. The frequency offset may be based on the target's Doppler including its anticipated velocity and the transmit frequency of these embodiments of radar system 100.
In these quadratic polyphase waveform embodiments, frequency offset versions of a single quadratic poly-phase waveform may be simultaneously transmitted on each antenna element. The return signal may be summed from each antenna element into a single receive channel. Each antenna channel and range gate may be may be decoded based on the different transmitted frequencies of this embodiment. In some embodiments, the use of stretch processing may allow radar system 100 to lower it's bandwidth without reducing range resolution.
In some quadratic polyphase waveform embodiments, transmitter elements 102 may simultaneously transmit frequency separated versions of a single quadratic polyphase waveform on the plurality of transmit antennas 104. Signal combiner 106 may combine a return signal from each antenna 104 into a combined time-domain signal (i.e., a single channel receiver signal). FFT processing circuitry may perform a Fourier transformation on the combined time-domain signal for use in locating a target.
In these quadratic polyphase waveform embodiments, transmitter elements 102 comprise polyphase modulators to generate the quadratic polyphase waveform having a series of phase states and transmitter elements 102 may serially transmit each phase state of the waveform with a time offset therebetween simultaneously on each of the transmit antennas.
In some quadratic polyphase waveform embodiments, the frequency separated versions of each phase state of the waveform that are simultaneously transmitted on each of antennas 104 are orthogonal in frequency. In some embodiments, the waveforms are transmitted on each of the antennas with a frequency spacing therebetween. The frequency spacing may be inversely related to a code length of the waveforms.
In some quadratic polyphase waveform embodiments, a polyphase modulator for each transmitter element 102 may generate a waveform for each transmit antenna from a quadratic phase code. The phase states of the waveform may be determined from (πn2)/N, where n is a phase state number and ranges from one to a total number of the phase states, and where N is a total number of the phase states. In some embodiments, N may be greater than or equal to sixteen and less than or equal to 128, although the scope of the invention is not limited in this respect.
In some quadratic polyphase waveform embodiments, A/D circuitry 110 may be high-speed analog-to-digital conversion circuitry which may be used to directly sample a combined time-domain return signal to generate a combined digital time-domain signal (i.e., without downconversion). In these embodiments, a correlator may be used to correlate the combined digital time-domain signal with the transmitted quadratic polyphase waveform prior to the performance of the Fourier transformation. In these embodiments, it should be noted that there is only one waveform transmitted, but there are a number of phase states of the waveform.
In some quadratic polyphase waveform embodiments that employ stretch processing, a downconverter may be used to downconvert the combined time-domain signal by mixing it with a time-shifted version of a quadratic phase code used to generate the waveform. In these embodiments, the downconverter may generate a frequency output for use in identifying the target.
In some of these quadratic polyphase waveform embodiments, each transmitter element may be associated with an antenna element and the antenna elements may be positioned to substantially cover a detection zone of approximately 360 degrees in azimuth and up to sixty degrees in elevation, although the scope of the invention is not limited in this respect. In some embodiments, the antenna elements may comprise a first set of antenna elements positioned with respect to a first elevation and a second set of antenna elements positioned with respect to a second elevation.
In some quadratic polyphase waveform embodiments, the radar system may include a target locator to locate the target from frequency-domain outputs provided by the Fourier transformation circuitry. These frequency-domain outputs may comprise spectral lines corresponding to a channel, a range gate and a Doppler associated with the target.
In some pseudo-orthogonal waveform embodiments, transmitter element 200 may comprise phase modulator 202 to phase modulate RF signal 217 with pseudo-orthogonal code 215 to generate pseudo-orthogonal waveform 203 for transmission by one of antenna elements 104 (
Phase modulator 202 may be any type of phase modulator. In some embodiments, phase modulator 202 may be a bi-phase modulator to phase modulate RF signal 217 with a phase of either substantially zero degrees or substantially one-hundred eighty degrees in accordance with ones and zeros of pseudo-orthogonal code 215, although the scope of the invention is not limited in this respect. In some embodiments, phase modulator 202 may be a poly-phase modulator.
In some pseudo-orthogonal waveform embodiments, transmitter element 200 may include shift register 204 and waveform-loading element 206. Shift register 204 may serially provide bits of pseudo-orthogonal code 215 to phase modulator 202, and waveform-loading element 206 may provide the associated pseudo-orthogonal code 215 to shift register 204. In some embodiments, each waveform-loading element 206 of transmitter elements 102 (
In some pseudo-orthogonal waveform embodiments, waveform-loading element 206 may temporarily or permanently store a pseudo-orthogonal code therein. In these other embodiments, pseudo-orthogonal code generator 114 (
In some embodiments, transmitter element 200 may include power amplifier 208 to amplify the pseudo-orthogonal waveform provided by phase modulator 202 for transmission on an associated antenna element. In some embodiments, pseudo-orthogonal waveform 103 may be a bi-phase modulated RF waveform.
In some embodiments, transmitter element 200 may include other elements (not illustratated) that may be useful for modulation and amplification of signals for transmission. For example, in some pulse-radar embodiments, transmitter element 200 may include a switching element to allow RF signal 217 to be pulsed prior to modulation, although the scope of the invention is not limited in this respect.
Waveform processor 302 may comprise one or more correlators 304 to perform correlations on digital waveform 301 with each of a plurality of pseudo-orthogonal codes 315 to generate correlation output signals 305. Pseudo-orthogonal codes 315 may correspond to pseudo-orthogonal codes 115 (
In some pseudo-orthogonal waveform embodiments, correlators 304 may comprise a single correlator to individually (e.g., serially or sequentially) perform a correlation on single digital waveform 301 for each of pseudo-orthogonal codes 315. In some pseudo-orthogonal waveform embodiments, correlators 304 may comprise a plurality of individual correlators to perform simultaneous correlations with more than one of the pseudo-orthogonal codes 315 on single digital waveform 301, although the scope of the invention is not limited in this respect. In some embodiments, each of pseudo-orthogonal codes 315 may be stored in storage element 314 and may be provided by pseudo-orthogonal code generator 114 (
In some embodiments, waveform processing and controller circuitry 300 may also include trajectory calculator 308 to interpolate between correlation output signals 305 associated with different antenna elements (i.e., different codes) to estimate an angular position (e.g., an azimuth angle and/or elevation angle) of the target.
In some embodiments, waveform processing and controller circuitry 300 may also include source location extrapolator 310 to estimate a source location of the target based on the target's trajectory. In some embodiments, source location extrapolator 310 may extrapolate the trajectory to determine a source location. This is described in more detail below.
In some embodiments, waveform processing and controller circuitry 300 may also include system controller 312 which may help control the overall operation of system 100 (
Although radar system 100 (
In operational environments 400 (
Referring to
In some embodiments, trajectory calculator 308 may calculate trajectory 405 using an angular position, a velocity and/or acceleration, and a range. The angular position may include an azimuth angle and/or an elevation angle. In some embodiments, the trajectory calculator 308 may identify the particular one or more of antenna elements 104 (
In some embodiments, the trajectory may be defined by an azimuth angle, an elevation angle, a velocity and/or an acceleration/deceleration, and/or a range of a target. In some embodiments, trajectory calculator 308 may further estimate a projectile trajectory 405 based on radar cross section target 404. The radar cross section may provide a signature for the type of weapon.
In some embodiments, source location extrapolator 310 may estimate source location 406 of target 404 based on trajectory 405. In some embodiments, the source location extrapolator 310 may extrapolate trajectory 405 to determine source location 406. In some embodiments, source location 406 may be the location of where target 404 may have been launched.
In some embodiments, source location 406 may be defined in terms of coordinates relative to system 402. In other embodiments, source location 406 may be defined in terms of absolute geographic or global-positioning coordinates, although the scope of the invention is not limited in this respect. In some embodiments, system 402 may include a positioning system receiver, such as a global positioning system GPS receiver (not separately illustrated) to generate geographic location coordinates of system 402 as well as location coordinates of source location 406 based on the location coordinates of system 402. In some embodiments, the geographic location coordinates of source location 406 may be sent to another system for use in destroying or eliminating the source, although the scope of the invention is not limited in this respect.
In some embodiments, system controller 312 may generate control signal 313 to control and/or direct/guide interceptor 410 toward target 404 based on trajectory 405. In these embodiments, interceptor 410 may have been previously launched and may be directed toward target 404 once trajectory 405 of target 404 is determined. Interceptor 410 may include any type of counter weapon or projectile, although the scope of the invention is not limited in this respect.
In some embodiments, target 404 may comprise at least one of an incoming projectile, a bullet, a rocket, a rocket propelled grenade (RPG), and a networked munition. In some embodiments, the antenna elements of system 402 may be arranged together cover a detection zone of up to approximately 360-degrees in azimuth and a detection angle of up to sixty degrees or greater in elevation. This is described in more detail below.
In some embodiments, antenna elements 503 may comprise horn antennas although the scope of the invention is not limited in this respect. In some embodiments, antenna elements 507 may comprise horn antennas in a stacked configuration, although the scope of the invention is not limited in this respect. In some embodiments, the number of antenna elements of either configuration 501 or 505 may vary from as little as four to as much as sixteen or greater depending on the application requirements and the beam-width of the antenna elements.
Although some embodiments of the present invention are described with respect to antenna elements positioned circumferentially, this is not a requirement. In other embodiments, antenna elements may be positioned in other ways, such as on a flat, spherical or other surface depending on the application.
As illustrated in
As illustrated in
The correlation outputs for antenna A illustrated in
In some embodiments, the antenna elements may be arranged to cover various angles in both elevation and azimuth. As illustrated in
Operation 902 generates a set of pseudo-orthogonal waveforms based on pseudo-orthogonal codes. In some embodiments, an RF signal may be phase-modulated by each of a plurality of phase modulators with phases of substantially zero and one-hundred eighty degrees based on bits of an associated one of the pseudo-orthogonal codes. In some embodiments, the pseudo-orthogonal codes may be generated and stored for use by the phase modulators. In some embodiments, transmitter elements 102 (
Operation 904 comprises transmitting each of the pseudo-orthogonal waveforms on an associated antenna element, such as antenna elements 104 (
Operation 906 comprises receiving return signals through at least some of the antenna elements, and combining and digitizing the return signals to generate a single digital waveform, such as single digital waveform 111 (
Operation 908 comprises performing correlations on the single digital waveform for each of the pseudo-orthogonal codes used for generating the pseudo-orthogonal waveforms that were transmitted in operation 904. A correlation with a pseudo-orthogonal code may be used to determine the angular position of the target based on which antenna transmitted the associated waveform. In some embodiments, an interpolation between correlations from more than one antenna element may be used to improve the angular position estimate of the target. In some embodiments in which the antennas are positioned both with respect to azimuth angle and elevation angle, as illustrated in
Operation 910 comprises performing an FFT on the correlation output signals generated in operation 908. The FFT may generate frequency-domain samples which may be used to determine velocity and/or acceleration of the target. In some embodiments, operation 910 may be performed by FFT circuitry 306 (
Operation 912 comprises determining a trajectory of the target. The trajectory may be determined from the angular position, velocity, acceleration, and/or range of the target. Operation 912 may be performed by trajectory calculator 308 (
Operation 914 comprises extrapolating a source location based on the trajectory. Operation 914 may be optional and may be performed by source location extrapolator 310 (
Although the individual operations of procedure 900 are illustrated and described as separate operations, one or more of the individual operations may be performed concurrently, and nothing requires that the operations be performed in the order illustrated. Unless specifically stated otherwise, terms such as processing, computing, calculating, determining, displaying, or the like, may refer to an action and/or process of one or more processing or computing systems or similar devices that may manipulate and transform data represented as physical (e.g., electronic) quantities within a processing system's registers and memory into other data similarly represented as physical quantities within the processing system's registers or memories, or other such information storage, transmission or display devices.
The Abstract is provided to comply with 37 C.F.R. Section 1.72(b) requiring an abstract that will allow the reader to ascertain the nature and gist of the technical disclosure. It is submitted with the understanding that it will not be used to limit or interpret the scope or meaning of the claims.
In the foregoing detailed description, various features are occasionally grouped together in a single embodiment for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments of the subject matter require more features than are expressly recited in each claim. Rather, as the following claims reflect, invention may lie in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the detailed description, with each claim standing on its own as a separate preferred embodiment.
Number | Name | Date | Kind |
---|---|---|---|
3510595 | Gutleber | May 1970 | A |
4357610 | Kingston et al. | Nov 1982 | A |
4443799 | Rubin | Apr 1984 | A |
4489392 | Lewis | Dec 1984 | A |
4513288 | Weathers et al. | Apr 1985 | A |
4679048 | Brandsetter et al. | Jul 1987 | A |
4758839 | Goebel et al. | Jul 1988 | A |
4876549 | Masheff | Oct 1989 | A |
5075863 | Nagamune et al. | Dec 1991 | A |
5136611 | Kirimoto et al. | Aug 1992 | A |
5291202 | McClintock | Mar 1994 | A |
5703321 | Feierlein et al. | Dec 1997 | A |
5724041 | Inoue et al. | Mar 1998 | A |
6031485 | Cellai et al. | Feb 2000 | A |
6125378 | Barbano | Sep 2000 | A |
Number | Date | Country |
---|---|---|
0362992 | Apr 1990 | EP |