Composite laminate reference standards are employed when performing ultrasonic inspection on cored composite laminate materials. They are used to aid in the detection of planar defects such as delaminations, foreign material, and the detection and quantification of porosity. A relationship exists between the strength of a composite laminate and the presence of defect conditions. This relationship is established in the course of effects-of-defects programs that look at the strength degradation of materials as a result of defects. Composite reference standards are currently manufactured with representative planar conditions to aid in the detection of delaminations and foreign material. It is difficult however to tie detection and quantification of porosity to a representative planar defect reference standard without the introduction of defects that mimic porosity.
Due to this difficulty, one approach to detecting and quantifying porosity in composite laminates has been to build a set of porosity reference standards for a given material. This set of standards, which are costly to build and certify for use, are used to qualify production inspection systems and are used to determine the operating characteristics of ultrasonic inspection systems. The introduction of new composite materials and the cost associated with qualifying new and existing ultrasonic inspection systems to inspect those materials has produced a need to build and qualify less expensive porosity standards. The standards, once produced, can be tied back to material properties via effects-of-defects programs and used to evaluate the strength characteristics of the materials being inspected.
In one aspect of the present invention, an ultrasonic inspection reference standard for cored composite laminates having porosity comprises a member having at least one thickness, at least one mesh, and at least one core. The member is manufactured from a fiber-free polymer resin.
In another aspect of the present invention, an ultrasonic inspection reference standard for cored composite laminates having porosity comprises a member having at least one thickness, at least one core, and at least one mesh. The reference standard is adapted to contain at least one of the acceptable and rejectable ultrasonic properties of a cored composite laminate having porosity.
In a further aspect of the present invention, an ultrasonic inspection process for cored composite laminates having porosity is provided. A reference standard is manufactured. The reference standard comprises a member having at least one thickness, at least one core, and at least one mesh. A cored composite laminate having porosity is inspected with an ultrasonic technique using the reference standard.
These and other features, aspects and advantages of the present invention will become better understood with reference to the following drawings, description and claims.
The following detailed description is of the best currently contemplated modes of carrying out the invention. The description is not to be taken in a limiting sense, but is made merely for the purpose of illustrating the general principles of the invention, since the scope of the invention is best defined by the appended claims.
Composite laminates consist of two primary constituents including a fiber, and a resin matrix that bonds the fibers together. The fiber is typically graphite. Porosity in composite laminates is an unwanted product of the manufacturing cure cycle and is characterized by voids or a lack of resin within the laminate.
Porosity within a composite laminate may be quantitatively measured using high frequency ultrasonic methods. As the void content of a laminate increases, so does the ultrasonic attenuation. Ultrasonic attenuation is the combined loss of acoustic energy within the laminate which results from reflection and scattering of the sound pulse as it passes through the laminate. The ultrasonic C-scan in
Previous work has shown that photo-polymer resins used in stereo lithography (SLA), as well as conventional thermo set and thermoplastic resins like those used to bind fibers in composite laminates, have similar ultrasonic (acoustic) properties to graphite epoxy composite laminates. This is detailed in U.S. application Ser. No. 11/090,553, filed on Mar. 25, 2005, and titled Ultrasonic Inspection Reference Standard For Composite Materials, which is hereby incorporated by reference.
As shown in
To demonstrate the use of a fiber-free photo-polymer resin as a reference standard, a photo-polymer resin reference standard was manufactured with the same physical steps as a prior art graphite-epoxy reference standard by using the stereo lithography process 40 shown in
As shown in
The present invention relates to pseudo porosity standards, and methods for their manufacture and use, which substantially mimic the effect porosity has on ultrasonic sound as it passes through a cored composite laminate having porosity. For purposes of this application, a cored composite laminate is defined as a composite laminate having at least one core disposed in, within, or against the composite laminate. The term ‘core’ is defined as a member, which is made of a foam, honeycomb, or other core-type of material, which is disposed and/or sandwiched in a composite laminate. The term ‘core’ includes both singular and plural connotations. In a preferred embodiment of the invention, as discussed in more detail below, a pseudo porosity standard is manufactured using stereo lithography on a polymer resin to make a member having at least one thickness with similar acoustic properties of the cored composite laminate (fiber/resin combination). In order to model a cored composite laminate having porosity, at least one mesh and at least one core are incorporated into the member to produce a standard which transmits ultrasonic energy, with the mesh scattering and attenuating the energy, and the core modeling the core of the composite laminate. For instance, a porous composite laminate having a cored honeycomb material may be modeled by incorporating at least one mesh and at least one core, made of the honeycomb material, into the member. Preferably, a plurality of mesh and one core are disposed in alternating layers within the member. However, in other embodiments, any number and type of mesh and core may be disposed in any configuration in, on, or about the member. As an example, in one embodiment, multiple cores and mesh may be disposed in alternating layers within the member. For purposes of this application, a mesh is defined as an interwoven weave of one or more materials having at least partial openings dispersed in the weave, and the term includes both singular and plural connotations. The mesh may be made of one or more of wire, fiberglass, polymer, nylon, and a metallic material. In other embodiments, varying types of mesh may be used, and varying types of fiber-free polymer resin may be used, including the use of a polymer resin which is substantially similar to the resin of a composite material to be inspected. In still other embodiments, a non-stereo lithography process may be applied.
The invention was arrived at in part due to the discovery that scattering of an ultrasonic pulse of energy can be produced through the placement of small voids within a homogenous median. This is the general principle for producing voids (porosity) within a composite laminate. Similarly, it was discovered that scattering can be accomplished through the introduction of hollow shafts in a homogenous median. The amount of ultrasonic scatter is dependent, in part, on the size of the shafts, the number of shafts and their proximity to one another.
Snell's law provides the well-known relationship between angles of incidence and refraction for a wave impinging on an interface between two media with different indices of refraction. The law follows from the boundary condition that a wave be continuous across a boundary, which requires that the phase of the wave be constant on any given plane, resulting in n1 sin θ1=n2 sin θ2 where θ1 and θ2 are the angles from the normal of the incident and refracted waves, respectively.
This same principle of scattering off a hollow shaft in two dimensions can be extrapolated to ultrasonic scattering off a mesh which produces three dimensional scattering. Generally, porosity produced in composite laminates is either discrete or takes on columnar shapes. Since graphite epoxy laminates consist of isotropic plies (0, 90, +45 and −45 degree plies) columnar voids can occur in any direction. Using a mesh, ultrasonic attenuation can be produced. The mesh, which mimics columnar porosity, is comprised of numerous arcs for the ultrasonic energy to scatter from which may result in scattering similar to that shown in the example of
The mesh may be of any size, shape, configuration, orientation, or material. Preferably, the mesh utilizes circumferential shapes to produce the desired scattering.
The core may comprise any size, shape, configuration, orientation, or material. For instance, the core may be made of at least one of a honeycomb, a balsa, a foam, a Foamcore, a web or truss core manufactured by WebCore under the product name TYCOR®, or other type of cored material known in the art. Preferably, the core is a solid layer, but in other embodiments, the core may comprise any number of differing numbers of core in differing configurations. In one embodiment, lengths of pencil lead may be used in a variety of diagonal arrangements to simulate the web and truss structures of TYCOR®. In another embodiment, the core may be made of the same material as the core of the cored composite laminate having porosity which is undergoing inspection. The core may aid in modeling the cored composite laminate having porosity.
To make the mesh useable as a scatting device, and the core useable to model a cored composite laminate, the mesh and core may be molded or inserted into a median that has similar acoustic properties of graphite epoxy. This may be accomplished by manufacturing a member out of a photopolymer resin using the SLA process. Narrow slots, comprising openings or holes, of uncured resin may be produced in the member during the SLA process. The width of the slots may approach the diameter or thickness of the mesh perform and core chosen for the application. In other embodiments, the slots may comprise varying sizes, orientations, and configurations. The mesh and core may be inserted into the uncured resin slots produced during the SLA process. Preferably, each mesh and core is inserted into its own uncured resin slot. In other embodiments, differing arrangements may be used. The member may then be subjected to a final ultraviolet cure to advance the cure of the pre-cured resin as well as to cure the uncured resin around the mesh and core to secure them in place. At least one of the mesh diameter, location, mesh range, percentage of open area, material, spacing, and type may be chosen to achieve equivalent ultrasonic attenuation of porosity for a graphite epoxy composite laminate, such as a cored composite laminate having porosity. Similarly, at least one of the type, size, configuration, location, spacing, and material of the core insert may be chosen to achieve equivalent ultrasonic attenuation or porosity for a cored composite laminate having porosity.
In one embodiment of the invention, an ultrasonic inspection process may start with designing and building a three-dimensional model of the standard, according to a porous, fiber-reinforced composite part to be inspected, such as a cored composite laminate having porosity. The porous cored composite laminate part to be inspected may comprise at least one of a honeycomb composite laminate having porosity, a balsa composite laminate having porosity, a foam composite laminate having porosity, a TYCOR® composite laminate having porosity, a Foamcore composite laminate having porosity, or other type of composite laminate having porosity. The three-dimensional model may be designed to include at least one slot to accommodate at least one mesh and at least one core at one or more locations where the resin will be uncured. Preferably, the model is designed to include multiple, layered slots each adapted to contain at least one of the core or mesh. In other embodiments, varying arrangements may be utilized. At least one of the number, configuration, spacing, type, and size of the at least one slot, and/or at least one of the type, size, location, diameter, mesh range, percentage of open area, and spacing of the at least one mesh, and/or at least one of the type, size, configuration, location, spacing, and material of the at least one core insert may be predetermined prior to manufacture of the standard in order to provide the standard with at least one of the acceptable and rejectable ultrasonic properties of the porous cored composite laminate part to be inspected. In such manner, the designed reference standard may comprise substantially the ultrasonic properties of a porous fiber-reinforced cored composite laminate reference standard. The at least one slot may be designed to be located in a variety of locations at, on, or within the model. At other non-slot locations, the model may be designed to have solid surfaces where the resin will be cured using the SLA process. The model, which may be arrived at using computer-aided-drafting, may be loaded into a stereo lithography machine to manufacture the reference standard by curing a photopolymer resin with a laser. In other embodiments, varying types of resins, such as a fiber-free polymer resin, and varying types of processes may be used to manufacture the standard.
In curing the photopolymer resin, the laser may raster back and forth curing resin only in the areas where the model indicates material to be. The areas to be slotted, as designated by the model, may not be cured by the laser during the SLA process. The SLA process may result in a member having at least one thickness. The member may comprise any shape, configuration, or thickness. The thickness of the member may be a substantially equivalent thickness based on the material properties of the composite material to be inspected. As the member is being built up during the SLA process, the at least one slot of uncured resin at the designated areas of the member may be formed in accordance with the positioning of the slots of the model. After the areas around the at least one slot are formed in the member, at least one mesh and at least one core may be inserted into the at least one slot to allow the uncured resin to flow around the mesh and core. Preferably, multiple slots are used, each containing either a mesh or a core. In other embodiments, other arrangements may be utilized. The at least one slot may be located in a variety of locations against, on, or within the member. The SLA process may be continued to encase the at least one mesh and the at least one core in place against, on, or within the member. When the SLA process is finished, the standard may be given a post UV cure to harden the resin and complete manufacture of the standard.
The process may produce an ultrasonic reference standard, made of a fiber-free polymer resin member containing at least one mesh and at least one core insert. The manufactured standard may substantially mimic the ultrasonic properties of a porous cored composite laminate, allowing the replacement of fiber-reinforced porous cored composite laminate reference standards. A varying amount of attenuation, or porosity, may be produced in the standard to accomplish the desired ultrasonic reference standard.
The manufactured standard may be used to inspect a fiber-reinforced cored composite laminate part having porosity with an ultrasonic technique. For instance, the manufactured standard may be ultrasonically scanned using ultrasonic inspection, such as pulse-echo and through-transmission. Next, a porous, fiber-reinforced cored composite laminate may be ultrasonically scanned using the same technique. The data obtained from scanning the porous, fiber-reinforced cored composite laminate may be compared with the data obtained from scanning the manufactured standard. Based on the data, a decision may be made as to whether to accept or reject the cored composite laminate.
By using the combination of a fiber-free polymer resin member, at least one mesh, and at least one core in manufacturing the ultrasonic inspection reference standard, the reference standard may be manufactured at lower manufacturing cost, and in less time, using a method that does not require any tooling, as compared to many existing fiber-reinforced cored composite laminate reference standards. The manufactured ultrasonic inspection reference standard may substantially comprise the ultrasonic properties of a porous cored composite laminate reference standard made of varying materials. In such manner, the manufactured ultrasonic inspection reference standard may replace other porous cored composite laminate reference standards, which may also be referred to as second reference standards.
Using stereo lithography to produce slots adapted to contain at least one pre-determined mesh and at least one pre-determined core in a solid median member is of value because manufacturing costs may be roughly ten percent of the traditional cost of manufacturing cored composite standards with similar porosity. The ability to produce slots adapted to receive pre-determined mesh and pre-determined cores in particular patterns to mimic naturally occurring conditions makes this approach desirable in the manufacturing of pseudo porosity standards. Additionally, the nature of the manufacturing process, including its tailorability and repeatability, may enable the production of multiple reference standards having substantially equivalent acoustic properties to allow inspection of porous cored composite parts around the world. The cost of manufacturing and certification of prior art reference standards may be limited by utilizing the present invention. The process may become the foundation for the development of pseudo porosity standards to characterize ultrasonic equipment, and may replace current cored composite reference standards. The invention may be used for ultrasonic inspection of porous cored composite laminate parts used in the aircraft airframe industry, both commercial and defense, and in other non-aircraft applications.
It should be understood, of course, that the foregoing relates to exemplary embodiments of the invention and that modifications may be made without departing from the spirit and scope of the invention as set forth in the following claims.
Number | Name | Date | Kind |
---|---|---|---|
3784043 | Presnick | Jan 1974 | A |
3908439 | Peiak, et al. | Sep 1975 | A |
3933026 | Ham | Jan 1976 | A |
4156123 | Fischer et al. | May 1979 | A |
4173139 | Conn | Nov 1979 | A |
4266154 | Marshall | May 1981 | A |
4286455 | Ophir et al. | Sep 1981 | A |
4393987 | Anderson et al. | Jul 1983 | A |
4406153 | Ophir et al. | Sep 1983 | A |
4445360 | Treder, Jr. | May 1984 | A |
4466270 | Kimura et al. | Aug 1984 | A |
4566330 | Fujii et al. | Jan 1986 | A |
4660419 | Derkacs | Apr 1987 | A |
4674334 | Chimenti et al. | Jun 1987 | A |
4729235 | Podlech | Mar 1988 | A |
4747295 | Feist et al. | May 1988 | A |
4779452 | Cohen-Tenoudji | Oct 1988 | A |
5054310 | Flynn | Oct 1991 | A |
5065520 | Kaminagun | Nov 1991 | A |
RE33789 | Stevenson | Jan 1992 | E |
5127268 | Kline | Jul 1992 | A |
5163027 | Miller et al. | Nov 1992 | A |
5163077 | Dupre et al. | Nov 1992 | A |
5196343 | Zerhouni et al. | Mar 1993 | A |
5238556 | Shirkhan | Aug 1993 | A |
5312755 | Madsen et al. | May 1994 | A |
5525385 | Weinstein et al. | Jun 1996 | A |
5637175 | Feygin et al. | Jun 1997 | A |
5656763 | Flax | Aug 1997 | A |
5662566 | Marxrieser et al. | Sep 1997 | A |
5837880 | Shakinovsky et al. | Nov 1998 | A |
6238343 | Madsen et al. | May 2001 | B1 |
6405583 | Shirakawabe et al. | Jun 2002 | B1 |
6415051 | Callari et al. | Jul 2002 | B1 |
6415644 | Rockwood et al. | Jul 2002 | B1 |
6426274 | Tayanaka | Jul 2002 | B1 |
6649516 | Asakawa et al. | Nov 2003 | B2 |
6684701 | Dubois et al. | Feb 2004 | B2 |
6803095 | Halladay et al. | Oct 2004 | B1 |
6843945 | Hsai-Yin Lee | Jan 2005 | B1 |
6925145 | Batzinger | Aug 2005 | B2 |
6959602 | Peterson, Jr. et al. | Nov 2005 | B2 |
6962701 | Koenig | Nov 2005 | B2 |
6962739 | Kim et al. | Nov 2005 | B1 |
7010980 | Meier | Mar 2006 | B2 |
7076992 | Greelish | Jul 2006 | B2 |
7188559 | Vecchio | Mar 2007 | B1 |
7216544 | Vaccaro et al. | May 2007 | B2 |
7320241 | Kollgaard et al. | Jan 2008 | B2 |
7353709 | Kruger et al. | Apr 2008 | B2 |
7357014 | Vaccaro et al. | Apr 2008 | B2 |
7418860 | Austerlitz, et al. | Sep 2008 | B2 |
7424818 | Vaccaro, et al. | Sep 2008 | B2 |
7509832 | Vaccaro et al. | Mar 2009 | B2 |
7510817 | Benoit et al. | Mar 2009 | B2 |
20060090563 | Austerlitz et al. | May 2006 | A1 |
20060213250 | Vaccaro et al. | Sep 2006 | A1 |
20060234391 | Weiss et al. | Oct 2006 | A1 |
20060265679 | Scheffer et al. | Nov 2006 | A1 |
20070089479 | Vaccaro et al. | Apr 2007 | A1 |
20070107520 | Vaccaro et al. | May 2007 | A1 |
20070119256 | Vaccaro et al. | May 2007 | A1 |
20070125177 | Vaccaro et al. | Jun 2007 | A1 |
20070128435 | Hiel et al. | Jun 2007 | A1 |
20080087093 | Engelbart et al. | Apr 2008 | A1 |
20080121039 | Vaccaro et al. | May 2008 | A1 |
20080134749 | Engelbart et al. | Jun 2008 | A1 |
20080196475 | Engelbart et al. | Aug 2008 | A1 |
Number | Date | Country |
---|---|---|
28 14 336 | May 1979 | DE |
2814336 | May 1979 | DE |
2221991 | Feb 1990 | GB |
61265565 | Nov 1986 | JP |
08210953 | Aug 1996 | JP |
9013024 | Nov 1990 | WO |
Number | Date | Country | |
---|---|---|---|
20080134749 A1 | Jun 2008 | US |