In recent years, many networking and telecommunications carriers have deployed Pseudowires to carry Layer-2 (also known as the data link layer of the Open Systems Interconnection (OSI) Reference Model) traffic. A Pseudowire (PW) refers to an emulation of a native service over a network. Examples of the native service include Asynchronous Transfer Mode (ATM), Frame Relay, Ethernet, Time Division Multiplexing (TDM), Synchronous Optical Network (SONET), Synchronous Digital Hierarchy (SDH), etc. Examples of the network include Multiprotocol Label Switching (MPLS), Internet Protocol (IP), etc. More recently, a number of carriers have extended the use of Pseudowires beyond packet encapsulation, and offered Pseudowires as a type of network service. Consequently, data traffic protection and redundancy in environments that use Pseudowire have become critical.
At the edge of a network, a network edge device such as an edge router may receive multiple Layer-2 flows (also referred to as Attachment Circuits (ACs)). In a typical network supporting Pseudowires, each AC is mapped to a Pseudowire. Ingress packets received mapped to a specific Pseudowire are labeled with an identifier associated with this Pseudowire, and are switched via the Pseudowire. A physical link may support one or more Pseudowires. Ideally, the data flow in a Pseudowire should be protected. In other words, if an active Pseudowire fails, the data flow should be redirected to an alternative Pseudowire to avoid data loss.
Pseudowires can operate over many physical media types. However, existing Pseudowire systems typically provide no protection or very limited protection. For example, there is usually no data protection for Pseudowires on different physical media types, since most network protection schemes, such as APS for SONET, Link Aggregation for Ethernet, do not apply over multiple physical media types.
Some MPLS devices implement schemes such as MPLS Fast Reroute to provide limited data protection. These existing schemes, however, often do not provide adequate protection. Take the following scenario as an example: between two provider edges (PEs), a first tunnel comprising multiple Pseudowires is protected by a second tunnel. Due to network topology constraints, the two tunnels may have different bandwidth. This is a possible scenario in an MPLS Fast Reroute operation. In this example, the second tunnel may have lower bandwidth than that of the first one. If the first tunnel should fail, the amount of data that needs to be redirected through the second tunnel may exceed the capacity of the second tunnel. Furthermore, existing protocols typically do not provide a way of determining which data gets priority. Thus, certain mission critical data may be dropped while other less critical data may pass through.
It would be desirable to have a way to provide better Pseudowire protection and to have more control during switchover. It would also be desirable if the protection scheme could be implemented without significant changes to existing protocols and devices.
Various embodiments of the invention are disclosed in the following detailed description and the accompanying drawings.
The invention can be implemented in numerous ways, including as a process, an apparatus, a system, a composition of matter, a computer readable medium such as a computer readable storage medium or a computer network wherein program instructions are sent over optical or electronic communication links. In this specification, these implementations, or any other form that the invention may take, may be referred to as techniques. A component such as a processor or a memory described as being configured to perform a task includes both a general component that is temporarily configured to perform the task at a given time or a specific component that is manufactured to perform the task. In general, the order of the steps of disclosed processes may be altered within the scope of the invention.
A detailed description of one or more embodiments of the invention is provided below along with accompanying figures that illustrate the principles of the invention. The invention is described in connection with such embodiments, but the invention is not limited to any embodiment. The scope of the invention is limited only by the claims and the invention encompasses numerous alternatives, modifications and equivalents. Numerous specific details are set forth in the following description in order to provide a thorough understanding of the invention. These details are provided for the purpose of example and the invention may be practiced according to the claims without some or all of these specific details. For the purpose of clarity, technical material that is known in the technical fields related to the invention has not been described in detail so that the invention is not unnecessarily obscured.
Providing protection to network traffic using one or more Pseudowires is disclosed. In some embodiments, a Pseudowire protection configuration parameter is sent to a destination node. A Pseudowire configuration acknowledgment from the destination node is received. If a Pseudowire is allowed to be established according to the Pseudowire configuration acknowledgment, it is established based at least in part on the Pseudowire protection configuration parameter. In embodiments where the Pseudowire is established as a standby Pseudowire configured to protect one or more primary Pseudowires, in the event that a primary Pseudowire fails to transfer network traffic for reasons such as network congestion, equipment failure, etc., network traffic that is originally designated to be transferred on the primary Pseudowire(s) is switched from the primary Pseudowire(s) to the standby Pseudowire.
The protection technique is applicable to both single-hop and multi-hop systems.
In the example shown in
In the example shown in
Once the destination node (or its associated management agent) receives the Pseudowire protection configuration parameter, it determines whether it will accept the Pseudowire protection configuration and allow a standby Pseudowire to be established. Depending on implementation, the destination node determines whether to accept the protection configuration based on factors such as traffic condition, number of existing Pseudowires, priority information, etc. The destination node may reject the protection request for a number of reasons. For example, the destination node does not support Pseudowire protection mechanism as described here. If a standby Pseudowire may be established, the destination node accepts it and configures the Pseudowire based at least in part on the configuration parameters. In some embodiments, the destination node adds the Pseudowire to a table of Pseudowires. A corresponding Pseudowire configuration acknowledgment is generated, indicating whether the destination node has accepted the Pseudowire configuration. The Pseudowire configuration acknowledgment is sent to the source node. In some embodiments, as a part of the LDP process, a MPLS label for the data packets traversing through the standby Pseudowire is assigned.
At the source node, once the Pseudowire configuration acknowledgment is received (206), it is examined to determine whether the Pseudowire configuration has been accepted (208). If, according to the Pseudowire configuration acknowledgment, the Pseudowire configuration has been accepted by the destination, a standby Pseudowire is established based at least in part on the Pseudowire protection configuration parameter and may be used as such (210). If, however, the Pseudowire configuration has not been accepted, the process performs appropriate exception handling, such as re-sending the Pseudowire protection configuration parameter (212).
Process 300 begins with the initialization of an LDP session (302). According to the negotiation scheme based on LDP, the source node exchanges messages with the destination node and establishes an LDP Hello Adjacency (304). A Pseudowire setup request that includes a Pseudowire protection configuration parameter is sent to the destination node (or its associated management agent), requesting that a standby Pseudowire be established over the LDP Hello Adjacency (306). In some embodiments, multiple LDP Hello Adjacencies are available for Pseudowire setup, thus multiple setup requests are sent, and the destination node processes the requests and maps Pseudowires to appropriate LDP Hello Adjacencies. In some embodiments, the source node dynamically determines which LDP Hello Adjacency among the available connections is to be configured as a standby Pseudowire, and directs its setup request accordingly. The dynamic determination may be based on, among other things, bandwidth availability on the adjacency path.
In some embodiments, the request is sent as a LDP Label Mapping Message. The configuration parameter is used to configure various properties of the Pseudowire, including protection type, protection scheme, priority, etc. Further details of the configuration parameters are discussed below. In some embodiments, multiple LDP Hello Adjacencies are established and the source node sends multiple Pseudowire setup requests to configure Pseudowires over these LDP Hello Adjacencies.
In this example, upon receiving a Pseudowire setup request, the destination node maps the request to the appropriate LDP Hello Adjacency. If the mapping is successful, the Pseudowire is established. Sometimes, however, the mapping and consequently the Pseudowire setup may fail for reasons such as network congestion, resource limitation, equipment failure, etc. The destination node sends a Pseudowire configuration acknowledgment to the source node. In this example, the Pseudowire configuration acknowledgment is an LDP acknowledgement indicating whether a particular Pseudowire has been successfully established. Once the source node receives the acknowledgement (308), it determines whether the configuration has been accepted by the destination (310). If the configuration has been accepted, a standby Pseudowire is successfully established based at least in part on the Pseudowire protection configuration parameter, and the source and destination nodes can start using the standby Pseudowire to protect other Pseudowires (312). If, however, the acknowledgment indicates that the configuration has not been accepted and a Pseudowire has not been successfully established, appropriate exception handling measures such as resending the Pseudowire protection configuration parameter are taken (314).
Process 300 is applicable to both single-hop and multi-hop systems. In a single-hop system, the source node and the destination node correspond to a source PE and a destination PE on the network and the process is used to configure a standby Pseudowire between the PEs. In a multi-hop system, the process may be repeated by the PEs on various carrier networks to establish Pseudowire segments. For example, in system 150 of
If it is designated as a standby Pseudowire, it is enters into standby mode to provide protection to one or more primary Pseudowires (360). In some embodiments, the standby Pseudowire carries network traffic during normal operation. It is ready to take over traffic from the primary Pseudowire if necessary. If a switchover request is received from a primary Pseudowire (362), traffic on the primary Pseudowire is switched over to the standby Pseudowire. In some embodiments, the switchover only occurs if the priority comparison of the primary and standby Pseudowires indicates the switchover is allowed.
Optionally, during the operation, if a Pseudowire is no longer needed, the source node can send a withdraw request over the Pseudowire and the destination node disassociates the Pseudowire with the LDP Hello Adjacency to break the Pseudowire connection.
In some embodiments, one of the following Pseudowire protection schemes is used to set up the Pseudowires: 1+1, 1:1, 1:N or M:N. The protection scheme field is used to indicate which protection scheme is used in the system setup. A specific protection scheme corresponds to a field value. For example, 1+1 maps to 0, 1:1 maps to 1, and so on. In a system implementing a 1+1 protection scheme, the same traffic is sent over two parallel Pseudowires and the receiver selects one traffic stream at a time. In a system implementing a 1:1 protection scheme, one Pseudowire is used is used to protect another Pseudowire. Similarly, in a 1:N system (e.g. MPLS Facility Backup), one Pseudowire is used to protect N other Pseudowires, and in a M:N system M Pseudowires are used to protect N other Pseudowires.
The protection type field is used to configure the standby mode of the Pseudowire. In some embodiments, cold, warm, and hot standby modes are supported. Other appropriate standby modes may be implemented in other embodiments. In some embodiments, in cold standby mode configuration, once network failure on a Pseudowire carrying network traffic is detected, a standby Pseudowire is selected from the remaining functional Pseudowires, and traffic is redirected to the standby Pseudowire. In some embodiments with warm standby mode configuration, one or more standby Pseudowires are established before any network failure has occurred. These standby Pseudowires, however, are not maintained or used to transport data until a network failure is detected. Upon failure detection, the source or destination nodes will modify the data-plane and switch data traffic over to the standby Pseudowire(s). In some embodiments with hot standby mode configuration, one or more standby Pseudowires are pre-established and maintained at both control-plane and data-plane, so that once a network failure is detected, data traffic is directly switched over to the standby Pseudowire(s).
The domain type field indicates whether the Pseudowire is configured in a single-hop environment where all the nodes of the Pseudowire belong to the same carrier network, or a multi-hop environment where the Pseudowire includes nodes on several carrier networks. This is because the intermediate may process single-hop and multi-hop Pseudowire differently.
The priority field indicates the preference level of a Pseudowire in preempting other Pseudowires during switchover. In the event of a network failure, the edge nodes will preferentially provide protection according to the priority setting of the Pseudowires. In a situation where network resources (such as bandwidth) are limited, data sent on a higher priority Pseudowire is more likely to be protected than data sent on a lower priority Pseudowire. In some embodiments, the priority field includes two subfields: a holding priority and a setup priority. The holding priority indicates the relative priority of a currently active Pseudowire with respect to other Pseudowires when the latter attempt to preempt the former's use of the data link. Stated another way, it determines how easily a currently active Pseudowire gives up its hold on a data link upon request. The setup priority indicates the relative priority of a Pseudowire during the setup process.
Providing protection to network traffic using one or more Pseudowires has been disclosed. Pseudowire protection improves the reliability of Pseudowire services. Pseudowires are better controlled by appropriately configuring the properties of Pseudowires and without requiring significant changes to existing protocols and devices.
Although the foregoing embodiments have been described in some detail for purposes of clarity of understanding, the invention is not limited to the details provided. There are many alternative ways of implementing the invention. The disclosed embodiments are illustrative and not restrictive.
This application claims priority to U.S. Provisional Patent Application No. 60/653,065 entitled PSEUDO WIRE PROTECTION filed Feb. 14, 2005 which is incorporated herein by reference for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
5920705 | Lyon et al. | Jul 1999 | A |
6167051 | Nagami et al. | Dec 2000 | A |
6347088 | Katou et al. | Feb 2002 | B1 |
6430184 | Robins et al. | Aug 2002 | B1 |
6546427 | Ehrlich | Apr 2003 | B1 |
6574477 | Rathunde | Jun 2003 | B1 |
6621793 | Widegren et al. | Sep 2003 | B2 |
6665273 | Goguen et al. | Dec 2003 | B1 |
6680943 | Gibson et al. | Jan 2004 | B1 |
6751684 | Owen et al. | Jun 2004 | B2 |
6813271 | Cable | Nov 2004 | B1 |
6845389 | Sen et al. | Jan 2005 | B1 |
6985488 | Pan et al. | Jan 2006 | B2 |
7050396 | Cohen et al. | May 2006 | B1 |
7200104 | Saleh et al. | Apr 2007 | B2 |
7436782 | Ngo et al. | Oct 2008 | B2 |
7697528 | Parry | Apr 2010 | B2 |
20010021175 | Haverinen | Sep 2001 | A1 |
20010023453 | Sundqvist | Sep 2001 | A1 |
20020112072 | Jain | Aug 2002 | A1 |
20020141393 | Eriksson | Oct 2002 | A1 |
20020146026 | Unitt et al. | Oct 2002 | A1 |
20030002482 | Kubler et al. | Jan 2003 | A1 |
20030039237 | Forslow | Feb 2003 | A1 |
20030117950 | Huang | Jun 2003 | A1 |
20040105459 | Mannam | Jun 2004 | A1 |
20040114595 | Doukai | Jun 2004 | A1 |
20040133692 | Blanchet et al. | Jul 2004 | A1 |
20040156313 | Hofmeister | Aug 2004 | A1 |
20040174865 | O'Neill | Sep 2004 | A1 |
20040252717 | Solomon et al. | Dec 2004 | A1 |
20050018605 | Foote | Jan 2005 | A1 |
20050044262 | Luo | Feb 2005 | A1 |
20050220148 | DelRegno | Oct 2005 | A1 |
20050237927 | Kano et al. | Oct 2005 | A1 |
20060002423 | Rembert | Jan 2006 | A1 |
20060018252 | Sridhar et al. | Jan 2006 | A1 |
20060046658 | Cruz et al. | Mar 2006 | A1 |
20060047851 | Voit et al. | Mar 2006 | A1 |
20060090008 | Guichard | Apr 2006 | A1 |
20060146832 | Rampal | Jul 2006 | A1 |
20060233167 | McAllister | Oct 2006 | A1 |
20070053366 | Booth, III | Mar 2007 | A1 |
20070127479 | Sinicrope et al. | Jun 2007 | A1 |
20070206607 | Chapman | Sep 2007 | A1 |
20080031129 | Arseneault | Feb 2008 | A1 |
Number | Date | Country | |
---|---|---|---|
60653065 | Feb 2005 | US |