1. Field of the Invention
The present invention relates to a pre-stressed steel and concrete (PSSC) complex girder and particularly, to a PSSC complex girder which can achieve all of the advantages of both a pre-stressed concrete (PSC) girder and a steel girder. The PSSC complex girder can be made by forming a section shape steel structure by joining one or more section shape steel, such as an I-section shape steel or an H-section shape steel disposed either vertically or in parallel. A tensional member is added to compensate for deflection by applying a pre-stress to the section shape steel structure. Concrete is poured into an inner space portion of the section shape steel structure in a predetermined shape.
2. Description of the Background Art
Generally, a pre-stressed concrete beam (hereinafter, a PSC beam) adds tension to a tensional member using hydraulic equipment, after the tensional member is laid inside of a steel reinforcement concrete beam. Both ends of the tensional member extend outside both ends of the beam, and offset tensile stress occurring in a steel reinforcement concrete beam by operating compression having an eccentric distance along the symmetric axis from both ends of the beam.
The tensioning method is divided into a pre-tension method and post-tension method, in accordance with the settling method of the tensional member.
By operation of the tensional member, tensile stress either does not occur, or a very small amount of tensile stress occurs on a lower surface of the PSC beam, which prevents cracks from occurring in the beam. Even if tensile stress occurs on the lower surface of the beam, no cracks occur if the tensile stress is less than the flexural tensile strength. This kind of PSC beam is more variously applied to civil engineering structures, including bridges, than is reinforced concrete (RC).
For example, a bridge having short and medium spans is usually constructed with a PSC beam, while a bridge having long spans is usually constructed with steel materials, but can also be constructed with the PSC beam. In terms of buildings, the PSC beam is used for a built-up structure, which requires a large space.
In the conventional PSC beam, however, there are limitations to a long span and durability because there has been little change in the basic structure of the beam, while there have been changes in settlement devices and hydraulic equipment.
On the other hand, when the strength of a conventional bridge, constructed by girders, is degraded, the chosen construction method for repairing and strengthening the PSC beam with hydraulic equipment, is to fix brackets to both ends of the PSC beam, and fix both ends of tensional member to the brackets with a settlement member.
Such a construction method, however, has problems in management, for example, because the conventional bridge is reinforced when the strength of the bridge is degraded.
In addition, the conventional construction method has disadvantages including corrosion occurring on the lower surface, and the span length becoming shortened because tensile cracks in the concrete occur in the lower flange as a result of partial prestressing.
Therefore, an embodiment of the present invention provides a PSSC complex girder, which can have a longer span than a PSC beam and improved durability. The PSSC complex girder is a section shape steel structure formed by joining one or more section shape steel, such as I-section shape steel or H-section shape steel either vertically or in parallel, joining a tensional member that compensates for deflection by applying a pre-stress to the section shape steel structure, and pouring concrete in an inner space portion of the section shape steel structure in a predetermined shape.
To achieve these and other advantages and in accordance with the present invention, as embodied and broadly described herein, PSSC complex girder, includes a section shape steel structure formed by joining one or more section shape steel, a tension means for tensioning the section shape steel structure using the tensional member, so that the structure has a predetermined camber. Concrete is placed in the inner space portion of the section shape steel structure.
The section shape steel structure, is formed in a box shape by overlapping and welding a section shape. Alternatively, or a pair of side members can be welded together by overlapping the section shape steel vertically and horizontally. Various types of section shape steel can be joined.
In the embodiment of the present invention, a box-type section shape steel structure can be formed by welding a pair of section shape steel side members to each other or by welding both side members to each other and using bolts to connect each section shape steel structure.
A settlement fixing plate is fixed at both end portions of the section shape steel structure by a strengthening plate. Both end portions of the tensional member are fixed in a settlement member and inserted through holes in the settlement fixing plates to extend to an outer portion of the settlement fixing plates. Inside each section shape steel, are strengthening plates for preventing buckling among the web and the upper and lower flanges. A plurality of sheer prevention members are disposed inside of the web, and steel reinforcement is arranged in the inner space portion of each steel girder. Concrete is poured around the steel reinforcement.
The tensional member includes, for example, a steel strand inserted in a sheath pipe, and a conventional hydraulic jack can be used to add tension to the tensional member. In addition, concrete can be poured into in the inner space portion of the section shape steel structure or can be poured into part of the section shape steel structure.
The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.
The accompanying drawings, which are included to provide a further understanding of the invention and are incorporated in and constitute a part of this specification, illustrate embodiments of the invention and together with the description serve to explain the principles of the invention.
Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.
As shown in the drawings, tension means 200 mounts both end portions of a tensional member 210 in the section shape steel structure 102. The section shape steel structure 102 is made of section shape steel 100, such as an I-section shape steel or an H-section shape steel. Tensioned end portions of the tensional members 210, are joined to the section shapes steel to form the PSSC complex girder in accordance with the present invention. Concrete 300 is poured into the inner space of the section shape steel structure 102 to form a girder body that is tensioned by the tension means 200 resulting in a camber of the girder body.
A section shape steel assembly 101, which is formed by welding both sides of the section shape steel 100, can be used to form the section shape steel structure 102.
The tension means 200 includes settlement fixing plates 221 respectively fixed to both end portions of the inner surface of each section shape steel 100, which forms the section shape steel structure 102.
Both end portions of the tensional members 210 are inserted into the settlement member 220 and pass through holes, formed in a row in the settlement fixing plates 221. The tensional member 210 is fixed in two rows, for example, at both end portions of the section shape steel assembly 101 as shown in
Inside each section shape steel 100, strengthening means 400, for preventing buckling, are respectively disposed between a web 111 of the section shape steel 100 and upper and lower flanges 112 and 113. A plurality of sheer prevention members 330 is also joined to the inside of the web 111. Steel reinforcements 310 are arranged in the inner space of both the section shape steel 100 and the concrete 300 is poured therein.
Strengthening means 400 include, a plurality of strengthening plates 410 welded to the upper and lower flanges 112 and 113 inside the section shape steel 100 at predetermined intervals in the web 111. The steel reinforcements 310 are inserted in a plurality of holes formed in the strengthening plates 410. The plurality of sheer prevention members 330 are inserted into through holes formed in the upper end portion of the web 111 of the respective section shape steel 100. A nut 331 is welded to the outer portion of the web 111 and secures an anchorage bolt 332, which is bent into an āLā shape.
Strengthening plates 223 for strengthening the section shape steel 100 are fixed to the inside of the settlement fixing plate 221 which is fixed to both end of both the section shape steel 100. Grooves 114 are formed at both ends of the web 111 so that tensile devices, such as hydraulic equipment can be easily installed, if necessary.
In manufacturing the PSSC complex girder in accordance with the present invention, a plurality of strengthening plates 410 are welded to the inside of the web portion 111 of the section shape steel 100, such as an I-section shape steel or an H-section shape steel cut in a predetermined length.
A plurality of sheets (for example, three sheets) of strengthening plate 410 is welded to a center portion of the web 111. Nuts 331 secure the sheer prevention members 330 in the plurality of holes formed at the upper end portion of the web 111 and are welded to the outer portion of the web 111.
Anchorage bolts 332 forming the sheer prevention members 330 are joined with the respective nuts 331. Steel reinforcements 310 are inserted through a plurality of holes formed in the strengthening plates 410.
The settlement fixing plate 221 and strengthening plate 223 are welded to both end portions of the web 111. Both end portions of the tensional members 210 extend to the outer portion of the web 111 through holes which are formed in both the settlement fixing plate 221, and a settlement member 220.
As described above, after manufacturing a steel-frame structure which is mainly made of the section shape steel 100 and installing the tension means 200, the sections are joined by V-cut welding the section shape steel 100.
Then, pre-stress is applied by using tensile devices, such as hydraulic equipment and tensioning the tensional member 210 to a first predetermined degree.
Then, concrete 300 is poured into the injection hole 103 which is formed in the upper flange 112 of both the section shape steel 100 and cured. See
When the concrete 300 is cured, pre-stress is again applied by tensioning the tensional member 210 to a second predetermined degree.
With the above processes, as shown in
In the PSSC complex girder of the second embodiment of the present invention, each settlement fixing plate 222 is fixed to both end portions of the section shape steel assembly 101, and both end portions of the tensional member 210 are inserted through holes formed in a row in the middle of the settlement fixing plates 222 to extend outside of the section shape steel structure 102. The tensional member is fixed in the holes by the settlement member 220.
Accordingly, the tensional members 210 are fixed in two rows at both end portions of the section shape steel assembly 101. Inside both section shape steel 100, strengthening means 400 for preventing buckling are respectively disposed between the web portion 111 of the side member 110 and the upper and lower flanges 112 and 113. A plurality of sheer prevention members 330 is also disposed inside of respective webs 111. Steel reinforcements 310 are arranged in the inner space portion of both the section shape steel 100 and the concrete 300 is poured therein.
As shown in the drawings, in the PSSC complex girder in accordance with the third embodiment of the present invention, the section shape steel 100 are vertically mounted and joined by a plurality of high-tensile bolt 120 fixed by nuts. As in the first embodiment of
In the PSSC complex girder in accordance with the fourth embodiment of the present invention, the section shape steel 100 are vertically mounted and joined by bolt connections 120. As in the second embodiment of
As described above, the PSSC complex girder in accordance with the present invention can be used, for example, to construct a new bridge or repair a conventional bridge. The present invention can have a camber by tensioning the tensional member 210 at both end portions of the section shape steel structure 102. Therefore, deflection can be decreased and cracks can be prevented as the lower flange receives tensile stress. Also, a strengthening plate 410 for supporting buckling and compression is connected to the section shape steel 100. In addition, the sheer prevention member 330 and steel reinforcements 310 are connected to the section shape steel 100 and concrete 300 is poured therein. Accordingly, the section shape steel 100 and concrete 300 are unified, stiffness and strength are improved, and re-tensioning can be performed. As a result maintenance is easier and the span of the section shape steel structure is substantially increased. Also, a vibration range of the PSSC complex girder can be decreased to a large degree, since sectional moment of inertia can be increased by having the concrete inside the steel section shape steel 100.
In accordance with the present invention, the length, width, height, shape, and number of the tension means and shape of arrangement of the PSSC complex girder can be varied.
The PSSC complex girder in accordance with the present invention can achieve all advantages of both the PSC girder and the steel girder. Since the camber of the PSSC girder can be adjusted for new bridges and conventional bridges, either before or after construction, deflection of the slab can be easily decreased and cracks caused by flexural deformation can be prevented.
The strengthening plate for supporting buckling and compression is mounted inside the section shape steel. In addition, the sheer prevention member and steel reinforcement are joined to the section shape steel and concrete is poured into the section shape steel. Accordingly, the section shape steel and concrete are unified, stiffness and strength are improved, and re-tensioning can be performed. As a result, maintenance is easier and the span of the section shape steel structure is substantially increased. Also, a vibration range of the section shape steel structure can be decreased to a large degree, since sectional moment of inertia can be increased by having the concrete inside the section shape steel.
The tensional member is positioned inside the section shape steel structure and is not exposed. Therefore, an excellent appearance and long space under a bridge can be obtained. Also, a reduction in strength over time can be minimized, since the tensional member is installed in concrete.
As the present invention may be embodied in several forms without departing from the spirit or essential characteristics thereof, it should also be understood that the above-described embodiments are not limited by any of the details of the foregoing description, unless otherwise specified, but rather should be construed broadly within its spirit and scope as defined in the appended claims, and therefore all changes and modifications that fall within the metes and bounds of the claims, or equivalence of such metes and bounds are therefore intended to be embraced by the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
515963 | Krause | Mar 1894 | A |
542283 | Rousseau | Jul 1895 | A |
916378 | Sunderland | Mar 1909 | A |
918643 | Aylett et al. | Apr 1909 | A |
930611 | Pelton | Aug 1909 | A |
963734 | Morrill | Jul 1910 | A |
1572669 | Muller | Feb 1926 | A |
1714949 | Collier et al. | May 1929 | A |
2020407 | Forster | Nov 1935 | A |
2844023 | Maiwurm | Jul 1958 | A |
3110049 | Nagin | Nov 1963 | A |
3302348 | Pratt | Feb 1967 | A |
3368016 | Birguer | Feb 1968 | A |
3440793 | Zehnle | Apr 1969 | A |
3487518 | Hopfeld | Jan 1970 | A |
3516213 | Sauer | Jun 1970 | A |
3577504 | Lipski | May 1971 | A |
3798867 | Starling | Mar 1974 | A |
3813834 | Davis, Jr. | Jun 1974 | A |
3837131 | Bisschops et al. | Sep 1974 | A |
4018055 | Le Clercq | Apr 1977 | A |
4125973 | Lendrihas | Nov 1978 | A |
4196558 | Jungbluth | Apr 1980 | A |
4407106 | Beck | Oct 1983 | A |
4571913 | Schleich et al. | Feb 1986 | A |
4616464 | Schleich et al. | Oct 1986 | A |
4628654 | Boswel | Dec 1986 | A |
4646493 | Grossman | Mar 1987 | A |
4722156 | Sato | Feb 1988 | A |
4779395 | Schleich et al. | Oct 1988 | A |
4783940 | Sato et al. | Nov 1988 | A |
5119614 | Rex | Jun 1992 | A |
5152112 | Eustace | Oct 1992 | A |
5279093 | Mead | Jan 1994 | A |
5410847 | Okawa et al. | May 1995 | A |
5507522 | Ritchie | Apr 1996 | A |
5511355 | Dingler | Apr 1996 | A |
5560176 | Levo | Oct 1996 | A |
5644890 | Koo | Jul 1997 | A |
5680738 | Allen et al. | Oct 1997 | A |
5848512 | Conn | Dec 1998 | A |
5852905 | Collina et al. | Dec 1998 | A |
6061992 | Vincent | May 2000 | A |
6318038 | Park | Nov 2001 | B1 |
6332301 | Goldzak | Dec 2001 | B1 |
6341456 | Majnaric et al. | Jan 2002 | B1 |
6384610 | Wilson | May 2002 | B1 |
Number | Date | Country | |
---|---|---|---|
20040040233 A1 | Mar 2004 | US |