This invention relates in general to running casing into a well and drilling with casing, and in particular to using pull-down cables and winches to force the casing into extended reach wells.
Top drives for earth boring drilling rigs are employed to rotate the pipe string. The top drive has a rotary motor and is pulled up and down a derrick by a set of blocks. While running casing or drilling with casing, a pipe gripping mechanism may be secured to the drive stem or quill extending downward from the top drive. The pipe gripping mechanism has gripping elements that are moved radially into gripping engagement with either the inner or outer diameter of the casing string.
While running a casing string, the downward movement of the top drive depends on the apparent weight of the casing string and the pipe gripping mechanism supported by the top drive. If the weight being imposed on the top drive is adequate to pull casing string down the well, personnel on the drilling rig will control the rate of descent of top drive through a draw works brake.
In highly deviated wells, the apparent weight of the casing string being supported by the top drive will likely decrease as the casing string lengthens because of the friction of the casing string in the deviated well. The weight imposed on the top drive due to the weight of the casing string could theoretically become zero, stopping descent of the casing string. For operational reasons, one would always want the top drive and the upper section of the pipe gripping mechanism to be under tension. Otherwise, one might accidentally apply the full weight of the top drive onto the pipe gripping mechanism, causing extensive damage.
A pipe gripper has a mandrel with an upper end for connection to and rotation with a drive string extending downward from the top drive. The pipe gripper has gripping elements that move radially into engagement with a string of pipe. A pull-down mechanism mounts to the rig and is secured to a non-rotating portion of the pipe gripper for selectively exerting a downward force on the mandrel.
Preferably, a sensor is operatively coupled to the top drive to sense weight being supported by the top drive. A controller linked to the sensor and the pull-down mechanism controls the downward force exerted on the mandrel by the pull-down mechanism in response to the weight sensed by the sensor. Particularly, the controller causes the pull-down mechanism to exert a downward force if the axial forces sensed between the top drive and the pipe gripper become compressive while the string of pipe is being lowered into the well. The controller may be configured to cause the pull-down mechanism to exert a downward force to maintain a substantially constant tensile force in the drive string.
The non rotating portion of the pipe gripper comprises a frame of the pipe gripper. A thrust bearing is mounted between the mandrel and the mandrel and the frame. The pull-down mechanism is connected to the frame, such that the downward force imposed by the pull-down mechanism transfers through the thrust bearing to the mandrel and through the gripping elements to the string of pipe.
The pull-down mechanism may have portions secured to opposite sides of a pipe elevator link bracket. The pull-down mechanism may comprise at least one winch. A cable wrapped around the winch is in operative engagement with the non-rotating portion of the pipe gripper. Two winches may be used, with cable from each extending to opposite sides of the elevator link bracket. The winches may be mounted below a rig floor. The cables may pass through holes in the rig floor.
Referring to
A top drive 23 is suspended from a hook of blocks 21 for vertical movement along derrick 19. Top drive 21 has an anti-rotation or torque restraint mechanism 25 that slides along one or more guide rails 27 mounted vertically in derrick 19. Top drive 23 comprises a motor, either electric or hydraulic, for rotating a drive stem or quill 28.
A pipe gripping mechanism 29 is secured either directly or indirectly to quill 28. Pipe gripping mechanism 29 has a gripping device for gripping a tubular member, such as casing string 31. Casing string 31 comprises sections of pipe secured to each other by threads and cemented in the well. The term “casing” is employed broadly to also include liner strings. A liner string is made up the same type of pipe as casing, but its upper end is located only a selected distance above the lower end of a previously installed casing string, rather than extending all the way to the wellhead.
Two or more pull-down cables 33 have upper ends mounted to a non rotating or actuator portion of pipe gripping mechanism 29. The actuator portion of pipe gripping mechanism 29 is held against rotation either by a brace extending downward from a non rotating portion of top drive 23 or by a separate anti-rotation device that engages and slides along guide track 27. As shown in
A controller 40 has an input from a sensor 42, which may comprise strain gauges mounted on a sub attached between quill 28 and pipe gripping mechanism 29. Sensor 42 may be located elsewhere for sensing the load supported by top drive 23 or pipe gripping mechanism 29. Sensor 42 may send RF signals to controller 40 or it may be wired directly to controller 40. Sensor 42 will sense the axial forces in the pipe string between pipe gripping mechanism 29 and top drive 23. Controller 40 is linked with and controls winches 37 to selectively cause them to stop rotation, or to rotate in a take-up direction or to play out cable 33. Controller 40 has means for an operator to select a force to be applied by cables 33 to the upper end of casing string 31 as cable string 31 descends. While running casing string 31, the downward movement of top drive 23 depends on the apparent weight of casing string 31 and pipe gripping mechanism 29 supported by top drive 23. If the weight being imposed on top drive 23 is adequate to pull casing string 23 down the well, personnel on drilling rig 11 will control the rate of descent of top drive 23 through a draw works brake. When the weight is adequate, controller 40 causes winches 37 to merely take-up slack as no pull down force is needed
In highly deviated wells, the apparent weight of casing string 31 being supported by top drive 23 will likely decrease as casing string 31 lengthens because of the friction of casing string 31 in the deviated well. The weight imposed on top drive 23 due to the weight of casing string 31 could theoretically become zero, stopping descent of casing string 31. For operational reasons, one would always want top drive 23 and the upper section of pipe gripping mechanism 29 to be under tension. Otherwise, one might accidentally apply the full weight of top drive 23 onto pipe gripping mechanism 29, causing extensive damage. Controller 40 senses the decrease in weight imposed on top drive 23 from the sensor and has software to make up the loss in weight by causing winches 31 to provide a pull down force through cables 33 to casing string 31. If the tensile forces sensed by sensor 42 become compressive, controller 40 will actuate winches 37 to apply a downward force to bring the drive string between top drive and pipe gripping mechanism 29 back into tension. Controller 40 may control winches 37 so that the pull down force plus the apparent weight being sensed will remain substantially constant. Optionally, the operator may select rotation rates for winches 37 to cause and maintain a desired speed or rate of descent of casing string 31 as it is being installed. Controller 40 or winches 37 will have safety features to prevent them from exceeding the tensile strength of cables 33.
Additionally, sensor 42 could optionally also send signals to controller 40 indicating torque, rotational speed and the volume of drilling fluid being pumped through casing string 31. While running casing string 31, the operator may wish to pump drilling fluid through casing string 31 to assist in lubricating the wellbore and facilitate the downward movement of casing string 31. Too high of a flow rate could result in a tendency to pump casing string 31 upward. By monitoring the load supported by top drive 23, controller 40 can increase the tension in cables 31 to avoid such an occurrence.
Winches 37 could be mounted on rig floor 15, but are preferably mounted below rig floor 15. They may be mounted on cradles 41 that are supported by an upper portion of substructure 13. Alternately, cradles 41 could extend downward to the base or lower portion of substructure 13.
Alternatively, casing string 31 could be employed for drilling borehole 51 by the operator utilizing top drive 23 and pipe gripping mechanism 29 to rotate casing string 31. If used for drilling, a bottom hole assembly (not shown) would be located at and protruding from the lower end of casing string 31. The bottom hole assembly may have a drill bit, an underreamer and also include instruments and other steering devices for directing the deviation desired of borehole 51. The bottom hole assembly may be retrievable. Alternately, a disposable/drillable bit may be located at the lower end of casing string 31. A disposable/drillable bit would not be retrievable.
Referring to
In
A pair of links 71 is pivotally mounted to axles extending from bracket 59 on opposite sides from each other. Each link 71 will pivot about its axle in a single plane. An elevator 73 attaches to the lower ends of links 71. Elevator 73 will open and close around a joint of casing 31 below a collar secured to an upper end of the joint of casing 31.
Each of the gussets 35 is mounted to an upper side bracket 59 above one of the links 71 in a position so as to not interfere with the pivotal movement of links 71. Each gusset 35 extends laterally outboard of one of the links 71. Cables 33 are mounted to gussets 35 by pins or devises. The upper ends of cables 33 are located 180 degrees apart from each other on bracket 59. Other arrangements to mount cables 33 to non rotating portions of pipe gripping mechanism are feasible.
In operation, the operator will connect pipe gripping mechanism 29 to quill 28 of top drive 23. The operator installs winches 37 underneath rig floor 15. Cables 33 will be attached to gussets 35 on pipe gripping mechanism 29. To run casing string 31 into a previously drilled borehole 51, the operator will support a first portion of casing string 31 with slips or a spider (not shown) mounted on rotary table 17. The operator will use elevator 73 (
The controller 40 will receive signals from sensor 42 indicating the weight suspended by top drive 23; if necessary, controller 40 will apply a selected force by rotating winches 37 to apply tension to cables 33. The force passes from cables 33 to bracket 59 and from bracket 59 to thrust bearing 61 to mandrel 53. The force is transferred via grapples 65 to casing string 31. This force will assure that quill 28 and the portion of mandrel 53 above thrust bearing 61 will always be in tension while casing string 31 is being lowered. Winches 37 will maintain a selected downward force until the upper end of the add-on joint of casing string 31 nears the rig floor. At that point, the operator actuates the slips at rotary table 17 and releases pipe gripping mechanism 29 from the casing string 31. The operator then pulls top drive 23 and pipe gripping mechanism 29 up derrick 19. As pipe gripping mechanism 29 moves up to receive a new joint of casing, controller 40 causes winches 37 to play out cables 33, applying only a residual tension. The operator then repeats the steps mentioned above.
Similar steps may be used for drilling as explained above. During drilling, the operator will be rotating casing string 31 to drill the borehole 51.
Hydraulic pistons or actuators alternatively may be employed rather than winches and cables. A telescoping piston could be mounted below the rig floor on opposite sides of the rotary table. The telescoping pistons could be hydraulically extended through holes in the rig floor up into engagement with opposite sides of the casing gripping mechanism for exerting pull-down forces on the casing gripping mechanism.
This application claims priority to provisional application Ser. No. 61/334,624, filed May 14, 2010.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/CA2011/000562 | 5/13/2011 | WO | 00 | 11/14/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/140648 | 11/17/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2232172 | Fortune | Feb 1941 | A |
2711880 | McKenzie | Jun 1955 | A |
2848196 | Simmonds | Aug 1958 | A |
3181630 | Coburn | May 1965 | A |
3190378 | Davey, Sr. et al. | Jun 1965 | A |
3239016 | Alexander | Mar 1966 | A |
3340938 | Wilson | Sep 1967 | A |
3464507 | Smith et al. | Sep 1969 | A |
3659655 | Gyongyosi | May 1972 | A |
3719238 | Campbell et al. | Mar 1973 | A |
4100968 | Delano | Jul 1978 | A |
4103745 | Varich et al. | Aug 1978 | A |
4236408 | Corry | Dec 1980 | A |
5197553 | Leturno | Mar 1993 | A |
5890844 | Schellhorn | Apr 1999 | A |
6315059 | Geldean | Nov 2001 | B1 |
6672410 | Smith | Jan 2004 | B2 |
6679333 | York et al. | Jan 2004 | B2 |
7445050 | Kuttel et al. | Nov 2008 | B2 |
8336614 | Bagassi | Dec 2012 | B2 |
20040206511 | Tilton et al. | Oct 2004 | A1 |
Number | Date | Country |
---|---|---|
974973 | Sep 1975 | CA |
2094313 | Oct 1994 | CA |
2448841 | May 2005 | CA |
Entry |
---|
PCT Int'l Search Report and Written Opinion (PCT/CA2011/000562), dated Aug. 26, 2011. |
Number | Date | Country | |
---|---|---|---|
20130056275 A1 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
61334624 | May 2010 | US |