Flareless fittings have been in use for decades for conduits such as tubes and pipes. A flareless fitting is used to connect or join two tube or pipe ends or to connect a conduit end to another assembly such as a tank, a valve, a manifold and so on. The applications are as varied as the types of assemblies with which the fittings are used. One very common type of flareless fitting is a ferrule type fitting. In a ferrule type fitting, one or more ferrules are used to join or connect a conduit end to a fitting member, typically called a fitting body. The fitting body may then be joined to (or be part of) another assembly. In a ferrule type fitting, the ferrule or ferrules must establish a fluid tight seal, particularly under pressure, as well as adequate grip of the conduit and protection against vibration fatigue. High performance fittings, such as are available from Swagelok Company, Solon, Ohio, are capable of withstanding pressures many times the rated pressure of the fitting without leaking, without vibration fatigue and without conduit blow out to the point that the conduit will burst before a seal is compromised or the ferrule(s) may lose their grip on the conduit.
Ferrule style fittings have an advantage over other end connections in that they do not rely on any special preparation of the tube or pipe end, other than low cost squaring and deburring. This is because the ferrules create the seals and tube grip.
Lower cost markets, such as the automotive industry, have their own performance requirements for fluid connections. Most notably, automotive assembly requires simpler assembly procedures. The automotive industry has resisted using ferrule type fittings not only for cost reasons, but also for assembly needs. Typical ferrule type fittings are assembled by what is commonly known as pull-up by turns. Two threaded components, such as a nut and body, enclose the conduit end and one or more ferrules. The assembly is first tightened to a finger tight condition and then a prescribed number of turns, such as one and a quarter or one and a half turns, are used to pull-up the fitting to its assembled condition. The number of turns is carefully prescribed to prevent over torque or inadequate pull-up. The automotive industry on the other hand typically wants to assemble parts by torque. This allows a simple torque wrench or tool to be used to make the final assembly with the assurance that the final assembly has been properly assembled.
In accordance with an inventive aspect of the disclosure, a ferrule type, flareless fitting is provided that may optionally be pulled-up to its assembled condition by torque rather than by turns. In one embodiment, at least one fitting component includes a structure that facilitates pull-up by torque and allows the fitting to be remade. The structure may take a wide variety of different forms. Examples of fitting component structures that facilitate pull-up by torque and allow the fitting to be remade include, but are not limited to, deformable or compressible devices or structures that are configured to increase the torque required to further tighten the fitting components when the fitting is properly pulled up, resiliently deformable structures that bias a tube gripping device into engagement with a conduit when the fitting is remade to an initial pull-up position, and plastically deformable retaining structures that maintain a tube gripping device in sealing engagement with a conduit when a fitting is disassembled.
These and other inventive aspects and features of the present disclosure will become apparent to one skilled in the art to which the present invention relates upon consideration of the following description of the exemplary embodiments with reference to the accompanying drawings, in which:
While the inventions are described herein with specific reference to a variety of structural and material features, such descriptions are intended to be exemplary in nature and should not be construed in a limiting sense. For example, the exemplary embodiments are described primarily in terms of a stainless steel tube fitting for automotive applications. Those skilled in the art, however, will readily appreciate that any one or more of the aspects and features of the invention may be used outside of the automotive industry, may be used with materials other than stainless steel and may be used with many conduits including, but not limited to, tube or pipe. Still further, many of the exemplary embodiments herein illustrate what is commonly known as a female-style fitting, meaning that a female (i.e. internally) threaded component receives and abuts the conduit end. Many aspects of the female-style embodiments will find application in male-style fittings as will be apparent to those skilled in the art. Similarly, many of the exemplary embodiments herein illustrate male-style fittings. Many aspects of the male-style embodiments will find application in female-style fittings as will be apparent to those skilled in the art. The invention will also find application for fitting assemblies that do not require threaded connections between the fitting components, for example clamped or bolted fittings may be used. The invention will also find application far beyond the exemplary embodiments herein as to connections that may be made to a wide and ever expansive variety of fluid components including, but not limited to, other conduits, flow control devices, containers, manifolds and so on.
While various aspects of the invention are described and illustrated herein as embodied in combination in the exemplary embodiments, these various aspects may be realized in many alternative embodiments, either individually or in various combinations and sub-combinations thereof. Unless expressly excluded herein all such combinations and sub-combinations are intended to be within the scope of the present invention. Still further, while various alternative embodiments as to the various aspects and features of the invention, such as alternative materials, structures, configurations, methods, devices, software, hardware, control logic and so on may be described herein, such descriptions are not intended to be a complete or exhaustive list of available alternative embodiments, whether presently known or later developed. Those skilled in the art may readily adopt one or more of the aspects, concepts or features of the invention into additional embodiments within the scope of the present invention even if such embodiments are not expressly disclosed herein. Additionally, even though some features, concepts or aspects of the invention may be described herein as being a preferred arrangement or method, such description is not intended to suggest that such feature is required or necessary unless expressly so stated. Still further, exemplary or representative values and ranges may be included to assist in understanding the present invention however, such values and ranges are not to be construed in a limiting sense and are intended to be critical values or ranges only if so expressly stated.
Although the various embodiments are described herein with specific reference to the fitting components being made of stainless steel, such description is intended to be exemplary in nature and should not be construed in a limiting sense. Those skilled in the art will readily appreciate that the invention may be realized using any number of different types of metal material for the fitting components, as well as metal tubing materials, including but not limited to 316, 316L, 304, 304L, any austenitic or ferritic stainless steel, any duplex stainless steel, any nickel alloy such as HASTALLOY, INCONEL, MONEL, alloy 825, alloy 625, any precipitation hardened stainless steel such as 17-4PH for example, brass, copper alloys, any carbon or low allow steel such as 1020, 1030, 1040 and 12L14 steel for example. A tube gripping device may be case or through hardened to a ratio of at least 3.3 and preferably 4 or more times harder that the hardest tubing material that the fitting will be used with. Therefore, the tube gripping device need not be made of the same material as the tubing itself. For example, the tube gripping device may be selected from the stainless steel material noted above, or other suitable materials that may be case hardened, such as magnesium, titanium and aluminum, to name some additional examples.
In this application, the terms “pull-up” or “pulled-up” simply refer to a condition of the fitting where a seal and grip is formed with a conduit. The term “initial pull-up” refers to the condition of the fitting and or the positions of the fitting components the first time the fitting is pulled-up. The term “remake” or “remade” refers to the condition of the fitting and/or the position of the fitting components when the fitting was previously pulled-up to an initial pull-up position, disassembled, and pulled-up again. In many of the embodiments disclosed below, additional axial advance of the fitting components is needed to remake the fitting. In many of the embodiments disclosed herein, the fitting can be remade several times.
The present application discloses several embodiments of ferrule type, flareless fittings that may optionally be pulled-up to an assembled condition by torque rather than by turns. The fittings include structure that facilitates pull-up by torque. As illustrated by the exemplary embodiments described below, the structure may take a wide variety of different forms. Any structure that provides an additional torque rise when the fitting is properly pulled up may be employed. The torque rise may be sharp or otherwise detectable or observable. In an exemplary embodiment, the structure allows the fitting to be disassembled and remade with a successful reseal and conduit grip. The structure may be configured to allow the fitting to be disassembled and remade multiple times with a successful reseal and conduit grip each time the fitting is remade. In some embodiments, the structure facilitates repeated remake by permitting additional stroke of the fitting components to further advance a conduit gripping device, such as a ferrule, even if only slightly, each time the fitting is remade. In some embodiments, the structure facilitates remake by including an elastically deformable or compressible member that presses a conduit gripping device back into sealing engagement with a conduit when the fitting is remade to the initial pull up position. In other embodiments, the structure facilitates repeated remake by maintaining a seal between the conduit gripping device and the conduit when the fitting is disassembled, such that further advance of the ferrule is not required when the fitting is remade. The structure may be configured to allow the fitting to be remade with the same initial pull-up torque or the structure may cause the torque required for remakes to be greater than the initial pull-up torque. One example of a fitting component structure that facilitates pull-up by torque and permits additional stroke is a compressible or deformable structure defined by or used with at least one fitting component. Several exemplary embodiments of fittings that may be pulled up by torque and may be disassembled and remade are described below.
The fitting 100 further includes a conduit gripping device or assembly 120. In this application, the term conduit gripping device means any device or assembly of components that grips and/or seals against a conduit, such as a tube or a pipe, as a result of making up the fitting to an assembly. The conduit gripping device may include any number of components, such as ferrules. Typically the conduit gripping device 120 will include one or two ferrules. A conduit gripping device 120 is schematically illustrated in
The female nut 116 has a drive surface 174 that contacts a driven surface 162 of the conduit gripping device 120 during pull-up. The male threaded body 112 is a generally cylindrical part centered on the axis X. The body 112 has an opening 183 adapted to receive the tube end T. A central bore 186 extends through the body 112 and defines a fluid flow path. The central bore 186 may be in communication with another part such as a valve, tee, elbow, manifold, etc. It should be noted that although the male threaded fitting component 112 is shown as a separate stand alone part, the features of the component by which it may make a fluid connection with the female threaded fitting component could, alternatively, be incorporated into a bulk body such as a manifold, valve, pump, tank, and so on, commonly referred to as a fluid port.
The opening 183 may include a shoulder 190. The tube end T bottoms, possibly not initially but preferrably after pull-up, against the shoulder 190 when received by the body 112. The opening 183 may have a slight taper. If included, the slight taper may help form a seal about the tube end T upon pull-up of the fitting 10. The male fitting component 112 further includes a tapered surface, such as for example frusto-conical surface 192. The frusto-conical surface 192 forms a conduit gripping device or ferrule camming surface in the body 112 and may be axially adjacent the forward end of the opening 183. The ferrule camming surface is formed at an angle that may be selected to optimize the camming action with a nose portion 134 of the tube gripping device 120. In typical two ferrule and one ferrule fittings, this angle is about twenty degrees but may be any suitable value from about ten degrees to about sixty degrees, for example, forty-five degrees.
The male threads 114 of the body 112 threadably mate with the threads 118 on the female nut 116. The body 112 may be provided with tool engagement surfaces, such as hex flats, to facilitate holding the body while the nut 116 is being tightened down during pull-up. Of course, pull-up involves relative axial translation between the fitting components, the nut 116 and body 112, in this case effected by relative rotation between the nut and body, regardless of which fitting component is being held and which is being turned. In a non-threaded coupling, pull-up involves relative axial translation between the two fitting components by means other than two threaded components, such as for example two components forced together by a clamping device.
The body 112 or the nut 116 may include a marking or a structure 199 that may be used to provide an intrinsic gauging function to verify proper pull-up for both pull-up by torque and pull-up by turns. By intrinsic gauging is meant a structure or feature associated with the fitting itself (as contrasted with a separate tool or gauge) that provides an indication to the assembler that the fitting has been properly assembled and pulled up. A large variety of structures or features may perform the intrinsic gauging function, some examples of which are disclosed in International Application No. 03/07739 and U.S. Pat. Nos. 6,640,457 and 7,194,817, the entire disclosures of which are fully incorporated herein by reference. A gap gauge may also be used in a known manner to confirm proper pull-up of the fitting 100. In the example illustrated by
The conduit gripping component nose portion 134 is positioned at least partially within the camming mouth formed by the ferrule camming surface 192. The driven surface 162 of the tube gripping device engages the drive surface 174 of the nut 116. In an exemplary embodiment, when the fitting is pulled up, the tube gripping device 120 bites or indents into the tube surface S, producing a strong tube grip and a fluid tight seal. However, an appropriate grip and seal may not necessarily involve a bite or indent.
In the example illustrated by
In this application the term “plastically deformable structure” means a structure in a fitting that is plastically deformed when the fitting is pulled up to any position beyond a proper initial pull up position. In one embodiment, the plastically deformable structure is not plastically deformed by pulling up the fitting to a proper initial pull up position. In another embodiment, the plastically deformable structure is somewhat plastically deformed by pull up to a proper initial pull up position. A plastically deformable structure may or may not be elastically deformed by pulling the fitting up to the initial pull up position. In this application, the term “elastically deformable structure” means a structure in a fitting that is elastically deformed by pulling up the fitting to a proper initial pull up position. An elastically deformable structure may or may not be plastically deformed by pulling up the fitting to some position beyond the initial pull up position.
In the embodiment illustrated by
The ability of the deformable or compressible structure 102 to be compressed or deformed to facilitate additional axial advance of the components, 112, 116 allows the fitting to be remade. Each remake of the fitting 100 progresses the fitting body 112 further into the nut 116 for each re-make, even if only slightly. In one embodiment, the deformable or compressible structure 102 is configured such that the torque required to remake the fitting is the same as the initial pull-up torque. In another embodiment, the torque required to remake the fitting is greater than the torque required to initially pull up the torque. In one embodiment, the deformable or compressible structure 102 is plastically deformed a first time when the fitting is initially pulled up by applying the initial pull-up torque and is then further plastically deformed by applying the same initial torque to remake the fitting 100. In one embodiment, the deformable or compressible structure 102 is elastically deformed a first time when the fitting is pulled-up by applying the initial pull-up torque and is then elastically deformed a second time, to a greater extent, by applying the same initial torque to remake the fitting. Many properties of the fitting components affect the torque required to initially pull-up the fitting and the torque required to remake the fitting. As such, the material and/or configuration of the deformable or compressible member that allows the fitting to be remade and properly seal by applying the same torque as the initial pull-up torque will vary, depending on the properties of the fitting components.
In one embodiment, when the deformable or compressible structure 102 is a separate member, the deformable or compressible member may be configured to convert existing fittings that may be pulled up only by turns of threaded components or a set axial stroke of the components to fittings that may be pulled up by turns and may optionally be pulled up by torque, simply by adding the separate deformable or compressible member to the fitting assembly.
The female nut 216 has a drive surface 274 that contacts a driven surface 262 of the conduit gripping device 220 during pull-up. The male threaded body 212 is a generally cylindrical part centered on the axis X. The body 212 has an opening 283 adapted to receive the tube end T. A central bore 286 extends through the body 212. The tube end T bottoms against a shoulder 290 when received by the body 212.
The male fitting component 212 includes a tapered ferrule camming surface 292 in the body 212 that is axially adjacent the forward end of the counterbore 283. The ferrule camming surface 292 is formed at an angle with respect to the X axis that may be selected to optimize the camming action with the nose portion 234 of the front tube gripping device 220. In typical two ferrule and one ferrule fittings, this angle is about twenty degrees but may be any suitable value from about ten degrees to about sixty degrees, for example, forty-five degrees.
The nose portion 234 of the tube gripping device 220 is positioned at least partially within the camming mouth formed by the ferrule camming surface 292. When the fitting is pulled up, the tube gripping devices 220 bites or indents into the tube surface S.
The body 212 and/or the nut 216 may include a marking or structure 251 that may be used to provide an intrinsic gauging function to verify proper pull-up for both pull-up by torque and pull-up by turns. In the example illustrated by
In the example illustrated by
The ability of the deformable or compressible member 202 to be compressed allows the fitting to be remade. Each remake of the fitting 200 progresses the nut 216 further onto the fitting body 212 for each re-make, even if only slightly.
In one embodiment, the internal structure 202 is configured to convert an existing fitting that may be pulled up only by turns to a fitting that may be pulled up by turns and may optionally be pulled up by torque, by adding the separate member to the existing fitting assembly.
The male nut 316 has a drive surface 374 that contacts a driven surface 362 of the conduit gripping device 320 during pull-up. The female threaded body 312 is a generally cylindrical part centered on the axis X. The body 312 has an opening at a forward end 384 adapted to receive the tube end T. A central bore 386 extends through the body 312. The female body further includes a counterbore 389 that forms a shoulder 390. The tube end T bottoms against the shoulder 390 when received by the body 312.
The female fitting component 312 further includes a tapered surface 392. The surface 392 forms a ferrule camming surface in the body 312. The ferrule camming surface is formed at an angle that may be selected to optimize the camming action with the nose portion 334 of the front ferrule of the conduit gripping device 320. In typical two ferrule and one ferrule fittings, this angle is about twenty degrees but may be any suitable value from about ten degrees to about sixty degrees.
The body 312 and/or the nut 316 may include a marking or structure 351 that may be used to provide an intrinsic gauging function to verify proper pull-up for both pull-up by torque and pull-up by turns. In the example illustrated by
The nose portion 334 of a first ferrule of the conduit gripping device 320 is positioned partially within the camming mouth formed by the ferrule camming surface 392. The driven surface 362 of a second ferrule of the conduit gripping device engages the drive surface 374 of the nut 316. When the fitting is pulled up, conduit gripping device 320 bites and indents into the tube surface S.
In the examples illustrated by
Referring to
In one embodiment, the internal ring 302 is configured to convert an existing fitting that may be pulled up only by turns to a fitting that may be pulled up by turns and may optionally be pulled up by torque by adding the ring 302 to the existing fitting assembly, disassembling the existing fitting and installing the ring.
The male nut 416 has a drive surface 474 that contacts a driven surface 462 of the tube gripping device 420 during pull-up. The female threaded body 412 is a generally cylindrical part centered on the axis X. The body 412 has an opening 480 adapted to receive the tube end T. A central bore 486 extends through the body 412. The opening 489 forms a shoulder 490. The tube end T bottoms against the shoulder 490 when received by the body 412.
The female fitting component 412 further includes a tapered surface 492. The tapered surface 492 forms a ferrule camming surface in the body 412. When the fitting is pulled up, the ferrules of the tube gripping device 420 or 520 bite or indent into the tube surface S.
In the examples illustrated by
The male nut 616 has a drive surface 674 that contacts a driven surface 662 of the tube gripping device 620 during pull-up. The body 612 has an opening 683 adapted to receive the tube end T. A central bore 686 extends through the body 612. The female body further includes a counterbore 689 that forms a shoulder 690. The tube end T bottoms against the shoulder 690 when received by the body 612. The female fitting component 612 further includes a tapered surface, surface 692. The surface 692 forms a ferrule camming surface in the body 612. A nose portion 634 of the tube gripping device 620 is positioned partially within the camming mouth formed by the ferrule camming surface 692. When the fitting is pulled up, the tube gripping devices 120 bites or indents into the tube surface S.
In the example illustrated by
The ability of the structure 602 to be compressed and/or deformed allows the fitting to be remade. Each remake of the fitting 600 further compresses and/or deforms the structure 602 and progresses the nut 616 further onto the fitting body 612 for each re-make, even if only slightly.
In one embodiment, when the structure 602 is a separate member, the separate member may be configured to convert an existing fitting that may be pulled up only by turns to a fitting that may be pulled up by turns and may optionally be pulled up by torque.
In the example illustrated by
The fitting component 712 may be a male fitting component that mates with a female fitting component 716 or the fitting component 712 may be a female fitting component that mates with a male fitting component 716. In the example illustrated by
The fitting component 716 has a drive surface 774 that contacts the elastically compressible member 702, which in turn contacts a driven surface 762 of the tube gripping device 720 during pull-up. The fitting component 712 has an opening 783 adapted to receive the tube end T. A central bore 786 extends through the fitting component 712 and defines a fluid flow path. The tube end T bottoms against a shoulder 790. The fitting component 712 further includes a tapered surface 792 that engages the tube gripping device 720 to cause the tube gripping device 720 to grip and seal the tube end T.
A tube gripping device nose portion 734 is positioned at least partially within the camming surface 792. The driven surface 762 of a tube gripping device engages the elastically deformable structure 702, which engages the drive surface 774 of the fitting component 716. When the fitting is pulled up, the elastically deformable structure 702 is compressed or deformed and applies force against the tube gripping device 720 to cause the tube gripping device to bite or indent into the tube surface S, producing a strong tube grip and a fluid tight seal.
In the example illustrated by
In the embodiment illustrated by
In the example illustrated by
The fitting component 812 may be a male fitting component that mates with a female fitting component 816 or the fitting component 812 may be a female fitting component that mates with a male fitting component 816. In the example illustrated by
The fitting component 816 has a drive surface 874 that contacts a driven surface 862 of the tube gripping device 820 during pull-up. The fitting component 812 has an opening 883 adapted to receive the elastically deforming structure 802 and the tube end T. A central bore 886 extends through the fitting component 812 and defines a fluid flow path. The fitting component 812 includes a shoulder 890. The elastically deformed structure 802 is disposed between the tube end T and the shoulder 890.
The fitting component 812 includes a tapered surface 892 that engages the tube gripping device 820 to cam the tube gripping device against the tube. A tube gripping nose portion 834 is positioned at least partially within the camming surface 892. The driven surface 862 of the tube gripping device 820 engages the drive surface 874 of the fitting component 816. When the fitting is pulled up, the tube gripping device 820 bites into the tube and drives tube end T against the elastically deformable structure 802. The elastically deformable structure 802 is compressed between the tube end T and the shoulder 890 of the fitting component 812.
In the example illustrated by
The deformable or compressible structure 902 may be made from any material and take any configuration that drives the tube gripping device 920 into sealing engagement with the tube, provides a sharp increase in torque when the fitting is pulled-up, and allows the fitting to be remade. Examples of materials that the elastically deformable structure 902 may be made from are listed above.
The fitting component 912 may be a male fitting component that mates with a female fitting component 916 or the fitting component 912 may be a female fitting component that mates with a male fitting component 916. The tube gripping device 920 may comprise any number of ferrules or other tube gripping and/or sealing structures. The fitting component 916 and tube gripping device 920 fit onto a conduit end T that is received by the fitting component 912.
The fitting component 916 drives the deformable or compressible member 902, which in turn contacts a driven surface 962 of the tube gripping device 920 during pull-up. The fitting component 912 includes a tapered surface 992 that engages the tube gripping device 920 and presses the tube gripping device into sealing engagement with the tube end T.
A nose portion 934 of the tube gripping device is positioned at least partially within the camming surface 992. The driven surface 962 of a tube gripping device engages the deformable or compressible structure 902 which is driven by the first fitting component 916. When the fitting is pulled up, the drive arm 952 of the deformable or compressible structure 902 applies force against the tube gripping device 920 to cause the tube gripping device to bite or indent into the tube surface S, producing a strong tube grip and a fluid tight seal. When the fitting 900 reaches the pulled-up position, a wall 960 of the stop portion 950 abuts against a wall 962 of the fitting component 912. At this point, additional axial advance of the tube gripping device 920 may only be achieved by flexing the drive arm 952 with respect to the stop portion as indicated by arrow 954 in
The deformable or compressible members in the fitting embodiments illustrated by
In the example illustrated by
In the example illustrated by
In the example illustrated by
In the example illustrated by
The fitting component 1112 has an opening 1183 adapted to receive the tube end T. A central bore 1186 extends through the fitting component 1112 and defines a fluid flow path. The fitting component 1112 includes a shoulder 1190 that the tube end T bottoms against. The fitting component 1112 further includes a tapered surface 1192 that engages the tube gripping device 1120.
Referring to
Referring to
Referring to
In the example illustrated by
In many of the embodiments described in this application, the assembler will also notice a sharp and dramatic increase in pull-up torque.
In another exemplary embodiment, the fittings disclosed above are modified such that the deformable or compressible structures that facilitates pull-up by torque are replaced with non-deformable or non-compressible structures that provide a positive stop to indicate completed pull-up and that are adjustable to allow the fitting to be remade once or multiple times. The non-deformable or non-compressible structures that provide a positive stop and are adjustable to allow remakes of the fitting may take a wide variety of different forms. Any structure that provides a positive stop or substantially a positive stop and may be adjusted to allow for additional axial advance of one or more of the fitting components may be used.
The structures 1300A, 1300B and 1300C are rings that are centered on a longitudinal axis X. The structures 1300A, 1300B and 1300C each include one or more removable portions 1302A, 1302B, and 1302C. The removable portions 1302A are connected to the remainder of the structure 1300A, but are easily removable to reduce the length of the structure. For example, the removable portions 1302A may be glued to the remainder of the structure 1300A with a releasable adhesive. A releasable adhesive may be applied to any portion of the removable portion 1302. The removable portions 1302B, 1304C are connected by frangible portions 1306B, 1306C. The frangible portions 1306B, 1306C may be formed by machining the structure 1300B. 1300C from a single piece of material or by welding, brazing, etc. The frangible portions 1306B are illustrated as being formed at a radially outer surface of the structure 1300B and the frangible portions 1306C are illustrated as being formed at a radially inner surface of the structure 1300C. However, the frangible portions may be formed at any position on the structure. The frangible portions 1306B may or may not extend around the entire outer cylindrical surface of the structure 1300B and the to the frangible portions 1306C may or may not extend around the entire inner cylindrical surface of the structure 1300C. The removable portions 1302B and 1302C are removed by breaking the frangible portions 1306B, 1306C.
The structures 1300A, 1300B, 1300C are engaged in the fittings illustrated in
The invention has been described with reference to the preferred embodiments. Modification and alterations will occur to others upon a reading and understanding of this specification. It is intended to include all such modifications and alterations insofar as they come within the scope of the appended claims or the equivalents thereof.
This application is the U.S. national phase entry of PCT/US2008/072072, with an international filing date of Aug. 4, 2008, which claims priority to prior U.S. Provisional Application Ser. No. 60/953,881, filed Aug. 3, 2007, the disclosures of which are hereby incorporated herein by reference in their entirety.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2008/072072 | 8/4/2008 | WO | 00 | 8/8/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2009/020900 | 2/12/2009 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1143815 | Duffy | Jun 1915 | A |
1334130 | Blanchard | Mar 1920 | A |
1595310 | Mueller | Aug 1926 | A |
2377891 | Laue | Jun 1945 | A |
2405822 | Franck | Aug 1946 | A |
2508763 | Mercier | May 1950 | A |
2511134 | Stranberg | Jun 1950 | A |
2544109 | Richardson | Mar 1951 | A |
2561648 | Bradley | Jul 1951 | A |
2768845 | Samiran | Oct 1956 | A |
3039796 | Lawman | Jun 1962 | A |
3139293 | Franck | Jun 1964 | A |
3248136 | Brozek et al. | Apr 1966 | A |
3365219 | Nicolaus | Jan 1968 | A |
3441297 | Koski | Apr 1969 | A |
3445128 | Teeters | May 1969 | A |
3521912 | Mauerer | Jul 1970 | A |
3684322 | Kotsakis | Aug 1972 | A |
3695647 | Pugliese | Oct 1972 | A |
3848905 | Hammer et al. | Nov 1974 | A |
3879070 | Russ | Apr 1975 | A |
4136897 | Haluch | Jan 1979 | A |
4568114 | Konrad | Feb 1986 | A |
5149148 | Taeuber et al. | Sep 1992 | A |
5351998 | Behrens et al. | Oct 1994 | A |
5622393 | Elbich et al. | Apr 1997 | A |
5882050 | Williams et al. | Mar 1999 | A |
6109660 | Akiyama et al. | Aug 2000 | A |
6123364 | Inoue et al. | Sep 2000 | A |
6279242 | Williams et al. | Aug 2001 | B1 |
6640457 | Williams et al. | Nov 2003 | B2 |
6641180 | Udhoefer | Nov 2003 | B2 |
6860514 | Wentworth et al. | Mar 2005 | B2 |
7002077 | Pyron | Feb 2006 | B2 |
7032932 | Guest | Apr 2006 | B2 |
7194817 | Williams | Mar 2007 | B2 |
7690696 | Mallis et al. | Apr 2010 | B2 |
7695027 | Williams et al. | Apr 2010 | B2 |
20050189134 | Pyron | Sep 2005 | A1 |
20050242582 | Williams et al. | Nov 2005 | A1 |
20090289452 | Bennett et al. | Nov 2009 | A1 |
20100219631 | Williams et al. | Sep 2010 | A1 |
Number | Date | Country |
---|---|---|
19607784 | Oct 1996 | DE |
10206684 | Aug 2003 | DE |
286568 | Dec 1998 | EP |
1612467 | Jan 2006 | EP |
384700 | Dec 1932 | GB |
59-187184 | Oct 1984 | JP |
7-243564 | Sep 1995 | JP |
2005106310 | Nov 2005 | WO |
200857983 | May 2008 | WO |
2009020900 | Feb 2009 | WO |
201199667 | Aug 2011 | WO |
Entry |
---|
International Search Report from PCT/US07/83416 dated Apr. 21, 2008. |
International Search Report and Written Opinion from PCT/US10/024767 dated Apr. 9, 2010, 9 pgs. |
International Search Report and Written Opinion from PCT/US10/24770 dated May 17, 2010. |
Search Report from European Application No. 12161443.2 dated May 21, 2012. |
One page drawing dated Apr. 28, 2009—Standard 800 Series Space Collar Assy., (illustrated collar and fitting assembly offered for sale at least as early as Feb. 5, 2000) Swagelok Company. |
Search Report from Australian Patent Office for Singapore Patent Application No. 200902965-3 dated Apr. 6, 2010. |
Number | Date | Country | |
---|---|---|---|
20110277309 A1 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
60953881 | Aug 2007 | US |