The present disclosure relates to window regulator systems.
Vehicle doors have windows that can be opened and closed. Within the door, there can be a window regulator assembly including a carrier panel, a motor, rails and window regulator lifter or carrier plate assembly which is driven along is respective rail by the motor with associated cabling. There are several problems, however, with these window regulator assemblies. For example, in situations where the window regulator lifter assemblies are driven by cables, pulleys can be are used to effect a change in direction for the cables within the regulator assembly. However, due to forces involved in operating and/or in installing the window regulator assembly, the joint between the pulleys and the carrier may be subject to premature failure.
It is recognized that window regulator systems can be fastened to the interior of the vehicle doors in a variety of different ways. It is advantageous for such fastening systems to be streamlined in design as well as to be strong enough to withstand cable tension forces during installation and/or operation.
It is an object of the present invention to provide a pulley installation on a window regulator system component to obviate or mitigate at least some of the above-presented disadvantages.
An aspect provided is a component for a window regulator system of a vehicle closure panel including: a rail having a rail aperture extending between a first side of the rail and a second side opposite the first side, the rail aperture having a retaining surface associated with the rail aperture; a pulley for mounting adjacent to the first side, the pulley having a pulley aperture with a pulley surface opposite the first side; a pulley rivet having a rivet body including a retaining lip for engaging with the pulley surface and a retainer portion for engaging with the retaining surface, the rivet body configured for receipt in both the pulley aperture and the rail aperture when installed, the rivet body having a hole for receiving a fastener for fastening the rail to a panel via the pulley rivet; wherein, when installed, the rivet body is positioned within the pulley aperture and within the rail aperture, such that engagement between the retaining lip and the pulley surface inhibits separation of the pulley from the rail while engagement of the retainer portion with the retaining surface inhibits separation of the pulley rivet from the rail aperture.
A further aspect provided a pulley rivet having a rivet body including a retaining lip for engaging with a pulley surface and a retainer portion for engaging with a retaining surface, the rivet body configured for receipt in both a pulley aperture and a rail aperture when installed, the rivet body having a hole for receiving a fastener for fastening the rail to a panel via the pulley rivet; wherein, when installed, the rivet body is positioned within the pulley aperture and within the rail aperture, such that engagement between the retaining lip and the pulley surface inhibits separation of the pulley from the rail while engagement of the retainer portion with the retaining surface inhibits separation of the pulley rivet from the rail aperture.
The foregoing and other aspects will now be described by way of example only with reference to the attached drawings, in which:
For vehicles 10, the closure panel 14 can be referred to as a partition or door, typically hinged, but sometimes attached by other mechanisms such as tracks, in front of an opening which is used for entering and exiting the vehicle 10 interior by people and/or cargo. In terms of vehicles 10, the closure panel 14 may be a driver/passenger door, a lift gate, or it may be some other kind of closure panel 14, such as an upward-swinging vehicle door (i.e. what is sometimes referred to as a gull-wing door) or a conventional type of door that is hinged at a front-facing or back-facing edge of the door, and so allows the door to swing (or slide) away from (or towards) the opening in the body 12 of the vehicle 10. Also contemplated are sliding door embodiments of the closure panel 14 and canopy door embodiments of the closure panel 14, such that sliding doors can be a type of door that open by sliding horizontally or vertically, whereby the door is either mounted on, or suspended from a track that provides for a larger opening. Canopy doors are a type of door that sits on top of the vehicle 10 and lifts up in some way, to provide access for vehicle passengers via the opening (e.g. car canopy, aircraft canopy, etc.). Canopy doors can be connected (e.g. hinged at a defined pivot axis and/or connected for travel along a track) to the body 12 of the vehicle at the front, side or back of the door, as the application permits. It is recognized that the body 12 can be represented as a body panel of the vehicle 10, a frame of the vehicle 10, and/or a combination frame and body panel assembly, as desired.
In general, the window can be coupled to a window regulator assembly (not shown) for moving the vehicle window 13 up and down, i.e. in and out of the an enclosure 31 provided between the frame 15 and the door panel 18 (see
Referring to
The pulley rivet 44 has a retaining lip 50 on one side 45 that overlaps with a pulley surface 52 (e.g. a retaining surface for the retaining lip 50) of the pulley 42 adjacent to the aperture 48, in order to retain positioning of the pulley 42 adjacent to the rail 36 when installed by the pulley rivet 44 (i.e. adjacent to the interior side 35). At another side 47 of the pulley rivet 44, opposite the one side 45, can be an undercut (e.g. retainer portion) 54 for providing a snap fit against a corresponding retaining surface 56, for example, adjacent to the aperture 46 in the rail 36 (i.e. on the exterior side 37), the snap fit between the undercut 54 and the retaining surface 56 acting as a detent mechanism to retain the pulley rivet 44 within the aperture 46, once inserted. As such, the material (e.g. plastic) of the body 41 of the pulley rivet 44 is resilient to provide for deformation (e.g. elastic) of the body adjacent to the undercut 54 during travel of the pulley rivet 44 within (and through) the aperture 46, such that the undercut 54 overlaps the retaining surface 56 once the undercut 54 inserted in (and optionally emerges out of) the aperture 46. In other words, the body 41 (or portion thereof) of the pulley rivet 44 between the retaining lip 50 and the undercut 54 is of a cross sectional dimension smaller than a corresponding cross sectional dimension of the aperture 46, while the undercut 54 itself (e.g. a barb) is of a cross sectional dimension greater than the cross sectional dimension of the aperture 46 in order to provide for the overlap between the undercut 54 and the retaining surface 56 as shown in
As shown in
Referring to
In operation of the pulley rivet 44, the pulley rivet 44 is placed through the aperture 48 of the pulley 42 such that the retaining lip 50 overlaps with the pulley surface 52. The body 41 of the pulley rivet 44 with the undercut 54 is then pushed into (and optionally though) the aperture 46 of the rail 36 until the undercut 54 overlaps the retaining surface 56 of the aperture 46, thus securing the pulley rivet 44 within the aperture 46 (through engagement of the retaining surface 56 with the undercut 54) and accordingly the pulley 42 on the rail 36 by means of the retaining lip 50 cooperating with the pulley surface 52. The pulley rivet 44 is inserted into (e.g. received by) both the rail aperture 46 and the pulley aperture 48 when the apertures 46, 48 are aligned. Once the rail 36 (with attached pulley 42) is in an assembly position with the carrier panel 16 (and/or frame 15), the installer can then insert the fastener through a hole in the carrier panel 16 (and/or frame 15) and then fasten the fastener 60 in the hole 58 of the pulley rivet 44, thus securing the rail 36 and attached pulley 42 thereto via the rivet pulley 44. It is recognized that some or all of the components of the window regulator system (e.g. one or more rails 36, the regulator carriage connected to the window 13 and mounted on the rail 36) is/are ultimately connected to the carrier panel 16 and/or frame 15 via cooperation of the pulley rivet 44 and the fastener 60. Preferably, the pulley rivet 44 is installed from the one side 35 of the rail 36 and the fastener 60 from the other side 37 of the rail 36. Once the fastener 60 is fastened in the hole 60, the window regulator system, if not already attached to the frame 15, can then be attached via the carrier panel 16 to the frame 15 by other fasteners as desired. It is recognized that the aperture 46 of the rail 36 can be aligned with the corresponding hole in the carrier panel 16 and/or frame 15 when inserting the fastener 60 into the hole 58 of the pulley rivet 44.
While the above description constitutes a plurality of embodiments, it will be appreciated that the present disclosure is susceptible to further modification and change without departing from the fair meaning of the accompanying claims.
Number | Name | Date | Kind |
---|---|---|---|
5333411 | Tschirschwitz | Aug 1994 | A |
6571515 | Samways | Jun 2003 | B1 |
9388882 | Takano | Jul 2016 | B2 |
9580953 | Matsushita | Feb 2017 | B1 |
9702399 | Arnault | Jul 2017 | B2 |
9707827 | Kroack | Jul 2017 | B2 |
9752662 | Takano | Sep 2017 | B2 |
9896874 | Chono | Feb 2018 | B2 |
20090051193 | Hernandez | Feb 2009 | A1 |
20090188167 | Maruyama | Jul 2009 | A1 |
20110010999 | Broadhead | Jan 2011 | A1 |
20110078957 | Deschner | Apr 2011 | A1 |
20110111900 | Wilson | May 2011 | A1 |
20140179475 | Fukumoto | Jun 2014 | A1 |
20150191957 | Takeda | Jul 2015 | A1 |
20150275560 | Yamamoto | Oct 2015 | A1 |
Number | Date | Country | |
---|---|---|---|
20170342756 A1 | Nov 2017 | US |
Number | Date | Country | |
---|---|---|---|
62341317 | May 2016 | US |