The present disclosure is related to a patient-support apparatus. More specifically, the present disclosure is related to a patient-support apparatus configured to support a patient with pulmonary complications.
Bariatrics is the area of medicine related to the management of obesity and diseases and clinical conditions related to obesity. In care environments, such as hospitals, for example, obese patients present special issues related to their care. For example, standard patient handling equipment is not typically sized or rated to support obese patients. In addition, patient therapy devices are not typically sized to fit obese patients. Those patient therapy devices which are sized to fit obese patients may not be configured to provide effective therapy to patients.
Persons who are confined to a patient-support apparatus, such as a hospital bed, for example, for extended periods run the risk of developing pulmonary complications. They are particularly susceptible to nosocomial infections such as pneumonia or bronchial infections. For persons confined to a patient-support apparatus for an extended time, pulmonary therapy may be provided to reduce the risk of pulmonary complications. For example, continuous lateral rotation, percussion therapy, or vibration therapy each reduce the risk of development of pulmonary complications such as nosocomial infections.
The present disclosure comprises one or more of the features recited in the appended claims and/or the following features which, alone or in any combination, may comprise patentable subject matter:
According to the present disclosure, a patient-support apparatus illustratively embodied as a hospital bed includes an upper frame, an upper deck supported on the upper frame, and a controller operable to control movement of the upper frame and the upper deck. The upper frame includes a head end and a foot end and is movable between a generally horizontal position and a position wherein the head end of the upper frame is spaced vertically below the foot end of the upper frame. The upper deck is supported on and movable with the upper frame. The upper deck includes a seat section and a head section pivotable relative to the seat section to change the angular relationship between the head section and the seat section.
The controller is configured to coordinate movement of the upper frame and the head section of the upper deck such that with movement of the head section of the upper deck from a position in which the head section is generally coplanar with the seat section to a position in which the head section is inclined, the controller causes the upper frame to move from the generally horizontal position to a first position wherein the upper frame deviates from horizontal by a first angle. Continued articulation of the head section upwardly causes the upper frame to move from the first angle back to the generally horizontal position. In some embodiments, the controller is in communication with a peer-to-peer network. The angular displacement of the upper frame may be measured by at least one potentiometer. Similarly, the angular position of the head section may be measured by at least one potentiometer.
In some embodiments, the patient-support apparatus may further comprise a first inflatable structure positioned on the seat section and configured to support a portion of a patient. When the first inflatable structure is present, articulation of the head section may cause the inflatable structure to deflate. The first inflatable structure may continue to deflate during the entire range of articulation of the head section. In some embodiments, after a portion of travel of the head section, the first inflatable structure may begin to re-inflate.
In some embodiments, the patient-support apparatus may further comprise a second inflatable structure supported on the first inflatable structure. When both the first and second inflatable structures are present, the first inflatable structure may deflate in response to articulation of the head section and the second inflatable structure may maintain inflation. The second inflatable structure may operate at an increased pressure to tend to prevent bottoming out of a patient supported on the patient-support apparatus against the seat section.
The upper frame may deviate from a generally horizontal position to an inclined position of about (15°). The head section may articulate to an inclined angle of about (65°).
In some embodiments where first and second inflatable structures are present, the first inflatable structure may be operable to provide continuous lateral rotation therapy to a patient on the patient-support apparatus. Operation of the inflatable structures may be controlled by a pneumatic supply and control system. The pneumatic supply and control system may be coupled to the peer-to-peer network.
The patient-support apparatus may further comprise a mattress and the inflatable structures may be included within the mattress. The mattress may be configured to provide low-airloss therapy to a patient supported on the mattress. The mattress may include a coverlet removably coupled to the mattress, the coverlet configured to provide the low-airloss therapy. The coverlet may comprise an upper portion including (i) a vapor permeable, air impermeable, water resistant top layer of fabric, (ii) a vapor permeable, air impermeable, water resistant bottom layer, and (iii) a spacer fabric interposed between the top and bottom layers to facilitate air flow through the coverlet. The coverlet may include a plurality of inlets at a foot end of the coverlet. The coverlet may also include an outlet at a head end of the coverlet.
In some embodiments, the first inflatable structure may be positioned on the upper deck, a second inflatable structure may be supported on the first inflatable structure, and a third inflatable structure may be supported on the second inflatable structure the third inflatable structure may include a plurality of air chambers which may be selectively and alternatively rapidly inflated to impart a percussion and/or vibration to a portion of the body of a patient. The third inflatable structure may be positioned to engage the chest of a patient supported thereon. A coverlet may be positioned above the first, second, and third inflatable structures. The coverlet may be configured to receive pressurized air to provide low-airloss therapy to a patient supported thereon.
The low-airloss therapy may be controlled by a low-airloss control module configured to be removably coupled to the pneumatic supply and control system to control the operation of the coverlet. The low-airloss control module may include (i) a controller electrically communicating with the pneumatic supply and control system, (ii) a plurality of connectors configured to engage the pneumatic supply and control system to receive pressurized air, (iii) an electrical connector, (iv) a plurality of outputs configured to provide pneumatic communication between the low-airloss module and the coverlet, and (v) a plurality of valves responsive to the controller to control a flow of pressurized air from the pneumatic supply and control system to the coverlet. The electrical connector may be configured to engage the pneumatic supply and control system to provide electrical communication between the controller and the pneumatic supply and control system.
Additional features, which alone or in combination with any other feature(s), including those listed above and those listed in the claims, may comprise patentable subject matter and will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying the best mode of carrying out the invention as presently perceived.
The detailed description particularly refers to the accompanying figures in which:
A patient-support apparatus illustratively embodied as a hospital bed 10 includes a frame 12 (see
Frame 12 includes a base 16, a lift system 18, an upper frame 20, and an upper deck 22. As will be discussed in more detail below, the deck is articulable to any of a number of configurations to support a patient positioned on the mattress assembly 14 for comfort or therapeutic purposes.
The integrated mattress assembly 14 includes a mattress 24 and a pneumatic supply and control system 26. The control system 26 in the illustrative embodiment is integrated with the frame 12 and shares power and control architecture with the frame 12 as shown in
Upper portion 30 further includes an intermediate layer 40 separating upper layer 36 and lower layer 38 to provide a flow path for the pressurized air. In the illustrative embodiment, the intermediate layer 40 comprises a batting, the batting including polyester fibers in a matrix which sufficiently separates upper layer 36 and lower layer 38 for air to flow therebetween. Illustratively, the intermediate layer is Spacenet manufactured by Freudenberg & Co. of Weinheim, Germany. In some embodiments, the intermediate layer 40 may include Tytex, available from Tytex Inc. of Rhode Island. Other woven, nonwoven, or knit breathable support materials or fabrics having resilient portions, microfilaments, monofilaments, or thermoplastic fibers may be used in other embodiments. Suitable materials for intermediate layer 40 and for layers 36 and 38 are also described in U.S. Published Patent Application 2006-0168736, entitled PRESSURE RELIEF SURFACE, filed Jan. 3, 2006, the disclosure of which is incorporated herein by this reference.
Illustratively, upper layer 36 comprises a urethane coated nylon which permits water vapor to pass through the upper layer 36 into the space between upper layer 36 and lower layer 38. The flow of pressurized air through upper portion 30 tends to remove the accumulated moisture. Thus, sweat from a patient passes through upper layer 36 and is removed. The removal of moisture is also known to reduce the potential for injury to the skin of a patient positioned on a mattress, such as the illustrative mattress 24.
Mattress 24 is illustratively configured as a therapy surface to address risk factors for various ailments experienced by persons confined to a patient-support apparatus for an extended period. For example, hospital bed 10 may be embodied as a TotalCare® Bariatric Bed available from Hill-Rom, Inc. of Batesville, Ind. Mattress 24 may be embodied as a TotalCare® Bariatric Plus Low Airloss surface for the TotalCare® Bariatric bed, also available from Hill-Rom. The mattress 24 as described herein includes structures specific to integration of the mattress with the TotalCare® Bariatric Bed or TotalCare® Bed System also available from Hill-Rom, Inc. However, these structures are illustrative only and do not limit the scope of any claims not reciting specific structures.
When referring to locations on the hospital bed 10, the terms “head end” and “foot end” are used generally to provide orientation and do not refer to specific features of the hospital bed 10. The terms “patient left” and “patient right” are used to provide orientation relative to a patient positioned on the hospital bed 10 lying in a supine position. As shown in
A foot end 46 of mattress 24 is narrower than the remainder of mattress 24 as shown in
Mattress 24 further includes a fire barrier 240 and a patient-support structure 70. The support structure 70 includes multiple foam pieces and a number of enclosed volumes which are separately inflatable to provide therapy and support to a patient supported on the mattress 24. For purposes of discussion, the support structure 70 may be considered in four sections along the longitudinal length of the mattress 24 as shown in
Referring now to the diagrammatic representation of support structure 70 in
A head structure 88 positioned in the head section 72 is illustratively a series of interconnected air cells which form a single inflatable volume to provide support to the head of a patient supported on structure 70 of mattress 24. A torso structure 90 also illustratively includes a series of interconnected air cells forming an inflatable volume to support the torso of a patient on structure 70 of mattress 24. A seat structure 93 is positioned in the thigh area 76 and includes a series of interconnected cells to support the seat of a patient on the structure 70. A thigh structure 92 is positioned in the thigh area 76 and includes a series of interconnected air cells to support the thigh area of a patient on the structure 70. As will be described in further detail below, torso section 74 is pivotable relative to thigh section 76. Head structure 88, torso structure 90, seat structure 93, and thigh structure 92 are each inflated and pressurized to pressures which tend to reduce the potential of injury to the skin of a patient supported on mattress 24.
A foot structure 96 of support structure 70 is positioned at a foot section 78. Foot structure 96 includes a plurality of bladders connected together. Foot structure 96 includes a lower set of collapse bladders 274 which are plumbed together to form a single volume. A series of retraction bladders 276 are coupled to collapse bladders 274 and the retraction bladders 276 are plumbed together to form a second volume separate from the volume formed by collapse bladders 274. A series of heel bladders 278 are coupled to both the collapse bladders 274 and retraction bladders 276 with the heel bladders 278 being plumbed together to form yet another single volume. In the illustrative embodiment, foot section 78 is retractable and collapsible when the hospital bed 10 is articulated to a chair position such as the position shown in
Mattress 24 is configured to provide continuous lateral rotation therapy (CLRT) to a patient supported on mattress 24. CLRT is the process of rotating a patient laterally on a patient-support surface, such as mattress 24. Application of CLRT by the structure 70 is depicted diagrammatically in
Referring now to
Structure 70 further includes a head support 104 positioned in head section 72 below head structure 88 and configured to support head structure 88 relative to upper deck 22. A body support 106 is positioned under torso section 74 and thigh section 76 to support the various rotation structures, working cushions, and the torso structure 90, thigh structure 92 and seat structure 93 relative to the upper deck 22. A foot support 108 is positioned under foot structure 96 and rotation structures 102 and 103 to support those components relative to the upper deck 22. In addition, a large bolster 105 is positioned on both the left side and a right side of structure 70 engaging head support 104 and extending longitudinally along the perimeter of structure 72 the interface between the torso section 74 and thigh section 76. A small bolster 107 extends longitudinally from large bolster 105 the links of thigh section 76 on both sides as structure 70. The bolsters 105 and 107 comprise a foam material and provide an interface between the various bladders of structure 70 in the components of upper deck 22. Two spacers 109 are coupled to each of the bolsters 105 and 107, the spacers providing support for the bolsters 105 and 107 by engaging the upper deck 22 through the mattress cover.
The relationship of various components of the mattress assembly 14 is represented diagrammatically in
Control assembly 402 communicates to the working cushions through a working cushions interface 308 which includes a right working cushion conduit 312 connected to the right working cushion 94 and a left working cushion conduit 314 which connected to left working cushion 95. Control assembly 402 communicates with coverlet 28 through a low-airloss interface 316 which includes a right air loss conduit 318 and a left air loss conduit 320. Conduits 318 and 320 are connected to the two entry ports 32 of coverlet 28 shown in
A percussion and vibration interface 330 communicates from the control assembly 24 to the percussion and vibration assembly 84. The percussion and vibration assembly 84 includes the three percussion and vibration bladders 86. Conduit 332 of percussion and vibration interface 330 communicates with the middle percussion a vibration bladder 86. Conduit 334 of percussion and vibration interface 330 communicates with a lower percussion and vibration bladder 86 positioned to toward the foot end 46 of mattress 24. Conduit 336 of percussion a vibration interface 330 communicates with the percussion and vibration bladder 86 positioned toward the head end 50 of mattress 24. The control system 24 is operable to selectively and alternately inflate the three percussion and vibration bladders 86 to impart an impact to the chest area of a patient positioned on mattress 24. The impacts of rapidly expanding bladders 86 tends to assist in loosening secretions which may stick to lung tissue because of various pulmonary complications as is known in the art.
Control system 24 communicates with foot structure 96 through a foot cushions interface 338. Foot cushions interface 338 includes a collapse bladders conduit 340 which is connected to collapsible bladders 274 of foot structure 96. A retraction bladders conduit 342 of foot cushions interface communicates between control system 402 and retractor bladders 276 of foot structure 96. Foot cushions interface 338 further includes a heel bladder conduit 346 which communicates from control system 402 to heel bladders 278.
Control system 402 has a modular construction as shown in
Control assembly 402 includes a housing 280 into which each of the control modules 360, 362, 364, 112, 404, and 406 are received. Housing 280 includes electrical connections between the various control modules and acts as a manifold through which pressurized air from blower 400 is distributed. Blower 400 may also deliver vacuum pressure to housing 280 to assist in deflating various inflatable structures. The pressure in the manifold portion of housing 280 is controlled to provide a stable pressure source to the various control modules. When inserted into housing 280, each of the control modules 360, 362, 364, 112, 404, and 406 engages with the manifold structure to receive pressurized air and complete the electrical connection necessary to configure control assembly 402 for the particular options to be used in mattress 24. In this way, mattress assembly 14 is configurable to add and remove low-airloss therapy, rotation therapy, and percussion and vibration therapy as necessary for the needs of any particular patient. Housing 280 is secured to head deck section 270 of upper deck 22 through several fasteners 398 the ports of control assembly 402 are received through several apertures head deck section 270 at deck interface 392.
The peer-to-peer network 410 further includes a power control module 412, a scale model 414, and a user interface module 416 each of which is connected to the peer-to-peer network such that operational information is shared between the various modules and control assembly 402. For example power control module 412 receives information from control assembly 402 to power on the blower 400. The peer-to-peer network 410 facilitates the expansion of capabilities of the hospital bed 10 by permitting various features to be added as necessary with chain vacation between the various modules being facilitated by the peer-to-peer network 410.
When assembled, control assembly 402 receives pressurized air through conduit 358 which is coupled to a port 374 of housing 280, and through conduit 359 which is coupled to a port 372 of housing 280. When treatment therapy control module 360 and normal operation control module 406 are installed in housing 280, a cover 366 is coupled to housing 280 to cover modules 360 and 406. Similarly when foot section control module 364 is positioned in housing 280, a cover 368 is coupled to the housing 280. Modules 360, 364, and 406 are present in all configurations of control assembly 402. Therefore covers 366 and 368 are generally fixed. A hinged cover 390 is coupled to housing 280 and pivotable relative thereto. Cover 390 opens to permit insertion of low-airloss control module 112, pulmonary pulsation control module 404, or pulmonary rotation control module 362 which changes the operational characteristics of mattress assembly 14 to provide a traditional therapies as necessary. Cover 390 snaps closed and is releasable to open to install the optional modules. Two covers 370 are positioned on the lower surface of housing 280 on each side of housing 280 and are secured with a fastener 396. Removal of one or both of the covers 370 permits access to the foot section control module electoral connections or the treatment therapy control module electrical connections. An additional cover 396 is positioned on the lower surface of housing 280 and when removed provides access to the manifold portion of housing 280 to allow the housing 280 to be configured to receive the optional control modules. Cover 394 is secured by two fasters 396.
The addition of the optional control models and additional control features to a patient-support apparatus has been disclosed previously in various patents. U.S. Pat. No. 5,781,949, for example, discloses the addition of rotation therapy. U.S. Pat. No. 6,119,291 discloses a percussion and vibration therapy apparatus. U.S. Pat. No. 6,047,424 discloses the use of modular therapy devices on a hospital bed. In the present disclosure, the modular addition of low-airloss therapy using a zipped on coverlet and an optional control module as disclosed herein provides additional functionality to that disclosed in the prior art. The addition of a low-airloss control module 112 allows a hospital to reconfigure a patient-support apparatus, such as hospital bed 10, for example, for the specific needs of a patient and thereby reduces the need for the functionality to be president and all patient-support apparatuses owned by the hospital. Because low-airloss therapy is not indicated in all cases, only those patients for which the therapy is indicated need to have the therapy available. Modifiable and adaptable patient-support apparatuses permit the hospital to control cost on delivering optimum therapy.
The low-airloss module 112 contains both pneumatic and electrical hardware necessary to control the operation of coverlet 28. The pneumatic structure includes a manifold 136 and four valve assemblies 126 which are coupled to the manifold 136 and are operable to control the flow of pressurized air through the manifold 136. The connection between the low-airloss control module and the right and left air loss conduits 318 and 320 is facilitated by a pair of seals 168, 168. Each seal 168 includes a seal body 170 and a seal flange 172. Each seal flange 172 is configured to couple to a fitting 350 of conduits 318 and 320. Each seal 168 is engaged with a bladder fitting 146 which is received in bladder ports 156 of manifold 136. A seal 150, illustratively embodied as an o-ring, is interposed between the bladder fitting 146 and the bladder port 156 to form a pneumatic seal therebetween.
Low-airloss module 112 further includes two fittings 164 each of which includes a seal flange 166 which engages with an aperture (not shown) in the manifold portion of housing 280 of control assembly 402. When low-airloss module 112 is positioned in housing 280, pressurized air within the housing 280 is indicated through fittings 164 to the remainder of low-airloss control module 112. In one instance, fitting 164 engages an outlet 162 which engages a fitting 144 of manifold 136. Pressurized air from housing 280 flows through fitting 164, outlet 162, and fitting 144 into manifold 136. In a second instance, a fitting 164 engages a fitting 222 of a conduit 218. Conduit 218 further includes a second fitting 220 which engages a port on manifold 136 to provide a second flow path for pressurized air from housing 280 to manifold 136 through fitting 164 and conduit 218.
Valve assemblies 126 are received into four ports 154 of manifold 136. Referring now to
The operation of low-airloss control module 112 is dependent upon the pressure sensed in manifold 136. A pair of sensor fittings 138, 138 are secured to manifold 136 and in fluid communication with ports 156, 156 to communicate the pressure at ports 156 to a pair of sensors 230 coupled to a circuit board assembly 202. The fittings 138 are received into ports (not shown) in manifold 136 with a seal 142 interposed between the fittings 138 and manifold 136 to form a pneumatic seal. Control module 112 includes a pair of sensor tubes 224 each of which has a pressure end 226 which is engaged with a fitting 138. Sensor tubes 224 each include a sensor end 228 which engages one of the two sensors 230 to provide a fluid communication path between the sensor 230 and the fitting 138. Thereby, sensors 230 are operable to sense a pressure indicative of the pressure in respective ones of the ports 156 with the sensed pressure being used to control operation of low-airloss control module 112.
Two bladder plugs 188 are coupled to manifold 136 to plug cross-drillings of the manifold 136. A seal 190, embodied as an o-ring is interposed between each of the bladder plugs 188 and manifold 136 to provide a pneumatic seal. The tray 192 is secured to manifold 136 by three fasteners 138 with tray 192 acting as a mount for circuit board assembly 202. An insulator 200 is interposed between tray 192 and circuit board recently 202. Insulator 200 is illustratively embodied as a Mylar sheet which is positioned to prevent inadvertent electrical connections between components on circuit board assembly 202 and any conductors. A first wire harness 204 is coupled to circuit board assembly 202 through a connector 208. A second wire harness 212 is coupled to circuit board assembly 202 through a connector 216. Wire harness 212 further includes a ground strap 210. Each of the wire harnesses 130 from each of the valve assemblies 126 is coupled to circuit or somebody 202 and a specific location such that the circuitry of circuit board assembly 202 knows by position the functionality of the particular valve assembly 126. Each of the wire harnesses 204 and 212 is coupled to a connector 182 through connectors 206 and 214 respectively, with connector 182 positioned to engage an electrical connection (not shown) coupled to housing 280 of control assembly 402.
Circuit board assembly 202 is secured to tray 192 through a pair of fasteners 198. Connector 182 is secured to a cover 178 of low-airloss control module 112. A grounding plate 174 is also secured to connector 182 through the interaction of a pair of fasteners 186 which are secured by nuts 176. A retention clip 140 retains fittings 138 to manifold 136 through a snap-fit of protrusions on retaining clip 140 into slots on manifold 136. Once all components are secured to manifold 136, the subassemblies are received into a space 122 of a housing 114 of low-airloss control module 112. A cover 116 is secured opposite cover 178 with both covers being secured by fasteners, cover 178 secured by fasteners 184 and cover 116 secured by fasteners 120. Three rubber standoffs 160 are secured the cover 178 by fasteners 184 and engage manifold 136 to provide vibration dampening between manifold 136 and cover 178. Two rubber mounts 124 engage manifold 136 and cover 116 to provide vibration dampening therebetween. Similarly, a standoff 196 is engaged with a lower surface of manifold one or 36 and 80 roller mount 194 engages standoff 196 and tray 192 to provide vibration dampening between tray 192 and manifold 136.
The flow of air through low-airloss control module 112 is controlled by the operation of valve assemblies 126 to vary the flow through coverlet 28. In some instances, the pressure in housing 280 may be negative to provide a negative pressure to a various other portions of mattress 24, to deflate certain air bladders or structures, for example. Low-airloss control module 112 is configured to close off the flow of negative pressure to the coverlet 28 if necessary. It should be noted that when low-airloss control module 112 is inactive, coverlet 28 functions as a standard mattress cover. Therefore, mattress 24 is functional when the low-airloss therapy is not active.
In addition to the various therapies described above, hospital bed 10 of the illustrative embodiment includes additional functionality particularly applicable to large or obese patients. The frame 12 is configured to articulate in a manner which increases the comfort of a large patient during articulation of head deck section 270 relative to seat deck section 272. Referring to
A second drive link 444 oriented near the foot end 46 of base 16 is pivotably coupled to base 16 and pivotable about an axis 424. A member 436 is coupled to upper frame 20 and extends vertically downward therefrom. The member 436 is pivotably coupled to second drive link 444 and is pivotable relative to second drive link 444 about an axis 434. Pivoting of second drive link 444 relative to base 16 is measured by a second potentiometer 454 with the information fed to power control module 412 such that power control module 412 discerns the degree of pivoting of second drive link 444 relative to base 16.
As shown in
In the illustrative embodiment, the first drive link 426 and the second drive link 444 are each independently driven by separate hydraulic actuators (not shown). An illustrative discussion of an applicable hydraulic system is described in U.S. Pat. No. 5,715,548. It should be understood that the frame structure described herein and the hydraulic system of U.S. Pat. No. 5,715,548 are but one of many approaches to automatically driving an upper frame of a patient-support apparatus relative to a base frame. Any of a number of systems known in the art could be used in place of the illustrative lift system described herein. The use of potentiometers 450 and 454 is illustrative in nature, but should not be considered limiting of the scope of this disclosure. Other methods of measuring the degree of attitude variation of the upper frame relative to the base may be employed as well.
As discussed above, foot deck section 249 includes a moving portion 250 and a fixed portion 252. In addition, foot deck section 249 is pivotable relative thigh deck section 254. A link 440 is pivotably coupled to upper frame 20 and pivotable about an axis 438. Link 440 is pivotably coupled to a foot support link 446 which supports foot deck section 249 and is pivotable relative to link 440 about an axis 442. When link 440 is driven to pivot about axis 438, foot deck section 249 is thereby driven to pivot relative to thigh deck section 254 about an axis 266 (seen in
Thigh deck section 254 is pivotably coupled to seat deck section 272 pivotable about an axis 256. Thigh deck section 254 is driven by a hydraulic cylinder (not shown) coupled to the upper frame 20. Seat deck section 272 is supported on upper frame 20. Head deck section 270 is pivotably coupled to seat deck section 272 and is pivotable about an axis 284 (seen in
In the illustrative embodiment, the articulation of head deck section 270 is coordinated with a change in attitude of upper frame 20 relative to base 16. Activation of a head-up control input on the hospital bed 10 activates a hydraulic cylinder coupled to the upper frame 20 and the head deck section 270 to drive articulation of the head deck section 270 and thereby change angle α. During articulation of head deck section 270, drive system 18 is activated to articulate upper frame 20 relative to base 16 between the horizontal position shown in
The upper deck 22 and upper frame 20 are articulable to any of a number of positions from a flat position to a chair position. Various configurations of articulation positions of hospital bed 10 are shown in
Articulation of the upper deck 22 and lower frame 20 is monitored by the control system of hospital bed 10 to determine which of several modes the hospital bed 10 is in to determine target pressure for the various bladder structures. The control system of the hospital bed 10 monitors the articulation positions of each of the upper frame 20, head deck section 270, and foot deck section 249 to determine which mode the pneumatic supply and control system 26 should be operating in to manage pressures in the various bladder structures of mattress 24. The position of each of the deck sections 270 and 249 as well as the upper frame 20 are considered in determining which mode should be active.
For example, when the foot deck section 249 is articulated less than (70°) downwardly from horizontal the mattress 24 and no other structures are articulated, the mattress 24 is operated in a NORMAL mode. If the sum of the articulation angle of the head deck section 270 and foot deck section 249 minus the articulation angle of upper frame 20 is greater than (65°) and the foot deck section 249 articulation angle is less than or equal to (30°), the mode is changed to an CHAIR mode. CHAIR mode is also activated if the articulation angle of the head deck section 270 and foot deck section 249 minus the articulation angle of upper frame 20 is greater than (75°) and the foot deck section 249 articulation angle is less than (30°). The hospital bed 10 includes a chair position user input. CHAIR mode may be activated when the chair position user input is activated as well.
In CHAIR mode, the working cushions 94 and 95 are deflated to cause a patient supported on the hospital bed 10 to be cradled by lowering the height of mattress 24. This reduces the potential for a patient to feel that they are being pushed out of the hospital bed 10 as the bed articulates to a chair position. Also, the lowering of the height of mattress 24 through cradling tends to reduce the potential for a patient to slide down toward the foot end 46 of the hospital bed 10. In some instances, the seat structure 93 may be inflated to a higher pressure during chair mode to reduce the potential for a patient to displace the structure and rest on underlying structure without an inflated interface. This situation is known as “bottoming out” and increases the potential for skin injury to a patient due to the lack of a therapeutic effect of the inflatable structures.
An OUT-OF-CHAIR mode is activated when the articulation angle of the head deck section 270 and foot deck section 249 minus the articulation angle of upper frame 20 is greater than (60°) and the foot deck section 249 articulation angle is less than (30°). OUT-OF-CHAIR mode is also activated when the articulation angle of the head deck section 270 and foot deck section 249 minus the articulation angle of upper frame 20 is less than (50°) and the foot deck section 249 articulation angle is greater than or equal to (30°). In OUT-OF-CHAIR mode, the working cushions 94 and 95 are inflated to a pressure which provides support to the remaining structures without deflection. Illustratively, working cushions 94 and 95 are maintained at a pressure which is defined by a formula in which the set point pressure is dependent the angle of articulation of head deck section 270 and patient weight. The formula is in the form of:
Pworking cushion=K1×((K2×Patient Weight)+(Head Angle×K3)+K4) (Equation 1)
In one illustrative embodiment, K1=0.8; K2=3.0; K3=6.7; and K4=300.0. Illustratively, Pworking cushion is limited to a minimum of 17.0 inches of water. It should be understood that while Equation 1 has been found to provide an acceptable result, any of a number of equations may be applied to determine the appropriate pressure in working cushions 94 and 95 to provide the cradle effect disclosed herein.
Although certain illustrative embodiments have been described in detail above, variations and modifications exist within the scope and spirit of this disclosure as described and as defined in the following claims.
This application claims the benefit, under 35 U.S.C. §119(e), of U.S. Provisional Patent Application Ser. No. 60/799,435 filed May 9, 2006 which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
1772310 | Hart | Aug 1930 | A |
3340550 | Hopkins et al. | Sep 1967 | A |
3340551 | Hopkins | Sep 1967 | A |
3354476 | Scales et al. | Nov 1967 | A |
3428973 | Hargest et al. | Feb 1969 | A |
3434165 | Keane | Mar 1969 | A |
3492988 | De Mare | Feb 1970 | A |
3644950 | Lindsay, Jr. | Feb 1972 | A |
3674019 | Grant | Jul 1972 | A |
3757366 | Sacher | Sep 1973 | A |
3778851 | Howorth | Dec 1973 | A |
3822425 | Scales | Jul 1974 | A |
3867732 | Morrell | Feb 1975 | A |
4193149 | Welch | Mar 1980 | A |
4224706 | Young et al. | Sep 1980 | A |
4347633 | Gammons et al. | Sep 1982 | A |
4357722 | Thompson | Nov 1982 | A |
4391009 | Schild et al. | Jul 1983 | A |
4394784 | Swenson et al. | Jul 1983 | A |
4411035 | Fenwick | Oct 1983 | A |
4435864 | Callaway | Mar 1984 | A |
4483030 | Flick et al. | Nov 1984 | A |
4525409 | Elesh | Jun 1985 | A |
4525885 | Hunt et al. | Jul 1985 | A |
4628557 | Murphy | Dec 1986 | A |
4638519 | Hess | Jan 1987 | A |
4803744 | Peck et al. | Feb 1989 | A |
4862529 | Peck | Sep 1989 | A |
4897890 | Walker | Feb 1990 | A |
4944060 | Perry et al. | Jul 1990 | A |
4951335 | Eady | Aug 1990 | A |
4970743 | Wride et al. | Nov 1990 | A |
4977633 | Chaffee | Dec 1990 | A |
4982466 | Higgins et al. | Jan 1991 | A |
4986738 | Kawasaki et al. | Jan 1991 | A |
4991244 | Walker | Feb 1991 | A |
4993920 | Harkleroad et al. | Feb 1991 | A |
4999867 | Toivio et al. | Mar 1991 | A |
5003654 | Vrzalik | Apr 1991 | A |
5005240 | Vrzalik | Apr 1991 | A |
5007123 | Salyards | Apr 1991 | A |
5010608 | Barnett et al. | Apr 1991 | A |
5018786 | Goldstein et al. | May 1991 | A |
5022110 | Stroh | Jun 1991 | A |
5023967 | Ferrand | Jun 1991 | A |
5044029 | Vrzalik | Sep 1991 | A |
5044364 | Crowther | Sep 1991 | A |
5052068 | Graebe | Oct 1991 | A |
5060174 | Gross | Oct 1991 | A |
5062169 | Kennedy et al. | Nov 1991 | A |
5068933 | Sexton | Dec 1991 | A |
5083335 | Krouskop et al. | Jan 1992 | A |
5095568 | Thomas et al. | Mar 1992 | A |
5103519 | Hasty | Apr 1992 | A |
5129117 | Celestina et al. | Jul 1992 | A |
5142719 | Vrzalik | Sep 1992 | A |
5152021 | Vzralik | Oct 1992 | A |
5157800 | Borders | Oct 1992 | A |
5170364 | Gross et al. | Dec 1992 | A |
5179742 | Oberle | Jan 1993 | A |
5216768 | Bodine et al. | Jun 1993 | A |
5251349 | Thomas et al. | Oct 1993 | A |
5267364 | Volk | Dec 1993 | A |
5269030 | Pahno et al. | Dec 1993 | A |
5279010 | Ferrand et al. | Jan 1994 | A |
5325551 | Tappel et al. | Jul 1994 | A |
5331698 | Newkirk et al. | Jul 1994 | A |
5335384 | Foster et al. | Aug 1994 | A |
5367728 | Chang | Nov 1994 | A |
5370439 | Lowe et al. | Dec 1994 | A |
5375273 | Bodine, Jr. et al. | Dec 1994 | A |
5438721 | Pahno et al. | Aug 1995 | A |
5454126 | Foster et al. | Oct 1995 | A |
5479666 | Foster et al. | Jan 1996 | A |
5483709 | Foster et al. | Jan 1996 | A |
5487196 | Wilkinson et al. | Jan 1996 | A |
5493742 | Klearman | Feb 1996 | A |
5509155 | Zigarac et al. | Apr 1996 | A |
5513406 | Foster et al. | May 1996 | A |
5539943 | Romano | Jul 1996 | A |
5542136 | Tappel | Aug 1996 | A |
5560057 | Madsen et al. | Oct 1996 | A |
5586346 | Stacy et al. | Dec 1996 | A |
5603133 | Vrzalik | Feb 1997 | A |
5606754 | Hand et al. | Mar 1997 | A |
5611096 | Bartlett et al. | Mar 1997 | A |
5630238 | Weismiller et al. | May 1997 | A |
5647079 | Hakamiun et al. | Jul 1997 | A |
5664270 | Bell et al. | Sep 1997 | A |
5666681 | Meyer et al. | Sep 1997 | A |
5687438 | Biggie et al. | Nov 1997 | A |
5699570 | Wilkinson et al. | Dec 1997 | A |
5715548 | Weismiller et al. | Feb 1998 | A |
5729853 | Thompson | Mar 1998 | A |
5755000 | Thompson | May 1998 | A |
5781949 | Weismiller et al. | Jul 1998 | A |
5787534 | Hargest et al. | Aug 1998 | A |
5815864 | Sloop | Oct 1998 | A |
5870785 | Hoorens | Feb 1999 | A |
5882349 | Wilkerson et al. | Mar 1999 | A |
5887304 | von der Heyde | Mar 1999 | A |
5904172 | Gifft et al. | May 1999 | A |
5926884 | Biggie et al. | Jul 1999 | A |
5983429 | Stacy et al. | Nov 1999 | A |
6012186 | Soltani et al. | Jan 2000 | A |
6021533 | Ellis et al. | Feb 2000 | A |
6047424 | Osborne et al. | Apr 2000 | A |
6062215 | Leininger et al. | May 2000 | A |
6073291 | Davis | Jun 2000 | A |
6079090 | Ongaro | Jun 2000 | A |
6085372 | James et al. | Jul 2000 | A |
6115860 | Vrzalik | Sep 2000 | A |
6119291 | Osborne et al. | Sep 2000 | A |
6145142 | Rechin et al. | Nov 2000 | A |
6148461 | Cook et al. | Nov 2000 | A |
6163903 | Weismiller et al. | Dec 2000 | A |
6282737 | Vrzalik | Sep 2001 | B1 |
6339410 | Milner et al. | Jan 2002 | B1 |
6421859 | Hicks et al. | Jul 2002 | B1 |
6499167 | Ellis et al. | Dec 2002 | B1 |
6536056 | Vrzalik et al. | Mar 2003 | B1 |
6584628 | Kummer et al. | Jul 2003 | B1 |
6698046 | Wu | Mar 2004 | B1 |
6708352 | Salvatini et al. | Mar 2004 | B2 |
6730115 | Heaton | May 2004 | B1 |
6735799 | Ellis et al. | May 2004 | B1 |
6745996 | Guthrie | Jun 2004 | B1 |
6782574 | Totton et al. | Aug 2004 | B2 |
6855158 | Stolpmann | Feb 2005 | B2 |
6892405 | Dimitriu et al. | May 2005 | B1 |
6942687 | Heaton et al. | Sep 2005 | B1 |
6953439 | Kabemba | Oct 2005 | B1 |
7036171 | Wu | May 2006 | B2 |
7086107 | Ellis et al. | Aug 2006 | B2 |
7171711 | Gowda | Feb 2007 | B2 |
7216389 | Ellis et al. | May 2007 | B2 |
7260860 | Chambers et al. | Aug 2007 | B2 |
7296315 | Totton et al. | Nov 2007 | B2 |
20010033925 | Trapp et al. | Oct 2001 | A1 |
20060019581 | Zhang et al. | Jan 2006 | A1 |
20060101581 | Blanchard et al. | May 2006 | A1 |
20070050910 | Blanchard et al. | Mar 2007 | A1 |
20070157385 | Lemire et al. | Jul 2007 | A1 |
20070163043 | Lemire et al. | Jul 2007 | A1 |
20070169268 | Lemire et al. | Jul 2007 | A1 |
20070174964 | Lemire et al. | Aug 2007 | A1 |
20070174965 | Lemire et al. | Aug 2007 | A1 |
Number | Date | Country |
---|---|---|
932779 | Jul 1963 | GB |
1545806 | May 1979 | GB |
2134379 | Aug 1984 | GB |
9427544 | Dec 1994 | WO |
9909865 | Mar 1999 | WO |
Number | Date | Country | |
---|---|---|---|
20070266499 A1 | Nov 2007 | US |
Number | Date | Country | |
---|---|---|---|
60799435 | May 2006 | US |